Use of AI in medical applications and medical technologies

Russian Bavarian Workshop „Artificial Intelligence and Law“

Prof. Dr. Michael Wiehl, OTH Amberg-Weiden
Technology overview
Overview AI technologies by approach

Neural Networks
Expert systems
Image recognition
Natural language Processing (NLP)

(source: AI knowledge Map from kdnuggets.com)
Neural networks and Deep learning

1980s-ERA NEURAL NETWORK

DEEP LEARNING NEURAL NETWORK

Sub set of machine learning algorithms:

More than one hidden layer ➔ deep learning

(source: newworldai.com)
Neural networks and Deep learning

• Step 1: data (p.ex. images) are labelled and given to algorithm ➔ parameters of algorithm are adapted (called „weights“)

• Step 2: algorithm can classify data by itself

• high accuracy ➔ big data is needed
Expert System

• solve complex problems by reasoning through bodies of knowledge
• expert systems were among the first truly successful forms of artificial intelligence (AI) software
• can be done with decision tree
• current approaches use machine learning and data mining

Natural language processing (NLP)

• enables machines to
  • understand human language
  • generate human language
• can be vocal or written text
• process typically involves machine learning

(source: DataFlair Web Services Pvt Ltd)
AI and Big Data

• Knowledge based and statistical AI technologies need a lot of data to be effective, these enable the following:
  • **AI can recognize patterns** - AI can see patterns that humans don’t
  • **Detecting anomalies** - AI can analyze artificial intelligence data to detect unusual occurrences in the data.
    For example, having a network of sensors that have a predefined appropriate range. Anything outside of that range is an anomaly.
  • **Probability of future outcome** - Using known condition that has a certain probability of influencing the future outcome, AI can determine the likelihood of that outcome
AI and Big data

1. Data is fed to the AI
2. AI becomes smarter because of the data
3. Less human interaction is needed as AI becomes smarter
4. Fewer people are required for AI to run
5. AI feeds new data to itself

(source: Medium.com)
AI applications in Healthcare

Assisted or automated diagnosis & prescription
Real time case prioritization and triage
Personalized medications and care
Patient data analytics
Pregnancy Management

Diagnostic error prevention
Medical imaging insights
Early diagnosit

Drug discovery
Gene analytics and editing
Device and drug comparative effectiveness

Market research
Pricing and risk
Brand management and marketing

(source: AIMultiple)
Benefits and risks of AI in healthcare

- Improve precision of decisions, reduce errors
- Assist doctors during diagnosis process
- Offer patients immediate help with virtual assistance
- Improve daily routine processes in clinics and reduce costs

- Doctors rely on AI technology
- Fewer contact to people ➔ less care quality
Medical applications
Diagnosis assistance: Cancer diagnosis

- multiparametric magnetic resonance imaging (MRI), in which different types of MRI scan
- highly trained radiologists don’t always agree on what they’re seeing in the images
- Example [1]
  - 400 MRI scans were used to feed FocalNet
  - AI found 79.2% cancer lesions, experts found 80.7%

An AI system identified a woman’s potential breast tumour four years (left) before it developed (right) (source: Adam Yala)

[1] Savage, Neil; How AI is improving cancer diagnostics, nature, 2020
Customer Service Chatbots

• Patients can query bot for appointment, bill payments, current **patient illness and symptoms**

• Example:
  • Ada app was developed by > 100 doctors & scientists
  • triage recommendations were comparable to those of nurse-staffed telephone triage lines [1]


(source: Ada Health GmbH)
Telemedicine: Remote patient monitoring

• Enables tele monitoring of patients
• Outlook: Machine Learning can detect anomalies and reported to doctor
• Example: Carematrix
  • supports in >20 clinical trials
  • offers dashboard to supervisors
  • patients can be warned automatically

(source: Philips / Carematrix)
Therapy optimization

• personalized treatment improves success rate
• software can structure, analyze and learn from the data
• Example: Oncora Patient Care
  • adaptive data capture technology collects the most important oncology data elements for each patient
  • Software can predict mortality for different treatment methods

(source: Oncora Medical)
Prof. Dr. - Ing. Michael Wiehl

Faculty of Electrical Engineering, Media and Computation
OTH Amberg-Weiden
Phone: +49(9621) 482-3646
Mail: m.wiehl@oth-aw.de