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ABSTRACT

Growing evidence supports a role for the central nervous system (CNS) neurotransmitter L-glutamate and its metabo-
tropic receptors (mGluRs) in drug addiction in general and alcohol-use disorders in particular. Alcohol dependence, for
instance, has a genetic component, and the recent discovery that variations in the gene coding for mGluR 7 modulate
alcohol consumption further validates involvement of the L-glutamate system. Consequently, increasing interest
emerges in developing L-glutamatergic therapies for the treatment of alcohol abuse and dependence. To this end, we
performed a detailed behavioral pharmacology study to investigate the regulation of alcohol consumption and prefer-
ence following administration of the mGluR 7-selective drugs N,N’-dibenzyhydryl-ethane-1,2-diamine dihydrochloride
(AMNO82) and 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride
(MMPIP). Upon administration of the allosteric agonist AMNOS82 (10 mg/kg, i.p.) in rats, there was a significant
decrease in ethanol consumption and preference, without affecting ethanol blood metabolism. In contrast, mGluR7
blockade with MMPIP (10 mg/kg, i.p.) showed an increase in alcohol intake and reversed AMNOS82's effect on ethanol
consumption and preference. Both mGluR 7-directed pharmacological tools had no effect on total fluid intake, taste
preference, or on spontaneous locomotor activity. In conclusion, these findings support a specific regulatory role for
mGluR7 on alcohol drinking and preference and provide evidence for the use of AMNOS82-type drugs as potential new

treatments for alcohol-use disorders in man.
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INTRODUCTION

Alcohol is consumed and abused by a large population
worldwide resulting in severe physical and mental health
disorders. Alcohol dependence, also referred to as alcohol-
ism, is characterized by compulsive alcohol intake despite
severe adverse consequences on body and mind. It is well-
established, as for other drugs of abuse, that alcohol
induces changes in the mesolimbic dopamine reward
system (Carboni et al. 2000; Engleman et al. 2000). As
blood alcohol levels rise, neurons of the ventral tegmental
area (VTA) in the midbrain are activated and release
dopamine into numerous target areas including the
nucleus accumbens (NAc) and prefrontal cortex (Carboni
et al. 2000; Engleman et al. 2000; Weiss & Porrino 2002;
Gilman et al. 2008; Ding et al. 2009; Howard et al. 2009).
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Furthermore, a variety of the physiological, biochemical
and behavioral effects of ethanol are known to involve the
L-glutamatergic system (Gruol, Parsons & DiJulio 1997;
Netzeband et al. 1997; Minami et al. 1998; Dodd et al.
2000; Littleton et al. 2001; Simonyi et al. 2004). Microdi-
alysis studies have shown that ethanol increases
L-glutamate levels in many brain regions including the
NAc (Moghaddam & Bolinao 1994; Selim & Bradberry
1996; Szumlinski et al. 2007).

L-glutamate is the primary excitatory neurotransmit-
ter in the mammalian central nervous system (CNS)
playing an important role in many physiological, behav-
ioral and pathological processes. It has been shown that
slower, modulatory actions of L-glutamate are mediated
by the eight metabotropic glutamate receptors (mGIluR 1
to —8) coupled to G-proteins that induce a variety of
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intracellular signaling cascades modulating synaptic
transmission and neuronal excitability throughout the
CNS. In contrast, fast excitatory effects of L-glutamate are
mediated by three ionotropic receptor (iGluR) families:
N-methyl-D-aspartate (NMDA)-, o-amino-3-hydroxi-5-
methyl-ioxyzole-4-propionic acid (AMPA)- and kainate
(KA)-receptors (Nakanishi etal. 1994; Kew 2004;
Palucha & Pilc 2005; Gasparini et al. 2008). The mGluRs
are members of the G-protein-coupled receptor (GPCR)
superfamily, the most abundant receptor gene family in
the human genome (Luttrell 2006). Based on amino acid
sequence similarity, agonist pharmacology, and signal
transduction pathways, mGluRs are categorized into
three groups: group I (mGluR1 and 5) up-regulate
phosphatidylinositol-hydrolysis and Ca**-mobilization. In
contrast, group II (mGluR2 and 3) and group III
(mGluR4, —6, —7 and —8) receptors inhibit adenylate
cyclase and regulate Ca*- and K*-channels (Thomas
2002; Wang et al. 2004; Rodriguez-Moreno & Sihra
2007; Niswender & Conn 2010). Targeting mGluRs is
considered promising for the treatment of alcohol-
use disorders. In fact,
gonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) dose-
dependently reduced ethanol-reinforced responding
during peak periods of behavior occurring during the
early hours of the diurnal dark phase (Hodge et al. 2006).
MPEP also inhibited the discriminative stimulus proper-
ties of consumed ethanol during a self-administration
test session (Besheer, Stevenson & Hodge 2006). In addi-
tion, pre-treatatment of C57BL/6] mice with MPEP or
the mGluR1 antagonist 7-(hydroxyimino)cyclopropa|b]
ethyl (CPCCOEL)
dose-dependently reduced measures of ethanol self-

the mGluR5-selective anta-

chromen-1a-carboxylate ester
administration, blocked the expression of ethanol-
induced place conditioning, as well as ethanol
consumption under 24 hours free-access conditions
(Lominac et al. 2006). Furthermore, the mGluR2/3
agonist LY379268 and the mGluR8 agonist (S)-3,4-
DCPG attenuated ethanol self-administration and rein-
statement (Backstrom & Hyytia 2005).

Although mGIluR7 is widely distributed throughout
the brain (Okamoto et al. 1994; Kinoshita et al. 1998), its
highest expression was found in neocortex, thalamus,
hypothalamus, hippocampus, locus coeruleus and NAc
(Saugstad et al. 1994; Kinzie et al. 1995). Its presynaptic
localization within symmetrical and asymmetrical syn-
apses suggested that mGluR 7 might serve as heterorecep-
tor to regulate GABA release as well as an autoreceptor to
control L-glutamate release (Bradley et al. 1996). Mice
with genetic ablation of mGluR7 showed antidepressant-
and anxiolytic-like activities in a number of behavioral
tests (Cryan etal. 2003). These mice have reduced
amygdala- and hippocampus-dependent conditioned fear
and aversion responses (Masugi et al. 1999). Moreover, it
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has been found that the mGIluR7 activator AMNOS2
induced a dose-dependent decrease in immobility in
despair-related tests suggesting antidepressant-like activ-
ity (Palucha et al. 2007). In addition, AMNOS2 is known
to modulate high frequency synaptic transmission in the
rat basolateral amygdala (Ugolini, Large & Corsi 2008)
further suggesting that pharmacological interference
with mGluR7 may provide novel treatments for psychiat-
ric disorders such as depression, anxiety and possibly
drug addiction.

Regarding ethanol-related behaviors, chronic expo-
sure of rats to an ethanol-containing liquid diet decreased
mRNA levels for mGluR 7 in the CA3 region of the hippoc-
ampus (Simonyi et al. 2004). To our knowledge, the first
study directly linking mGluR 7 to alcohol-related behavior
was published by Vadasz et al. (2007), who identified the
mGluR7-locus as a cis-regulated gene for alcohol con-
sumption; in this study, mice with a reduction of mGluR7
transcripts were found to consume more alcohol than
controls. Interestingly, Li, Gardner & Xi (2008) demon-
strated that systemic and intra-NAc administration of the
mGluR7 allosteric agonist AMNOS82 lowered NAc extra-
cellular GABA and increased extracellular glutamate, but
had no effect on extracellular DA levels; and a year later,
the same group showed that AMNOS2 treatment in rats
inhibited cocaine-induced enhancement of electrical
brain-stimulation reward and intravenous cocaine self-
administration (Li et al. 2009). Taken together, these
results clearly indicate a role for mGIluR7 in the brain
circuitry of reward and drug addiction.

Here, we hypothesized that selective pharmacological
modulation of mGluR7 with novel drug tools such
as AMNOS82 and 6-(4-Methoxyphenyl)-5-methyl-3-(4-
pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochlo-
ride (MMPIP) has the potential to exert specific influences
on alcohol consumption, preference and possibly addic-
tion without affecting control parameters such as taste
preference/neophobia, total fluid intake and locomotor
activity (for contrast however, see the work by Salling,
Faccidomo & Hodge (2008). To investigate this exciting
possibility, we decided to apply well selected dosing regi-
mens of AMNO82 and MMPIP in conjunction with the
two-bottle free-choice behavioral paradigm in rats, using
combinations of different ethanol concentrations with
water and adequate control taste substances. Overall, we
aim to examine whether mGluR7 functional activity in
the CNS exerts specific regulatory roles on alcohol drink-
ing and reinforcing properties in mammals.

MATERIALS AND METHODS
Animals and housing

Male Wistar rats (Charles River, Sulzfeld, Germany; 250—
350 g body weight) were housed in standard plexiglas
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cages and kept in the animal facilities under standard
laboratory conditions (12/12 hours light-dark cycle,
lights off at 7 am, 22°C, 55% relative humidity) with free
access to water and standard rat chow. Experimental pro-
cedures were approved by the local government of the
Oberpfalz (Bavaria, Germany) and followed the European
Communities Council directive (86/609/EEC). All efforts
were made to minimize the number of animals used.

Drugs

Ethanol was obtained from J.T. Baker (Deventer, the Neth-
erlands). The tastants saccharin sodium salt dihydrate
was purchased from Merck (Hehenbrunn, Germany) and
quinine hemisulfate monohydrate was obtained from
AlfaAesar (Karlsruhe, Germany). Ethanol and the
tastants were diluted in tap water. AMNOS82 was synthe-
sized at Novartis Pharma AG (Basel, Switzerland) and
MMPIP was purchased from Ascent Scientific (Bristol,
UK). Drugs were diluted in 0.5% methylcellulose from
AMIMED (Allschwil, Switzerland) for i.p. injections. The
volume of injection (1 ml/kg) was adjusted to body
weight. Rat doses for AMNOS2 (5, 10, and 20 mg/kg, i.p.)
were chosen based on previously published studies (Mit-
sukawa et al. 2005; Palucha etal. 2007; Fendt et al.
2008; Siegl, Flor & Fendt 2008; Stachowicz et al. 2008;
Hikichi et al. 2010Db); higher doses in rats (30—60 mg/kg)
and mice (10-20 mg/kg) induced motor side-effects such
as mild ataxia and/or body tremor; these side-effects
emerged 12-21 minutes after i.p. administration of
AMNOS82. Moreover, early pharmacokinetic studies con-
ducted at Novartis Pharma AG demonstrated that
AMNOS82 reaches low micromolar brain levels at 0.25-1
hour after systemic administration with significant drug
levels still present after 24 hour, although reduced by
>90% compared with the 1-hour timepoint. Taken
together, in vivo pre-application of AMNOS82 for 30 or 60
minutes, prior to the examination of behavioral or physi-
ological read-outs, seems to be ideal, and the maximum
tolerated dose in rats appears to be 20 mg/kg. Dosing and
pre-application of MMPIP was conducted based on recent
studies where 10-30 mg/kg of MMPIP were used in both
mice (Hikichi et al. 2010b) and rats (Hikichi et al.
2010a).

Ethanol preference drinking: two-bottle
free-choice model

Oral alcohol self-administration and preference were
studied using a two-bottle choice paradigm (see experi-
mental timeline in Supporting Information Fig. S1) (Choi
et al. 2004; Kamens, Andersen & Picciotto 2010; Lee
et al. 2010). Briefly, rats were presented with two bottles
filled with water and given 1 week to acclimatize to indi-
vidual housing conditions and handling in the testing
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environment. On day 1, one bottle was filled with a 1%
ethanol solution. The positions of the bottles were
changed every day to control for position preference. The
concentration of ethanol was raised every fourth day,
increasing from 1 to 3, 6, 10%, and finally to 20% (v/v)
ethanol in tap water. Ethanol solutions were made by
diluting 95% ethanol with the appropriate volume of
water (i.e. volume-by-volume). All fluids were presented
in 250 ml graduated plastic cylinders from Eheret
(Emmendingen, Germany) with stainless steel drinking
spouts from Tecniplast (Varese, Italy) which were securely
held through the wire mesh cage lid. The bottles were
weighed to the nearest tenth of a gram before they were
placed on the cage. Fluid intakes in grams were converted
to milliliters with the assumption for all solutions that
1 ml =1 g. To control for spillage and leakage caused by
evaporation or experimenter handling, weekly ‘drip” aver-
ages (loss of fluid in a cage with no animal present) were
subtracted from individual fluid intakes. For each concen-
tration, the average ethanol consumption per day was
obtained and used for the analysis. To obtain an accurate
measure of ethanol consumption, grams of ethanol con-
sumed per kilogram of body weight per day were calcu-
lated for each rat. A measure of the relative ethanol
preference ratio was calculated for each ethanol concen-
tration by dividing the total ethanol solution consump-
tion by the total fluid (ethanol plus water) consumption.
Intakes from both bottles were summed to obtain total
fluid intake.

Tastant drinking preference for quinine and saccharin

After the ethanol self-administration procedure, we
examined potential differences in taste preference, which
could influence ethanol consumption and preference.
Rats were tested for saccharin (sweet) and quinine (bitter)
fluid intake and preference in an order-balanced experi-
mental design that can detect taste neophobias (Crabbe
et al. 1996). Saccharin and quinine solutions were used
because of their strong tastes and lack of caloric value.
The concentration of saccharin (0.04 and 0.08%) and
quinine (0.02 and 0.04 mM) were raised at day 4 and the
positions of the bottles were changed every day to control
for position preference (see experimental timeline in
Supporting Information Fig. S1). Throughout the
experiments, fluid intake and body weight were measured
every day. Similarly, the relative taste preference ratio was
calculated at each concentration by dividing the total sac-
charin or quinine solution consumption by total fluid
consumption.

Pharmacological manipulations

Rats were injected with saline, AMNO82 (5, 10 and
20 mg/kg, i.p.) or MMPIP (10 mg/kg, i.p.) to determine
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their effects on ethanol consumption and preference for a
solution of 3% ethanol versus tap water. Rats were pre-
sented with two bottles, one containing 3% ethanol and
the other tap water, for 4 days. Starting on day 5, rats
received daily saline injections 30 minutes before the dark
phase and before presentation of the bottles. Fluid levels
were read 4 and 24 hours later.

AMNO82 and MMPIP injections started after the rats
reached stable ethanol consumption (<10% variation
over a 4-day period). Rats were given 7 days of access to
food and water after ethanol testing before testing the
effect of AMNO82 and MMPIP on saccharin and quinine
consumption.

Open-field locomotor activity

Spontaneous activity was measured to examine the
potential locomotor effects of our effective doses of
AMNOS82 and MMPIP in plexiglas home cages using the
Ethovision 3.1 recording system [Noldus Information
Technology, VA, USA; (Noldus, Spink & Tegelenbosch
2001; Spink et al. 2001; Pham et al. 2009]. Rats were i.p.
injected with methyl cellulose vehicle (1 ml/kg),
AMNOS82 (10 mg/kg) or MMPIP (10 mg/kg) to examine
their pharmacological effects on spontaneous locomotor
activity 30 minutes, 4 hours and 24 hours after injection.
Rats were observed for 1 hour and horizontal distance
traveled (cm) recorded was used as an index of motor
function.

Ethanol metabolism

Animals were given a single dose of ethanol (3.5 g/kg;
i.p.) together with either vehicle (1 ml/kg) or AMNOS82
(10 mg/kg). Blood samples were taken from tails 1, 2, 3, 4
and 5 hours after injection. Blood was collected in
heparin-treated tubes and centrifuged. Then, ethanol was
determined spectrophotometrically (Hu et al. 2004; Cai

et al. 2006). Blood ethanol concentration values were
expressed as milligram ethanol per milliliter of blood.

Statistical analysis

Data were expressed as means * standard error of the
mean. Statistical analyses on all experiments were
carried out using one-way measures of variance
(ANOVA) followed by the Tukey post hoc test. The criterion
for statistical significance was P < 0.05.

RESULTS
Ethanol consumption

Rats were first tested with increasing ethanol concentra-
tions to establish an optimal working dose for our
planned pharmacological experiments. There was a sig-
nificant main effect of ethanol concentration (Fig. 1).
Analysis of the initial taste reactivity to ethanol and
water has revealed a significantly higher consumption
towards the 3% ethanol solution with approximately
2 g/kg of alcohol consumption [Fig 1a, F439)= 16.248;
P <0.001]. The preference ratio was also significantly
higher for the 3% solution [Fig 1b, Fu39)=21.356;
P < 0.001] but no difference was observed in total fluid
intake [Fig 1c, F439)=1.219; P=0.314].

Preference for non-alcohol tastants

To determine whether differences in ethanol consump-
tion and preference could be due to taste sensitivity, we
examined consumption of a sweet (saccharin) and bitter
(quinine) tastant in the five groups previously tested with
ethanol (see experimental timeline in Supporting Infor-
mation Fig. S1); the results are summarized in Fig. 2.
There were no differences in saccharin consumption
(Fig. 2a) or preference (Fig. 2b) in any of the groups.
Total fluid intake was not changed as well (Fig. 2c). There
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Figure | Voluntary alcohol consumption in rats as a function of ethanol concentration. Data represent consumption, preference and total
fluid intake as a function of ethanol concentration. Rats were subjected to the two-bottle choice paradigm with one bottle containing tap water
and the other containing different ethanol concentrations. (a) Ethanol consumption (g/kg); (b) Ethanol preference ratio and (c) Total fluid intake
(ml) in male Wistar rats. Values represent means = standard error of the mean; n=8 per group; *P <0.05
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Figure 2 Differential alcohol intake and preference was not associated to any taste neophobia. Data represent consumption, preference and

total fluid intake for the tastants saccharin and quinine with continuous access; two bottle choice test. After completion of the ethanol intake

experiment (Fig. ), the same groups of rats were given access to different concentrations of saccharin (a—c) and quinine (d—f) solutions,

without receiving further ethanol. a and d, saccharin (g/kg) and quinine consumption (mg/kg); b and e, saccharin and quinine preference ratio;

c and f, total volume intake (ml).Values represent means = standard error of the mean; n=8 per group; *P <0.05

was a significant main effect of concentration, i.e. rats
consumed significantly more saccharin when the 0.08%
concentration of saccharin was presented compared with
the 0.04% concentration [F 39y = 14.488; P < 0.001].In
addition, there was a significant main effect of saccharin
concentration on total fluid consumption. In fact all
groups consumed more fluid when the 0.08% concentra-
tion was presented compared with the 0.04% solution
[Fas9=27.511; P<0.001]. However, saccharin con-
centration had no statistically significant effect on prefer-
ence ratio [F39)=1.411; P=0.377].

All rat groups consumed a similar amount of the
bitter tastant quinine. When consumption was analyzed,
there was a significant main effect of concentration
[Fig. 2d: F139)=13.168; P < 0.001]; more quinine was
consumed when the high concentration of quinine
(0.04 mM) was presented compared with the low con-
centration (0.02 mM). However, preference
(Fig. 2e) and total fluid intake (Fig. 2f) were not affected
by quinine concentration [F 39 = 1.201; P =0.478 and
Fa39=1.974; P =0.265, respectively].

ratio

Effects of AMNO82 and MMPIP on ethanol and tastant
consumption and preference in rats

A robust effect of AMNOS2 on ethanol consumption and
ethanol preference is shown in Fig. 3. Using the two-
bottle choice test with one bottle containing a 3% ethanol
concentration and the other bottle containing water,
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10 mg/kg of AMNOS82 decreased ethanol consumption
in rats during the first 4 hours following injection,
evident by a significant main effect of dose [Fig 3a,
Fi31)=14.452; P <0.001]. A dose-dependent reduction
of the ethanol preference ratio was also observed [Fig 3b,
Fi31)=20.564; P<0.001]. Interestingly, Alcohol con-
sumption and preference were also reduced when the
highest dose of 20 mg/kg of AMNOS82 was used but this
reduction was less pronounced compared with 10 mg/kg
of AMNOS82. A possible explanation is that such higher
doses of AMNO82 may have an opposite effect on
mGluR7, as the receptor may get internalized by
AMNOS2 (as demonstrated by Pelkey et al. 2007). In con-
trast, the total fluid intake was not modified [Fig 3c,
Fi31=1.563; P=0.397]. By 24 hours after drug injec-
tion, the effects of AMNO82 on ethanol consumption
[Fig 3d, F;31=0.547; P=0.261]
[Fig 3e, F331)=0.687; P =0.247] were no longer appar-
ent. We also performed the two-bottle choice test with
10% ethanol versus water; here, AMNOS82 had no signifi-
cant modulatory effect on ethanol consumption or
preference measured either after 4 or 24 hours (see Sup-
porting Information Fig. S1).

Differences in ethanol consumption and preference
may be affected by pre-ingestion factors (e.g. taste). To
determine if there were general effects of AMNOS2 treat-
ment on ethanol-unrelated tastants,
10 mg/kg AMNOS2 injections when given access to sac-
charin or quinine. In these studies, 4 hours after injection

and preference

rats received
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Figure 3 AMNOB82 treatment in rats decreases ethanol drinking and preference. The effect of treatment with AMNO82, using a 3% ethanol
solution, on: (a, d) ethanol consumption (g/kg); (b, €) ethanol preference ratio; and (c, f) total fluid intake (ml). Data are represented as
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there was no difference between AMNOS82 and vehicle-
treated groups (data not shown); based on this, we
decided to examine tastant consumption and preference
also 24 hours post-injection. The results are summarized
in Fig. 4. There were no significant main effects on sac-
charin consumption after AMNO82 administration
[Fai19=1.748; P=0.577]. AMNOS82 did not affect the
saccharin preference ratio [F,19)=0.994; P=0.457] or
total fluid intake in these groups [F19)=1.277;
P =0.284]. There was a significant main effect of sac-
charin concentration. Rats consumed more saccharin
when the 0.08% concentration of saccharin was pre-
sented compared with the 0.04% concentration
[Faa9=22.457; P<0.001]. However, saccharin con-
centration had no effect on the preference ratio
[Fa19y=0.924; P=0.411]. In addition, there was a sig-
nificant main effect of saccharin concentration on total
fluid consumption as all the groups consumed more fluid
when the 0.08% concentration was presented compared
with  the [Fa.19y=20.150;
P <0.001]. Furthermore, for quinine solutions, the
ANOVA did not show any effects of AMNOS82 dosage; see
Fig. 4. In summary, these results suggest that decreased
consumption of ethanol and decreased ethanol prefer-
ence following AMNO82 administration are not associ-
ated with altered taste preference.

lower concentration
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The effects of the mGluR7 antagonist MMPIP on
ethanol consumption and preference are shown in Fig. 5.
Based on a recent study we used MMPIP at 10 mg/kg
(Hikichi et al. 2010b) and, as for the AMNOS2 studies, an
ethanol concentration of 3%. MMPIP increased ethanol
consumption compared with vehicle-treated rats during
the first 4 hours after injection [Figs 5a, F(1,19)= 6.415;
P =0.024]. An increase of ethanol preference ratio was
also observed [Fig 5b, F1.19)=5.024; P=0.031], while
the total fluid intake remained unchanged [Fig 5c,
Fi,19=0.325; P=0.264]. As for AMNO82, no effects
were observed on alcohol consumption and preference
24 hours after MMPIP injection (see Supporting Informa-
tion Fig. S1).

MMPIP did not affect saccharin consumption [Fig 6a,
Fi119=0.807; P=0.197] and preference [Fig 6b,
Fa19=1.244; P=0.137]. However, rats consumed
more saccharin when the 0.08% solution was presented
compared with 0.04% [Fq,19=15.278; P <0.001], but
the saccharin concentration had no effect on the prefer-
ence ratio [F(19) = 0.354; P = 0.240]. In addition, there
was a main effect of saccharin concentration on total
fluid consumption as all the groups consumed more fluid
when the 0.08% compared with the 0.04% concentra-
tion was presented [F.19)=26.422; P <0.001]. As for
AMNOS82, the MMPIP administration had no effect on
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ethanol preference ratio; and (c) total fluid intake (ml). Data are represented as means = standard error of the mean; n= 10 per group; *

P<0.05

quinine consumption [Fig 6d, F1.19)=0.647; P=0.218]
and preference [Fig 6e, F1.19)=1.647; P=0.211] dem-
onstrating again that increased consumption of and pref-
erence for ethanol upon MMPIP administration is not
caused by altered taste preference.

Effects of AMNO82 and MMPIP on open field
locomotor activity and ethanol metabolism

We examined AMNO82 and MMPIP on spontaneous loco-
motor activity. Both drugs were used at 10 mg/kg (i.p.), as
in all the experiments shown above, and the results are
presented in Fig. 7a. There were no differences in basal
spontaneous locomotion of rats treated with either

© 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction

AMNO82 and MMPIP (both at 10 mg/kg, i.p.) or vehicle
[F2.20)=0.409; P=0.745; Fig. 7a]. In addition, there
were no differences in metabolism of ethanol (3.5 g/kg;
i.p.) between vehicle, AMNOS82-, and MMPIP-treated rats
as shown in Fig. 7b. The slopes of the regression lines
were —0.53 = 0.06,-0.52 = 0.08 and —0.55 * 0.05 for
vehicle, AMNOS82 and MMPIP treatment, respectively.

AMNO82 effect on ethanol preference challenged
with MMPIP

In a further experiment we tested whether the AMNOS82-
induced reduction of ethanol consumption and pre-
ference can be blocked by pre-treatment with the
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Figure 7 AMNO82 and 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP) show no effect on
spontaneous locomotor activity and blood ethanol metabolism in rats. (a) Three groups of rats were ip. injected with vehicle (0.5%
methylcellulose, | mi/kg), 10 mg/kg of AMNO82 and 10 mg/kg of MMPIP and locomotor activity was monitored, 30 minutes, 4 and 24 hours
after injection, for 60 minutes. (b) Three groups of rats received 3.5 g/kg ethanol (i.p.) and blood ethanol levels were monitored for 5 hours.
Data are represented as means = standard error of the mean; n=10 per group

mGluR 7-selective antagonist MMPIP injected 30 minutes
before AMNOS82 was administered (both at 10 mg/kg,
i.p.; Fig. 8). Vehicle pre-treated rats, challenged with
AMNOS82, showed reduced alcohol consumption and
preference as compared with animals treated with
vehicle/vehicle. This AMNO82-induced reduction in
ethanol consumption and preference was reversed by
MMPIP pre-treatment during the first 4 hours following
injections, evident by a significant main effect of drug for
alcohol consumption [Fig 8a, F29)=10.380; P < 0.01]

© 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction

and for alcohol preference [Fig 8b, Fp.9)=17.675;
P < 0.01]. Importantly, combined AMNO82 and MMPIP
administration had no effect on total fluid intake [Fig 8c,
Fi29=0.284; P=0.837].

DISCUSSION

Understanding the molecular and cellular basis of
ethanol abuse and addiction may open up novel avenues
for the development of therapeutics for alcoholism in
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Figure 8 Treatment with 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one  (MMPIP) blocks AMNO82-
induced inhibition of alcohol intake and preference. When using a 3% ethanol solution, co-administration of MMPIP significantly blocked
AMNO082-induced reduction of ethanol consumption (g/kg, a), ethanol preference ratio (b) but did not affect total volume intake (ml, c); both
drugs were dosed i.p. at 10 mg/kg VEH =vehicle. Data are represented as means = standard error of the mean; n= 10 per group; *P<0.05

compared with VEH-AMNO82 group

man. Here, we demonstrate for the first time that mGluR 7
activation with AMNOS82 specifically reduces alcohol
intake and preference in rats without affecting taste pref-
erence, alcohol metabolism and locomotor activity,
whereas mGIuR7 blockade with MMPIP enhances
alcohol consumption and preference. These findings
strongly suggest that functional activity of mGIuR7 in
mammalian brain exerts control on the development of
ethanol reward. In our pharmacological studies we
applied the two-bottle choice preference drinking
method, a paradigm which has already been used in the
seminal genetic studies that identified the mGluR7 gene
as a modulatory locus for alcohol drinking (Vadasz et al.
2007).

For more than a decade, mGluRs are in the focus of
drug discovery for neurological and psychiatric disorders
including drug and alcohol addiction. For instance,
MPEP-related compounds, i.e. mGluR 5 antagonists, and
LY379268, an mGluR2/3 agonist, are currently tested in
multiple clinical studies. Regarding alcohol-related
MPEP and LY379268 dose-dependently
decreased ethanol self-administration in mice and in

behavior,

alcohol preferring rats (Backstrom & Hyytia 2005;
Schroeder, Overstreet & Hodge 2005; Hodge et al. 2006;
Besheer et al. 2010) supporting a crucial role for these
receptors in the regulation of alcohol intake and reward.

Recently, the group-III receptor mGluR 7 was found to
represents a very intriguing target for studies on alcohol-
related behaviors because of its genetic linkage to ethanol
drinking (Vadasz et al. 2007), and its proven role in
cocaine reward (Li et al. 2008; Li et al. 2009; Li et al.
2010), and due to its highest evolutionary conservation
compared with all other mGluRs suggesting significant
physiological roles (Flor et al. 1997). In a previous study,
the mGIuR7 allosteric agonist AMNO82 was already

© 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction

shown to non-selectively reduce both, sucrose and
ethanol administration in mice; in addition, 10 mg/kg of
AMNOS2 (i.p.) in mice also reduced spontaneous locomo-
tor activity (Salling et al. 2008). In our study, however,
the same dose reduced alcohol intake and preference in
rats with no effect on locomotor activity and saccharin
consumption. Pharmacokinetic differences between rats
and mice are likely to contribute to these discrepancies. In
fact, a previous study performed with rats and mice iden-
tified lower optimal doses required for mice than for rats
(Fendt et al. 2008). Furthermore, procedural differences
between our study and the one by Salling et al. (2008),
e.g. operant conditioning (fixed-ratio 4 schedule of rein-
forcement) versus preference drinking, regular versus
sucrose-sweetened ethanol, may also contribute to these
contrasting results. In addition, it was reported that
administration of a low dose of 6 mg/kg (i.p.) of
AMNOS82 changed spontaneous locomotor activity in
C57BL/6] mice (Palucha et al. 2007), rendering higher
doses in mice difficult to interpret.

Our findings on AMNOS82 to specifically reduce
ethanol drinking in rats compare well with the recent
study on mGluR7 and cocaine reward. Here, treatment
with AMNO82 in rats dose-dependently inhibited
cocaine-induced enhancement of electrical brain-

stimulation reward and intravenous cocaine self-
administration as well as cocaine-induced reinstatement
of cocaine-seeking (Li et al. 2009; Li et al. 2010). Again,
AMNOS82 did not affect basal locomotor activity or
sucrose intake (Li et al. 2009). AMNOS2 treatment selec-
tively blocked cocaine-induced changes in extracellular
GABA without affecting dopamine, suggesting a central
role for mGIuR 7 in cocaine reinforcement (Li et al. 2008;
Li et al. 2009). Our findings on alcohol consumption and

preference suggest an involvement of mGluR7 in the
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rewarding effects of ethanol. As the same doses of
AMNOS?2 failed to alter oral sucrose consumption, we
argue that mGluR7 selectively modulates ethanol’s
rewarding properties, rather than unspecific appetitive
reward. When rats were injected with the mGluR7-
selective antagonist MMPIP, ethanol drinking and prefer-
ence were enhanced suggesting that mGluR7 functional
impairment induces an alcoholism-like phenotype. This
finding is supported by recently published study by
Vadasz et al. (2007) who demonstrated that mice carry-
ing mutations that lead to lower mGluR7 mRNA expres-
sion drink significantly more alcohol.

Our main finding of the present study that mGluR7
specifically controls the reinforcing properties of alcohol,
i.e. functional activation of this presynaptic receptor
reduces ethanol preference and consumption, raises
important questions regarding the underlying neural cir-
cuitry and cellular pathways. Although experimental
evidence is lacking, there are at least three mechanisti-
cally different alternatives to explain our observations:
first, mGluR 7 is well known to play a modulatory role in
the stress axis of the brain, e.g. systemic AMNOS82 results
in mGluR7-dependent regulation of blood stress hor-
mones (an effect that is absent in mGluR 7-deficient mice)
(Mitsukawa et al. 2005). Moreover, mGIuR7 is of critical
importance for the glucocorticoid receptor-mediated
negative feedback system of the brain stress axis (Mit-
sukawa et al. 2006). Interestingly, life stress and stress
hormones such as glucocorticoids are reported to affect
human drinking patterns (Cooper et al. 1992; Fahlke
etal. 1994), and hypothalamic and/or hippocampal
mGIluR7 activation may counteract harmful drinking.
Second, mGluR7 shows highest expression in the NAc,
amongst a few other brain regions (Kinoshita et al.
1998), and local administration of AMNOS82 reduces
GABA-release and increases L-glutamate release in NAc
(Kinoshita et al. 1998; Li et al. 2008). Both effects were
reversed by the mGluR7 antagonist MSOP. Interestingly,
pharmacological actions of ethanol are mediated, at least
in part, by the postsynaptic targets of those neurotrans-
mitters, i.e. GABA, and NMDA receptors. Thus, the effect
of AMNOS82 on transmitter release could alter agonist-
occupancy at those receptors, which eventually may
affect ethanol’s allosteric modulating efficacy, possibly
resulting in reduced ethanol reward mediated by the
NAc. Finally, mGluR7 also shows prominent expression
in the amygdala, prefrontal cortex and most strongly in
the locus coeruleus; three structures that have all been
implicated in the reinforcing effects of ethanol (Rodriguez
Echandia & Foscolo 1988; Hodge, Chappelle & Samson
1996; Roberts, Cole & Koob 1996; June et al. 2001;
Besheer, Cox & Hodge 2003; Salling et al. 2008). Our
future studies will aim to dissect which of those neural
structures and circuits are most critical for mGluR7’s
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regulatory role on alcohol reinforcement. Once the
responsible brain structures are identified, investigations
addressing the subcellular pathways need to follow.

Interestingly, the L-glutamatergic system has a crucial
role in alcoholism, as demonstrated by the clinically effec-
tive compound acamprosate acting through this system
(for review see Spanagel 2003; Spanagel & Kiefer 2008).
In addition, a hyperglutamatergic state has been impli-
cated in the etiology of alcohol dependence (Tsai & Coyle
1998; Pulvirenti & Diana 2001; Siggins et al. 2003; Spa-
nagel et al. 2005). As mGluR7 is known to regulate
presynaptic L-glutamatergic transmission, our findings
may indicate that dampening of this transmission via the
activation of mGluR7 may have the potential to inhibit
development of alcohol dependence.

In terms of molecular pharmacological mechanism,
AMNOS82 governs context-dependent receptor activity in
the brain, activating selectively certain mGluR7 path-
ways in specific brain regions and cells, but leaving other
mGluR7 pathways untouched. For instance, cAMP
metabolism in clonal cell lines, HPA axis-driven stress
hormone release to the blood and synaptic plasticity in
the amygdala are modulated by AMNOS82, while certain
mGluR7-regulated hippocampal ion channel functions
stay unaffected (Ayala et al. 2008; Niswender & Conn
2010). Although the underlying physiological basis
remains unknown, it seems likely that AMNOS82 targets
mGluR7 such that only a subset of mGluR7’s signal
transduction pathways are activated, possibly via a novel
pharmacological site at the receptor-G protein interface.
Interestingly, MMPIP selectively antagonizes AMNOS2 in
vitro and in vivo (Suzuki et al. 2007; Li et al. 2008, 2009,
2010), but also acts in a context-dependent manner
affecting similar physiological and behavioral param-
eters as AMNOS82, but leaving other mGluR7 functions
unaffected (Niswender & Conn 2010; Niswender et al.
2010).

Taken together, our study demonstrates that mGluR7
functional activity interferes with the rewarding effects
of alcohol drinking suggesting that further exploration
of mGluR7-directed pharmaceuticals with context-
dependent and AMNQO82-like mechanism may provide
future therapeutic value for the treatment of alcohol
abuse and dependence in man.
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