

Universität Regensburg

To fit is to overfit

How the negligence of prediction performance blurs model quality

Sven Hilbert & Elisabeth Kraus

Topics

Universität Regensburg

Map of the topics covered in this talk

- Goals of an empirical science
- Comparison of two cultures of modeling (in empirical science)
- Short overview predictive modeling
- Prediction and explanation
- Over- and underfitting
- Resampling
- Short summary

Goals of empirical science

Universität Regensburg

- **1. Description**
 - **Descriptive statistics:** Summary statistics and plots, to make the data accessible
- 2. Explanation
 - Statistical inference: Estimation of parameters to model the patterns within the data sample, assumptions about probability distributions

3. Prediction

- **Predictive modeling:** prediction of novel data, after training a model through resampling
- ➤The overarching goal is generalization

Explanation and prediction

Universität Regensburg

Leo Breiman (2001): ,Two cultures of statistical modeling'

- Strong theoretical assumption of a given stochastic model, a data-generating process
 ➤ e.g., linear or exponential relationship
 - (Classical) Inference statistics
 - Focus on **explanation** and model assumptions
 - *p*-values for inference
- 2. Treatment of **data-generating process** as **unknown**, use of flexible algorithmic models
 - Predictive modeling, machine learning
 - Focus prediction performance
 - Estimation of generalization error

Assumptions of classical models

Universität Regensburg

- General Linear Model
 - Normal distribution of the residuals

 $\varepsilon \sim N(0; \sigma^2)$

• Linear relationships

$$y = \beta x + \varepsilon$$

Generalized Linear Model

$$y = g(\beta x + \varepsilon)$$

Short overview predictive modeling

Universität Regensburg

Model types

- Tree-based methods (CART)
 - Random forest, boosting
- Kernel-based methods
 - Support vector machines
- Deep Learning
 - Neural network models

Characteristics

- Optimized for the **prediction** of **novel data**
- Often without directly interpretable parameters
- Highly functional with large amounts of variables
- Use of **resampling**

TR

Comparison of classification models

Universität Regensburg

- Classically, we use **logistic regression models** for (dichotomous) categorization
 - Interpretable parameters, but little flexibility when fitting to data
- Tree-based models are more flexible
 - However, interpretability often difficult and limited

#7

Exemplary Study Personality Types

Universität Regensburg

 AVEM: Pattern of Work-related Coping Behavior (Schaarschmidt & Fischer, 1996), modeled with a sample of N = 478 teachers

> Prediction using the Big Five personality traits, Motivation, and Competence

Universität Regensburg

Two models: Random forest and multinomial regression

Model with most a priori assumptions

Example decision tree

Universität Regensburg

Classification of four AVEM coping patterns

CART overfitting

Universität Regensburg

Many tree-based machine learning algorithms integrate measures to actively avoid overfitting

Random forest

- Bootstrapping
 - Bootstrap the cases for each tree
- Split-variable randomization
 - Randomly select only *m* out *p* variables for each split
- Boosting
 - Early stopping
 - Stop improving the model fit to the training data when the test set performance stops improving

Over- and underfit

- Overfitting
 - Model adapts too much to the sample data
- Underfitting
 - Model adapts too little to the sample data

Consequences for estimates of model quality

Bias, variance, and the amount of data

Resampling

- Use of training and test sets
 - A learner is trained through resampling to become a model
- Performance measure for the generalization error
 - Comparison of different model types
- Model with most accurate prediction is used

Generalization error

Universität Regensburg

Estimation of the generalization error

• Categorization

 $MMCE = \frac{\#Misclassifications}{\#Total \ Classifications}$

• Regression

$$MSE = \frac{\sum_{i=1}^{n} (x_{i.Predicted} - x_{i.True})^2}{n}$$

Summary: Assessing model quality

Universität Regensburg

Ideas for increasing model quality

- Model assessment through prediction performance
 - Avoid **overfitting** and over-interpretation of *p*-values
 - Combine prediction with description and explanation
 > Use the head
- Continuous evaluation of models
 - Repeated estimation of the generalization error
- Another important aspect: **Open Science**

Simulation code available at: https://osf.io/whqmx/

Universität Regensburg

Thank you

References

- Breiman, L. (2001). Statistical modeling: The two cultures. *Statistical science*, *16*(3), 199-231.
- Efron, B., & Hastie, T. (2016). *Computer age statistical inference* (Vol. 5). Cambridge University Press.
- Schaarschmidt, U., & Fischer, A. (1996). AVEM: arbeitsbezogene Verhaltens- und Erlebnismuster. Swets Test Services.

Universität Regensburg

Appendix

Open Science

Universität Regensburg

- Open Science is a crucial aspect of trustworthy empirical research
 - Making the data publicly available is an important contribution to model evaluation
 - Public storage makes it possible to build new models from existing data
- A broad data base is the one of the most important foundations for the estimation of valid models

www.osf.io

Universität Regensburg

• Recycling of the sample data

Division in multiple (sub-)sub-samples for training and testing

CR

Variable (Permutation) importance

Universität Regensburg

Sven Hilbert

Overfit and test sample performance

Universität Regensburg

degree of polynomial