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Abstract 

Research has shown that long-term memory representations of objects are formed as a natural 

product of perception even without any intentional memorization. It is not known, however, how 

rich these representations are in terms of the number of bound object features. In particular, 

because feature binding rests on resource-limited processes, there may be a context-dependent 

trade-off between the quantity of stored features and their memory strength. We examined 

whether affective state may bring about such a trade-off. Participants incidentally encoded real-

world objects while experiencing positive or negative affect, and we later measured memory for 

two features. Results showed that participants traded between richness and strength of memory 

representations as a function of affect, with positive affect tuning memory formation towards 

richness and negative affect tuning memory formation towards strength. These findings 

demonstrate that memory binding is a flexible process that is modulated by affective state. 

Keywords: emotion, feature binding, affective state, object memory, resource allocation 
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Affect Influences Feature Binding in Memory: Trading Between Richness And Strength of 

Memory Representations 

While awake, we perceive thousands of objects, most of which are not processed with the 

intention of remembering them later. Nevertheless, research has shown that people are able to 

correctly differentiate between originally seen and unseen objects (Castelhano & Henderson, 

2005), indicating that long-term memory representations of objects are formed as a natural 

product of perception, even without any intentional memorization. However, the quality of these 

representations is unclear. Objects are characterized by a number of different features such as 

color, shape, etc., and it is unclear how many of these features are bound into such incidentally 

formed object memory representations, a process that is termed memory binding (Zimmer, 

Mecklinger, & Lindenberger, 2006). 

At first glance, it would seem functional if object memory representations contained as 

many features as possible because this would make them rich and reliable. However, 

unfortunately, such a way of storing objects may come at a cost. For the formation of long-term 

object memory representations, a number of processing steps are necessary. Initially, the features 

of an object have to be stored in sensory memory (Zhang & Luck, 2011), then they have to be 

selected by attention (Treisman & Gelade, 1980) and transferred to and maintained in working 

memory (Woodman & Vogel, 2008; Zokaei, Heider, & Husain, 2014). Critically, as shown by 

numerous studies, processing resources are limited at all of these stages (see, e.g., Navon & 

Gopher, 1979, for a review). Thus, in order to obtain an enriched storing of objects, these limited 

resources have to be allocated more broadly across features. As a consequence, less processing 

resources will be allocated to the individual features, with the detrimental effect that individual 

features will be more superficially processed and thus more weakly stored in memory (e.g., 
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Cowan, Blume, & Saults, 2013; Fougnie, Asplund, & Marois, 2010; Oberauer & Eichenberger, 

2013). To store features with higher memory strength, an alternative strategy would be to focus 

resources only on a few object features, which would result in stronger but less rich object 

memory representations. An illustration of such an account and a model simulation based on the 

present data are shown in Figure 1.  

The dynamics described above suggest that there may be a trade-off between the richness 

of representations in terms of the number of stored features and the individual feature memory 

strength. However, to our knowledge, it is currently unknown whether memory binding is indeed 

flexible enough to allow such a trade-off, and if so, which factors might influence it. From a 

functional perspective, both strategies have their own merits. Increased richness of 

representations would make memories more reliable so that misclassification errors are reduced; 

increased feature memory strength would make memories more durable so that future 

recognition is enhanced. However, given resource limitations, both strategies cannot be followed 

simultaneously. Accordingly context factors may determine whether memory formation is tuned 

towards richness or strength.  

One such factor may be whether a situation is experienced as harmful or beneficial, 

which is signaled by the affective state induced by situations (Frijda, 1988). From an 

evolutionary perspective, harmful and beneficial situations place rather opposing requirements 

on our processing system. Regarding potentially harmful situation, it is commonly assumed that 

it is better to be safe than to be sorry, whereas regarding potentially beneficial situations, it is 

assumed that it is better to be sorry than to be wrong (e.g., Baumeister, Bratslavsky, Finkenauer, 

& Vohs, 2001; Forbes, Purkis, & Lipp, 2011; Öhman & Mineka, 2001; Taylor, 1991). The 

reason is that the costs of erroneously not responding can be ultimately much higher for 



AFFECT AND MEMORY BINDING  

 

6 

 

situations not recognized as harmful than for situations not recognized as beneficial, whereas the 

costs of erroneously responding can be ultimately much higher for situations misclassified as 

beneficial than situations misclassified as harmful. Imagine, for instance, one does erroneously 

not correctly recognize the existence of a harmful versus a beneficial object in the environment. 

Whereas the absence of withdrawing from the harmful object may cause death, the absence of 

approaching the beneficial object is less likely to be so dire. By contrast, imagine one 

misclassifies a harmful object as beneficial versus a beneficial object as harmful. In such a case, 

erroneously approaching the object misclassified as beneficial may cause death, whereas 

erroneously withdrawing from the object misclassified as harmful will less likely to be so dire. 

Thus, regarding the trading between richness of memory representations and feature 

memory strength, in harmful situations, as signaled by negative affect, a tuning towards 

increased memory strength would be more functional because an increased likelihood of 

recognition is more important than an increased reliability. By contrast, in beneficial situations, 

as signaled by positive affect, a tuning towards richness would be more functional because an 

increased reliability is more important than an increased likelihood of recognition. In fact, 

consistent with such an assumption, previous research has shown that affective state indeed 

modulates the allocation of processing resources, with the general finding that negative affect 

narrows resource allocation and positive affect broadens resource allocation. This has been 

demonstrated for sensory memory storage (Kuhbandner, Lichtenfeld, & Pekrun, 2011), 

attentional selection (Rowe, Hirsh, & Anderson, 2007), and working memory (Spachtholz, 

Kuhbandner, & Pekrun, 2014). However, it is currently unknown whether such differential 

resource allocation brought about by affective states also results in long-term object memory 

representations that differ in their richness and the memory strength of their features.  
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The aim of the present study was to examine the role of affect on the binding of features 

in memory. We induced positive and negative affect and measured participants’ memory binding 

for incidentally encoded real-world objects varying along two feature dimensions (for examples 

see Fig. 2A). Based on the above assumptions, we expected to observe an asymmetry between 

the two affect conditions in the trade-off between the richness of representations and their 

memory strength, with positive affect tuning memory formation towards richness and negative 

affect tuning memory formation towards strength. Finding such an affect-dependent trading of 

richness of representations for memory strength would demonstrate that memory binding is 

indeed a flexible process that is modulated by affective state. 

Method 

Participants 

A power analysis revealed that to achieve a power of .80 for detecting small-sized effects 

(dependent t-test, d = 0.3, α = .05), a sample size of at least 90 would be required. Thus, we 

decided to collect at least 90 participants and continue data collection until the end of a semester. 

In total, we recruited 99 undergraduates (74 females, Mage = 24.0, SD = 6.1) who participated for 

course credit.1 All participants provided written informed consent and reported normal or 

corrected-to-normal vision acuity and normal color vision (Ishihara color plates). The study was 

conducted in accordance with the Helsinki declaration and the University Research Ethics 

Standards. All data exclusions, all manipulations, and all measures in the study are reported. 

Material 

We selected 200 images of real-world objects from published sets of stimuli (Brady, 

Konkle, Alvarez, & Oliva, 2008; Brady, Konkle, Alvarez, & Oliva, 2013). For each object, we 

created four different images, resulting from the combination of two different states (e.g., 
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open/closed) and two different colors (e.g., yellow/blue). The two state versions were already 

available from the stimulus sets. To create two color versions, we first selected a random hue 

value for the first version and then rotated this hue value (which can be represented as an angle 

on an isoluminant color circle) by 180° for the second version. We only selected objects whose 

colors were not intrinsically related to the objects (see Fig. 2A for examples).  

Design and Procedure 

Participants were tested individually using E-Prime 2.0 (Psychology Software Tools, Inc., 

Pittsburgh, PA), using a procedure adapted from Brady et al. (2013). The experiment consisted 

of an incidental study phase and a surprise test phase. During the study phase, participants were 

asked to decide whether or not to buy each of the centrally presented objects, to ensure focused 

attention. Each trial started with the presentation of an object for 200 ms, followed by a blank 

screen for 1,700 ms during which participants made their buying decisions through button 

presses. The next trial started after a blank screen of 500 ms duration. 

The study phase was divided into two blocks of 100 objects each. At the beginning of 

each block, either positive or negative affect was induced. Participants were asked to recall a 

happy or sad autobiographical event for three minutes while listening to appropriate music 

(Jefferies, Smilek, Eich, & Enns, 2008). The order of affect conditions and the assignment of 

objects to affect conditions were counterbalanced across participants. In the test phase, 

participants completed a forced-choice recognition memory test. Each object was presented in all 

four possible feature combinations, and participants were asked to select the picture they had 

seen during the study phase (see Fig. 1A). Memory for half of the objects of each affect 

condition was tested immediately after the study phase. The remaining half was tested in a 

delayed memory test one day after the study phase (resource allocation effects in the delayed test 
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were not analyzed because participants’ performance showed a floor effect both in the negative 

condition, MPboth = 0.03, SD = 0.06, and the positive condition, MPboth = 0.08, SD = 0.10). 

Participants initially completed 20 practice trials of the study task using objects different 

from those used later in the experiment. Success of affect induction was retrospectively 

measured after each affect-induction block using the affect grid (Russell, Weiss, & Mendelsohn, 

1989) which assesses experienced affect on the dimensions of valence (1 = extremely negative, 9 

= extremely positive) and arousal (1 = low arousal, 9 = high arousal). 

Data analysis 

An illustration of the model underlying the analytical approach followed in the present 

study is shown in Figure 1A. The basic assumption is that overall available resources are 

allocated between the two features of an object, resulting in corresponding feature memory 

strengths. Due to resource limits, allocating more resources to one of the features comes at the 

cost of decreased memory strength for the other feature, leading to differential memory strengths 

(i.e., strong vs. weak feature), and thus differential recall rates (i.e., PStrong vs. PWeak). The 

magnitude of resource allocation is reflected by the proportion of overall available resources that 

is allocated to the stronger feature at the cost of the weaker feature. The overall available 

resources are reflected by the mean between PStrong and PWeak [i.e., POverall = (PStrong + PWeak) * 

0.5)]. The resources that are allocated to the stronger feature at the cost of the weaker feature are 

reflected by half of the difference between PStrong and PWeak [i.e., (PStrong - PWeak) * 0.5)]. 

Accordingly, the magnitude of resource allocation can be determined by the formula (PStrong - 

PWeak) / (PStrong + PWeak), resulting in a value that varies from 0 % = equal distribution across 

features to 100 % = complete allocation to one of the features. 

As the type of feature that is more strongly stored may vary across objects, PStrong and 
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PWeak cannot simply be determined by comparing the probabilities of remembering the color and 

the state features. However, as illustrated in Figure 1A, the probabilities of remembering the 

stronger and weaker features can directly be derived from the observed probabilities of 

remembering both features (PBoth) or only one feature (PSingle). As can be easily seen in Figure 

1A, PWeak equals PBoth because PWeak includes all of the cases where the weaker feature is 

remembered, which implies that also the stronger feature is remembered. As can also be seen in 

Figure 1A, PStrong equals the sum of PBoth and PSingle because PStrong includes all of the cases 

where (i) only one feature is recalled (which is naturally the stronger feature) and (ii) where both 

the stronger and the weaker feature are recalled. 

One crucial theoretical assumption of the above model is that the features of an object are 

not processed independently from each other because resources have to be allocated between the 

features, implying that PBoth equals PWeak. Such an assumption is trivially supported by the fact 

that the features of an object occur at the same point in time (they are both a part of the same 

object) so that they are jointly processed. Furthermore, as shown in Figure 1B, this is also 

supported by the empirical fact that the probabilities for remembering both features (PBoth) or 

only one feature (PSingle) in the negative and positive affect conditions are perfectly in line with 

such a dependent model (i.e., PBoth = PWeak), but are outside the range that could be explained by 

independent models (i.e., PBoth = PWeak * PStrong). In fact, such an assumption is also suggested by 

previous research, showing that at short retention intervals features appear to be stored in a 

dependent fashion due to common encoding factors, although they appear to be stored in an 

independent fashion at long retention intervals because they are forgotten independently from 

each other (Brady et al., 2013). 

PBoth and PSingle are directly related to the observed proportions of reporting both features 
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correctly, only one of the features (either color or state), or neither of the features. However, in 

order to estimate the respective probabilities, the effect of guessing has to be taken into account. 

Observers only report neither of the features correctly when they do not remember any features 

(1 - PBoth - PSingle) and do not guess one by chance. When observers report only one feature 

correctly, there are two possibilities: Either they remember only one feature and do not guess the 

other feature by chance, or they remember neither of the features and guess exactly one by 

chance. When observers report both of the features correctly, there are three possibilities: Either 

they remember both features, they remember only one feature and guess the other by chance, or 

they remember neither of the features and guess both features by chance. In order to estimate 

PBoth and PSingle, we formulated a model representing these relations (see Table 1). Parameters 

were restricted to a possible range of [0, 1], and best fitting parameters were determined for each 

participant and condition using maximum likelihood estimation (Myung, 2003).  

Results 

One participant was excluded for failing to perform the study task satisfactorily (90% 

missed responses in one condition). Additionally, three participants were excluded because their 

proportions of reporting neither of the two features correctly was larger than 0.25, indicating that 

they did not have any memory for the features so that binding processes could not be examined. 

Affect Induction 

Compared to the positive condition, participants’ ratings in the negative condition were 

lower on both the valence (MNegative = 3.2, SD = 1.3; MPositive = 7.2, SD = 1.2), t(94) = -21.2, p < 

.001, grm = 3.23, and arousal dimensions (MNegative = 3.7, SD = 1.6; MPositive = 5.9, SD = 1.8), t(94) 

= -10.1, p < .001, grm = 1.31, indicating that affect induction was successful.2 

Memory Performance 
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Overall, the model for estimating PBoth and PSingle fitted the data very well (R²Negative = .97, 

R²Positive = .97; positive affect condition: MPboth = 0.30, SD = 0.18, MPsingle = 0.30, SD = 0.18; 

negative affect condition: MPboth = 0.26, SD = 0.18, MPsingle = 0.38, SD = 0.21). Memory 

performance for the features of an object as a function of affective state is shown in Fig. 2B. 

Poverall which reflects the amount of overall available resources did not differ between affect 

conditions (positive affect: MPoverall = 0.45, SD = 0.16; negative affect: MPoverall = 0.45, SD = 

0.18), t(94) = 0.20, p = .842, grm = 0.02, indicating that overall available resources did not differ 

between affect conditions. However, the amount of resources allocated to the stronger and 

weaker features differed as a function of affect, as reflected by a 2 (feature strength: weak vs. 

strong) x 2 (affect condition: negative vs. positive) analysis of variance on the probability of 

remembering a feature, which revealed a significant interaction between feature strength and 

affect condition, F(1, 94) = 9.88, p = .002, ηp
2= .095. Whereas the probability of remembering 

the stronger feature was higher in the negative (MPstrong = 0.64, SD = 0.20) than the positive 

conditions (MPstrong = 0.60, SD = 0.22), t(94) = 2.04, p = .044, 95% CI [0.001, 0.089], grm = 0.22, 

the probability of remembering the weaker feature was lower in the negative (MPweak = 0.26, SD 

= 0.18) than the positive conditions (MPweak = 0.30, SD = 0.18), t(94) = -2.23, p = .028, 95% CI [-

0.074, -0.004], grm = 0.22. Figure 2C shows the amount of allocation of the overall available 

resources as a function of affect. Asymmetry of allocation was higher in the negative (MAllocation 

= 48.1 %, SD = 30.6) than in the positive condition (MAllocation = 38.1 %, SD = 27.2), t(94) = 2.91, 

p = .005, 95% CI [0.032, 0.169], grm = 0.34. 

To examine whether the effect of affective state on allocation asymmetry was driven by 

differences in valence or arousal levels, we examined within subject correlations (Bland & 

Altman, 1995). Results showed that the allocation-asymmetry score was significantly correlated 
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with valence, r = -.27, p = .008, indicating that lower valence scores (i.e. more negative affect) 

are associated with higher allocation asymmetry. By contrast, the allocation asymmetry score 

was not significantly correlated with arousal, r = -.12, p = .259, indicating that observed effects 

were driven by valence rather than arousal. 

Discussion 

 The present study investigated whether feature binding in memory varies as a function of 

affective state. The results showed that observers trade between the quantity of stored features 

and their memory strength as a function of affect, with positive affect tuning memory formation 

towards quantity and negative affect tuning memory formation towards strength. These findings 

reveal that object memory formation is flexible enough to allow a trade-off between the richness 

of representations and their memory strength, and show for the first time that memory binding is 

modulated by affect. 

Although participants traded between richness and strength of object memory 

representations as a function of affect, overall available binding resources did not vary as a 

function of affect. Such a finding refutes simpler theories, postulating that negative affect 

generally reduces available cognitive resources (e.g., Ellis & Ashbrook, 1988). Rather, our 

results are in line with theories that are based on the assumption that affect signals the 

requirements placed on the cognitive system by a given situation, postulating that negative affect 

signals a problematic situation where a narrowed processing style is functional, whereas positive 

affect signals a beneficial situation where a broadened processing style is functional (e.g., Clore 

& Huntsinger, 2007; Fredrickson, 1998), an assumption that is supported by several previous 

findings showing that negative affect narrows and positive affect broadens cognitive processing 

at several levels of processing (e.g., Kuhbandner et al., 2011; Rowe et al., 2007; Wegbreit, 
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Franconeri, & Beeman, 2015). Going beyond previous studies, the finding that the number of the 

features of an object that are stored in long-term memory varies as a function of affect 

demonstrates that such an effect of affect is also observed in the formation of object memories. 

In particular, our findings show that such an affect-induced adjustment of cognitive resources 

can have complementary effects on the strength of processed contents. In fact, this is in line with 

studies demonstrating similar complementary relationships in related domains. For instance, in 

working memory, observers trade the number of stored objects (i.e., capacity) for the quality of 

stored features (i.e., precision; e.g., Zhang & Luck, 2008, 2011), and it has been shown recently 

that this trade-off is similarly susceptible to affective influences (Spachtholz et al., 2014). Taken 

together, these results suggest that affect plays an important role in the shaping of memory 

representations because affect influences the trade-off between quantity and quality in both short 

and long term retention.  

It has long been suggested that the relationship between emotion and cognition can be 

investigated in two fundamentally different ways (Derryberry & Tucker, 1994): (1) How does 

the emotional state of a person affect the processing of neutral stimuli, and (2) how does a person 

in an emotionally neutral state process emotional stimuli. Our study addressed the first question, 

demonstrating that the experience of emotions can modulate the formation of memory 

representations for neutral objects. With regard to the second question, there is a relatively large 

body of research that has examined how the binding of features is influenced by the presence of 

an emotionally significant stimulus. A prominent finding is the so-called “weapon focus” which 

refers to the phenomenon that attention and later memory is narrowed to the negative stimulus of 

a scene (i.e., the weapon) at the expense of peripheral details (e.g., Christianson & Loftus, 1990). 

In more recent research, this general pattern has been supported and elaborated, showing that the 
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binding of the constituent features is enhanced for emotionally arousing objects both in terms of 

quantity and strength, whereas the binding of distinct object and background features is impaired 

(e.g., Earles, Kersten, Vernon, & Starkings, 2016; Kensinger, 2007; Mackay et al., 2004; for a 

review and an integrating theory, see Mather, 2007). However, as the quantity of stored features 

and their memory strength have never been concurrently measured in that line of research, it 

remains to be shown whether a similar trade-off between quantity and memory strength exists in 

the processing of emotional stimuli, a question which awaits future research. 

 In summary, our results demonstrate that affect can determine what we will remember 

about situations later. When experiencing negative affect, object memories will be more durable, 

but memories will be less reliable because only a few characterizing features are retained. By 

contrast, when experiencing positive affect, object memories will be less durable, but memories 

will be more reliable because more characterizing features are retained. Thus, affect seems to 

play an important role in the way we acquire knowledge about our world. 
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Footnotes 

1 For a subset of the sample, we additionally collected EEG data, which will be reported 

elsewhere. Additional EEG data collection did not modulate the effect of affect on allocation 

asymmetry, as indicated by the absence of an interaction in a 2 (EEG data collection: yes vs. no) 

x 2 (affect condition: negative vs. positive) ANOVA on allocation asymmetry scores, F(1, 93) = 

0.04, p = .839.  

2 To examine potential effects of the order of the affect induction, we conducted a 2 

(order of affect induction: positive first vs. negative first) x 2 (affect condition: positive, 

negative) ANOVA on valence and arousal ratings. There was no main effect of the order of 

affect induction and no interaction between the order of affect induction and affect condition, 

neither for valence nor for arousal ratings (all ps > .282). 
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Table 1 

Formulas for predicting the observed proportions of the three possible response events from the 

probabilities of remembering both of the features (PBoth) and only one of the features (PSingle). 

Response Event Probability 

0 Features p(0 features) = (1 - PBoth - PSingle) * 0.25 

1 Feature p(1 feature) = PSingle * 0.5 + (1 - PBoth - PSingle) * 0.5 

2 Features p(2 features) = PBoth + PSingle * 0.5 + (1 - PBoth - PSingle) * 0.25 

Note. When participants are completely guessing, there are four options for them to choose from. 

One of those options has zero correct features, two options have exactly one correct feature, and 

one option has two correct features. Thus, when guessing, participants randomly choose an 

option with zero correct features in one out of four instances (i.e., 25%), an option with exactly 

one correct features in two out of four instances (i.e., 50%), and an option with two correct 

features in one out of four instances (i.e., 25%).  
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Figure 1. Illustration of the trade-off in memory binding between the quantity of stored features 

and their memory strength. (A) Basically, overall available resources are allocated between the 

two features of an object, resulting in corresponding feature memory strengths (light blue and 

purple probability density functions) and differential recall rates for the stronger and the weaker 

features (i.e., PStrong and PWeak). The overall available resources are reflected by the mean 

between PStrong and PWeak (i.e., POverall), and the magnitude of resource allocation is reflected by 

the proportion of overall available resources that is allocated to the stronger feature at the cost of 

the weaker feature, and should be larger in negative and smaller in positive affective states. 

PStrong and PWeak can be determined by the observed probabilities of remembering both of the 

features (i.e., PBoth) or only one of the features (i.e., PSingle). (B) A crucial assumption of the 

model in Figure 1A is that the stronger and weaker features are stored in a dependent fashion. 

Figure 1B shows a simulation of such a model (blue line) based on the observed overall available 

resources in the current experiment (i.e., POverall). The larger PSingle and the smaller PBoth, the 

more resources are allocated to one of the features at the cost of the other (i.e., upper left parts of 

the line). The model simulation indicates that the observed mean probabilities for remembering 
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both of the features (i.e., PBoth) or only one of the features (i.e., PSingle) in the negative and 

positive affect conditions are perfectly in line with a dependent model. The gray area shows the 

range of probabilities that can be explained by independent models, indicating that the observed 

probabilities are at odds with such an account. The horizontal and vertical error bars show 

within-subjects 95 % confidence intervals (Cousineau, 2005). See the online article for the color 

version of this figure.
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Figure 2. Experimental procedure and results of the experiment. (A) In an incidental study phase 

(upper panel), a series of visual objects was shown for 200 ms each with a blank interstimulus 

interval of 2,200 ms with the instruction to decide for each object whether to buy it or not. In a 

surprise memory test (lower panel), participants were asked to select the image they had seen 

during the study phase. Four response options were shown resulting from the combination of two 

features (state and color) with two values each. The object pictures shown here are for example 

only; for actually presented pictures, see Brady et al. (2008) and Brady et al. (2013) (B) The 

probabilities of remembering the weaker and stronger features of an object are shown as a 

function of affective state. The right bars show the mean between PWeak and PStrong (i.e., POverall), 

indicating that overall available resources did not differ between affect conditions. (C) Amount 

of asymmetry of allocation of the overall available resources is shown (varying from 0% = equal 

distribution across features to 100% = complete allocation to one of the features) as a function of 

affective state. Error bars represent within-subjects 95 % confidence intervals (Cousineau, 2005). 

See the online article for the color version of this figure. 

 


