


# **Content curation & Digitization**

Delivering decades of paper-to-digital scientific content creation expertise







CAS SciFinder<sup>n</sup>

Source Selection

Text Indexing

Reaction Indexing

Substance Indexing

Data Model & Search Architecture

App Development



# **Components and Search Types**

### **SciFinder Discovery Platform**



#### **Detailed Formulations**

#### **CAS Formulus**

Quick access to the detailed formulation information for all active ingredients and excipients.

Main areas: pharma, agrochemistry and cosmetics.

#### **Detailed Analytical Methods**

### **CAS Analytical Methods**

A single source for searching and comparing the latest published scientific analytic methods. Search and compare hundreds of thousands of methods across multiple scientific fields of study.



### CAS CONTENT COLLECTION

Curated, connected data analyzed by scientific experts fluent in over 50 languages

CAS REGISTRY CAS Commercial Sources

CAS Reactions CAS Formulations

CAS References Medline (largest portion of PubMed)

CAS Markush CAS Biosequences



### **Boolean operators**

### CAS SciFinder<sup>n</sup> searching

AND requires both concepts to be present within the document



**OR** requires either one or both concepts to be present



**NOT** excludes documents from an answer set



Example: menthol and (food or candy) not cigarette



### Phrase search and wildcards

Terms enclosed in double quotes will be searched in the input order

E.g.: "transcription factor"

Wildcards for internal and right-hand truncation

- \* replaces any number of characters | plasticiz\* → plasticizer, plasticized, plasticizing
- ? replaces 0 or 1 character | 1,?-Dibromobutane → 1,1-Dibromobutane ... 1,4-Dibromobutane





### **Biosequence Search Options**

#### Compounds with max. 252 non-H atoms

- Indexed as "usual" small molecules
- Can be searched by sequence, structure, name, molecular formula, etc.

#### Defined compounds with more than 252 non-H atoms

- Are not indexed with structure: NOT searchable by structure
- Might be indexed with molecular formula
- Can thus be searched by name/identifier, molecular formula and sequence

#### Unspecific biomolecules

- Can be searched by name/identifier
- Include reference search with broad/generic definitions



### **Biosequence Search Options**

Compounds with max. 252 non-H atoms

- Indexed as "usual" small molecules
- Can be searched by sequence, structure, name, molecular formula, etc.
- Defined compounds with more than 252 non-H atoms
  - Are not indexed with structure: NOT searchable by structure
  - Might be indexed with molecular formula
  - Can thus be searched by name/identifier, molecular formula and sequence

Unspecific biomolecules

- Can be searched by name/identifier
- Include reference search with broad/generic definitions

Search shorter sequences for modifications and uncommon amino acids

BLAST CDR Motif

E.g. for classes of sequences or trade-names

Retrieve sequence-related information via text search



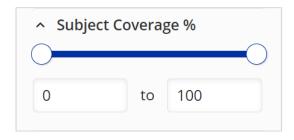
# Biosequence Searching New Data, New Options

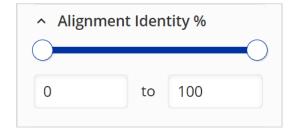
#### **Comprehensive collection:**

- Over 600M patent-sequence relationships from more than 1.1 M patents and 62+ patent authorities
- Over 500M sequences submitted to the non-redundant NCBI protein and nucleotide databases
- Manually curated sequences not found in electronic sequence listings and other databases

#### New biosequence search option:

- BLAST Search nucleotides and proteins
- **CDR** Search complementarity-determining regions of antibodies and T-Cell receptors
- Motif Sequence matching with wild cards and other features


Bioscape visualization tool provides additional analysis options




# Alignment parameters

Coverage and Sequence Identity percentages







Alignment Identity (90%) =

Query Coverage (100%) = 
$$\frac{Alignment\ Length}{Query\ Length} = \frac{10}{10}$$
  
Subject Coverage (91%) =  $\frac{Alignment\ Length}{Subject\ Length} = \frac{10}{11}$ 



Number of Matches

Alignment Length

# Biosequences search example CAS RN: 1967777-53-2

#### **NNYGNYGWYFDV**

#### Protein/Peptide Sequence

Sequence Length: 12

Expand All | Collapse All

#### Other Names and Identifiers

#### Canonical SMILES

0 = C(0)CC(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(NC(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(=0)C(N(==CNC=4C=CC=CC43)CC5=CC=C(O)C=C5)CC=6C=CC=CC6)C(=O)NC(C(=O)O)C(C)C

#### Isomeric SMILES

12 Other Names for this Substance

 $L-Asparaginyl-L-asparaginyl-L-tyrosylglycyl-L-asparaginyl-L-tyrosylglycyl-L-tryptophyl-L-tyrosyl-L-phenylalanyl-L-\alpha-aspartyl-L-valine (ACI) algorithms and the standard properties of the standard properties of$ 

11: PN: WO2019053613 SEQID: 15 claimed protein

3: PN: US20160215059 SEQID: 3 claimed protein

3: PN: WO2018025221 SEQID: 3 claimed protein

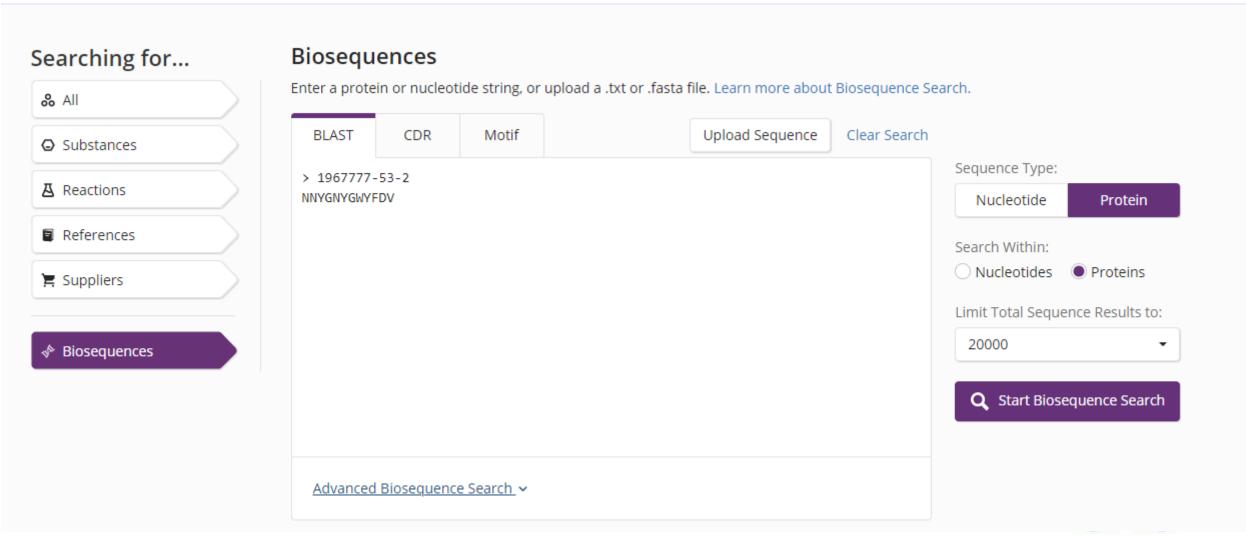
3: PN: WO2019171294 SEQID: 3 claimed protein

3: PN: WO2019229614 SEQID: 3 claimed protein

3: PN: WO2020031087 SEQID: 3 claimed protein

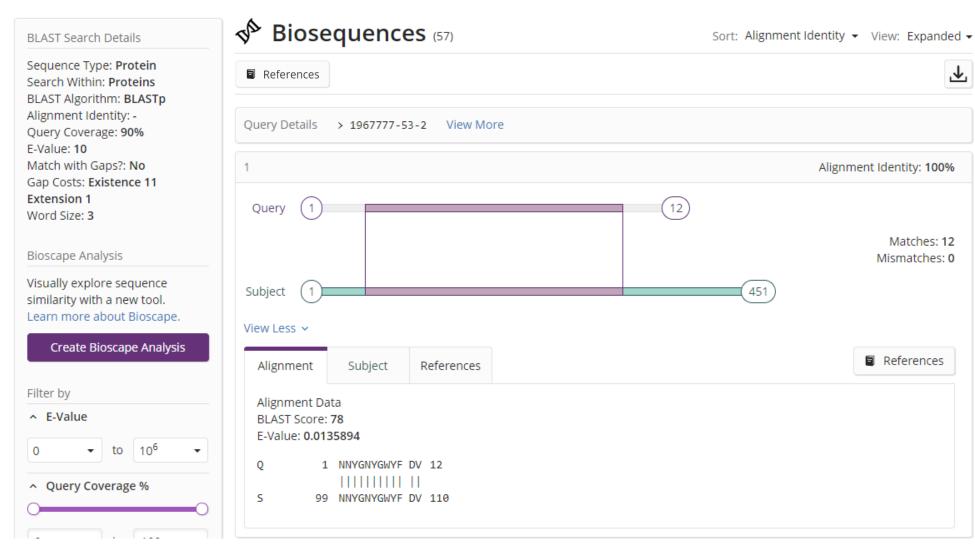
3: PN: WO2020086476 SEOID: 3 claimed protein

3: PN: WO2020086479 SEQID: 3 claimed protein


3: PN: WO2021046289 SEQID: 3 claimed protein

3: PN: WO2021046293 SEQID: 3 claimed protein

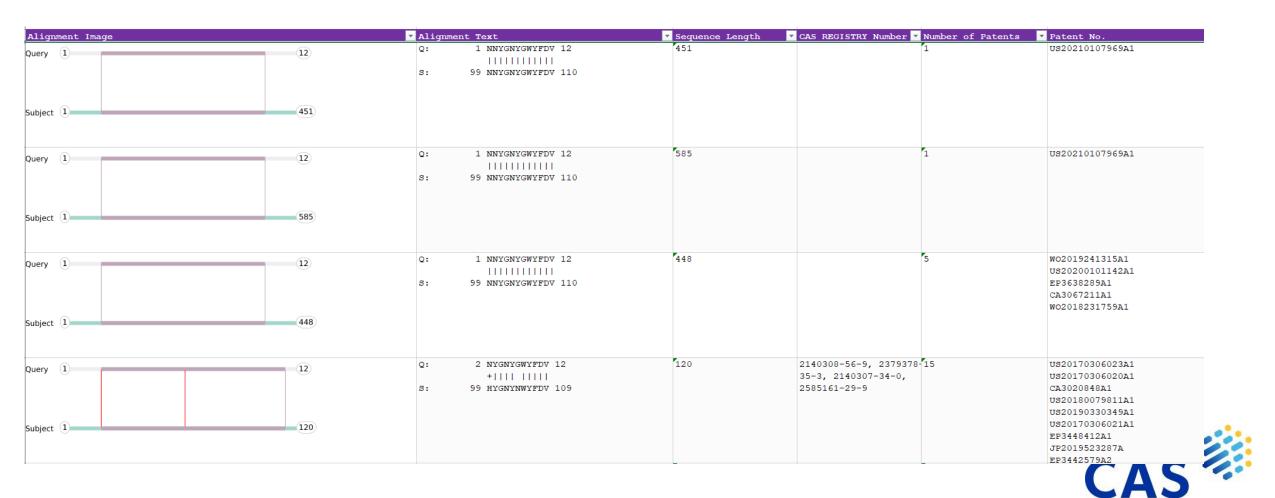
5: PN: WO2021043961 SEQID: 3 claimed protein




# Flexible search examples



### **BLAST** results


### View alignments, filters, links to patents





### **BLAST** results

### **Export sequence data to EXCEL**



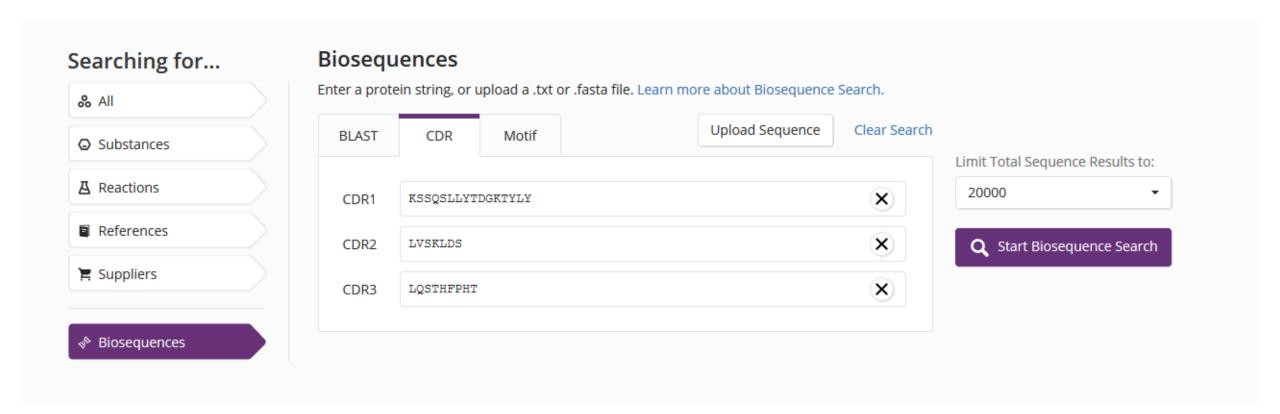
A division of the

**American Chemical Society** 

# **BioScape Visualization**

Interactive view of sequence answer set

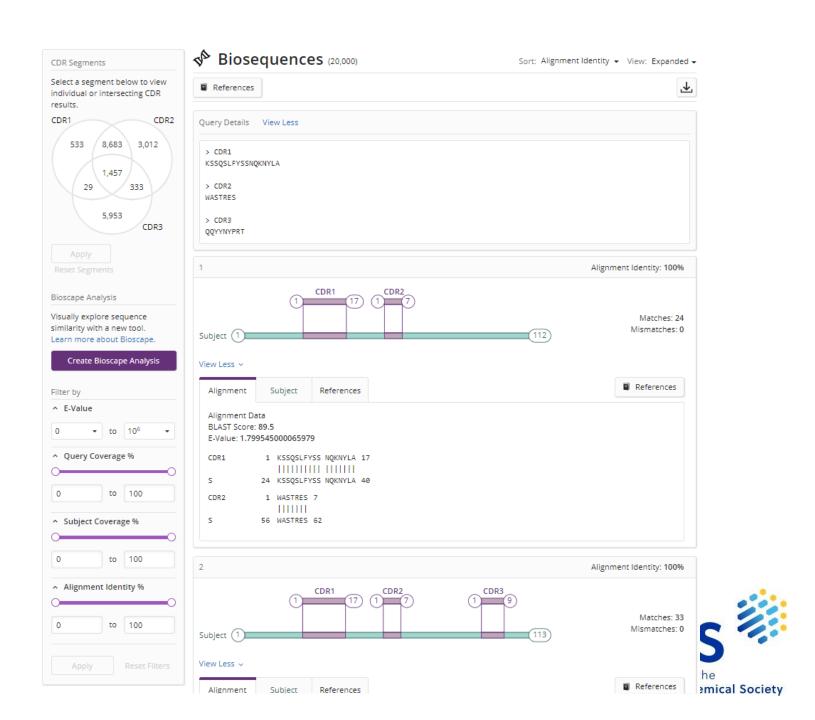
**Position**Similarity to Query
(multiple dimensions)


**Color**Similarity measured by Alignment Identity

Query position Indicated by turquoise circle •

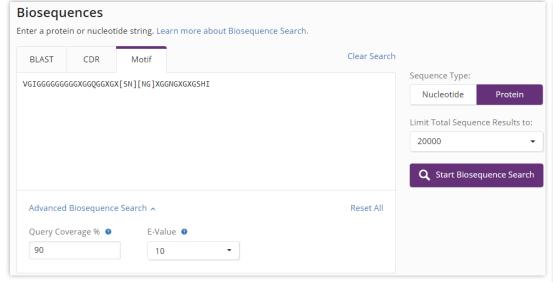


### **CDR Search**


### **Match Three Regions Within the Protein**

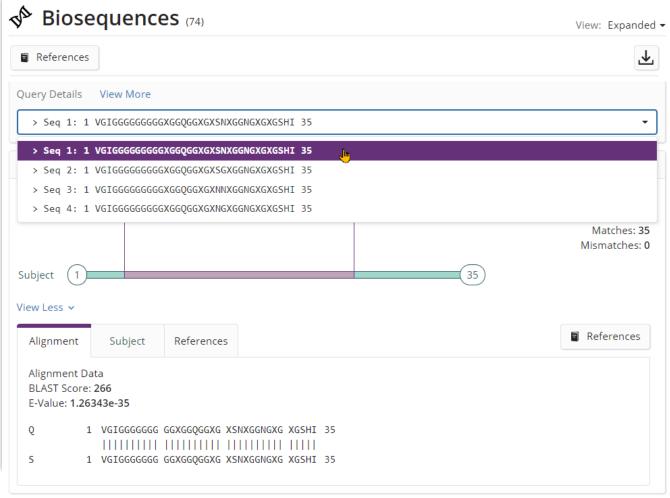





# CDR Search Filters Options

- Alignment visualization provides subject coverage, alignment position, and alignment identity at a glance
- Visually identify alignments to one, two, or all three of the CDR queries




### **Motif Searching**

#### A sequence match search



[**SN**] in the above query finds sequences which contain either Serine (S) or Asparagine (N) at amino acid position 22.

X will find positive mismatches (+) for any hit amino acid or a match between query and hit X amino acid.



# **Biosequence Motif Codes**

| Degenerate<br>Code | Meaning        |
|--------------------|----------------|
| X                  | Any amino acid |
| В                  | D or N         |
| Z                  | E or Q         |
| J                  | I or L         |

| Degenerate Code | Meaning          |
|-----------------|------------------|
| N               | A or C or G or T |
| R               | A or G           |
| Y               | C or T           |
| M               | A or C           |
| K               | G or T           |
| S               | C or G           |
| W               | A or T           |
| Н               | A or C or T      |
| В               | C or G or T      |
| V               | A or C or G      |
| D               | A or G or T      |



# **Biosequence Motif Codes**

| Degenerate Code | Meaning                                                        |
|-----------------|----------------------------------------------------------------|
| [XYZ]           | Any nucleotide or amino acid listed within the square brackets |
| {m,n}           | At least m and maximum n residues length                       |
| {n}             | Exactly n length                                               |
| ^XYZ\$          | Search for the exact sequence XYZ                              |

