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Introduction by the Organisers

Arakelov geometry studies the geometry and arithmetic of schemes of finite type
over Spec Z, i.e. systems of polynomial equations with integer coefficients. It com-
bines methods from algebraic geometry, number theory, and hermitian differential
geometry.

The workshop was organized by Jean-Benôıt Bost (Orsay), Klaus Künnemann
(Regensburg) and Damian Roessler (Paris). It brought together internationally
leading experts in the area as well as a considerable number of young researchers.
The talks covered various aspects of Arakelov geometry from analytic torsion over
adelic and non-archimedean analytic spaces to modular forms and diophantine
geometry.

A non-mathematical complement was a piano recital by Harry Tamvakis on
Thursday night featuring Bach, Beethoven and Chopin.
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José Ignacio Burgos Gil
Direct images in Arakelov geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2452

Antoine Chambert-Loir
p-adic equidistribution of points of small height . . . . . . . . . . . . . . . . . . . . . . . 2452

Robin de Jong
On the Arakelov-Green’s function of a hyperelliptic Riemann surface . . . . . 2455

Henri Gillet
Arithmetic Intersection Theory on Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2456

Jürg Kramer (joint with Jay Jorgenson)
Estimates for Faltings’s delta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2459

Xiaonan Ma (joint with Weiping Zhang)
Bergman kernels and symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2461

Jan Hendrik Bruinier (joint with J. Funke)
Traces of CM values of modular functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2462

Atsushi Moriwaki (joint with Isamu Iwanari)
Rigidity of log morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2464

Ulf Kühn
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Abstracts

Semi-stable extensions an arithmetic surfaces

Christophe Soulé

Let F be a number field, OF its ring of integers and S = Spec(OF ). Consider
a semi-stable curve X over S such that X is regular and its generic fiber XF is
geometrically irreducible of genus g ≥ 0. Let L̄ = (L, h) be an hermitian line
bundle over X , i.e. a line bundle L on X together with an hermitian metric h
on the restriction LC of L to X(C) which is invariant under complex conjugation.
The cohomology group

Λ = H1(X,L−1)

is a finitely generated module over OF . For every complex embedding σ : F → C,
let Xσ = X ⊗ C be the corresponding surface and Λσ = Λ ⊗ C. This cohomology
group

Λσ = H1(Xσ, L
−1
C )

is canonically isomorphic to the complex vector space Ω1(Xσ, L
−1
C ) of holomorphic

differential forms with coefficients in the restriction L−1
C of the line bundle L−1

to X(C) =
∐
σ
Xσ. Given α ∈ Ω1(Xσ, L

−1
C ), we let α∗ be its transposed conjugate

(the definition of which uses the metric h), and we define

‖α‖2
L2 =

i

2π

∫

Xσ

α∗ α .

Given e ∈ Λ, we let

‖e‖ = Sup
σ

‖σ(e)‖L2 ,

where σ runs over all complex embeddings of F .

We are interested in (the logarithm of) the successive minima of Λ. Namely,
for any positive integer k ≤ rk(Λ), we let µk be the infimum of all real numbers µ
such that there exist k elements e1, . . . , ek in Λ which are linearly independent in

Λ ⊗ F = H1(XF , L
−1)

and such that

(4) ‖ei‖ ≤ exp(µ) for all i = 1, . . . , k .

Let d be the degree of the restriction of L to XF .

Theorem : Assume that d is even and k ≥ d/2 + g. Then

µk ≥ ĉ1(L̄)2

2 d [F : Q]
−A ,

where

A = 1 + 2 log(d+ g − 1)
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and ĉ1(L̄)2 ∈ R denotes the arithmetic self-intersection of the arithmetic Chern

class ĉ1(L̄) ∈ ĈH
1
(X).

We refer to [3] for the proof of that theorem. Previous results on other successive
minima of Λ were proved in [1] and [2].

References

[1] C.Soulé: A vanishing theorem on arithmetic surfaces, Invent. Math. 116 (1994), 577-599.
[2] C.Soulé: Secant varieties and successive minima, J. Algebraic Geom. 13, no. 2 (2004),

323–341.
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Direct images in Arakelov geometry

José Ignacio Burgos Gil

As a special case of the formalism of cohomological arithmetic Chow groups de-
veloped in joint work with U. Kuehn and J. Kramer one can construct a variant
of arithmetic Chow groups that are covariant for arbitrary proper morphisms and
a module over the usual arithmetic Chow groups. Related covariant arithmetic
Chow groups were introduced by the author in his thesis and independently by
Moriwaki and Kawaguchi.

Similarly, one can introduce a theory of covariant arithmetic K groups that
admit direct images for arbitrary projective morphism between regular arithmetic
varieties. In order to be functorial these direct images depend on the choice of a
metric in the tangent spaces of the source and the target arithmetic varieties (and
not only on the relative tangent bundle or the normal bundle).

With this formalism, one can interpret results of Bismut, Gillet and Soulé on
complex immersions as an arithmetic Riemann Roch theorem for closed immer-
sions and a result of Bismut on higher analytic torsion forms as the compatibility
between direct images for closed immersions and direct images for morphisms that
are smooth on the generic fiber.

Moreover, combining the arithmetic Riemann-Roch theorem for closed immer-
sions with the arithmetic Riemann-Roch theorem for projective spaces, one obtains
formally an arithmetic Riemann-Roch theorem for arbitrary projective morphisms.

p-adic equidistribution of points of small height

Antoine Chambert-Loir

This talk is devoted to the investigation of equidistribution properties of algebraic
points of small height on projective varieties defined over number fields.

Let F ⊂ C be a number field and let X be a projective variety over F . For
any algebraic point x ∈ X(Q̄), denote by µx the probability measure on X(C)
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which is supported by the orbit of x under Gal(Q̄/F ) and which is invariant under
this group : it is the average of the Dirac measures δxj , where x1, . . . , xd are the
conjugates of x and d = [F (x) : F ].

Let L̄ be an ample line bundle on X , endowed with a semipositive adelic metric
in the sense of Zhang [7]. For any closed subvariety Y of X , we denote by hL̄(Y )
the height of Y , defined by following formula mixing usual intersection theory and
Zhang’s extension of arithmetic intersection theory to such line bundles endowed
with integrable adelic metrics :

hL̄(Y ) =
(̂c1(L̄)1+dimY |Y )

(c1(L)dimY |Y )
.

(̂c1(L̄) is the first arithmetic Chern class of L̄ and and c1(L) is the first usual
Chern classes of L̄.) With these notations, Szpiro, Ullmo and Zhang have shown
in [5] the following equidistribution theorem.

Theorem. Assume the metric at infinity is smooth with a positive Chern form
c1(L̄). Let (xn)n be a sequence of algebraic points on X such that hL̄(xn) converges
to (̂c1(L̄)1+dimX |X)/(1 + dimX)(c1(L)dimX |X). If no proper subvariety of X
contains a subsequence of (xn)n, then the sequence of measures (µxn)n converges
vaguely to the measure c1(L̄)dimX/(c1(L)dimX |X).

This theorem played an crucial role in Ullmo and Zhang’s proof of Bogomolov’s
conjecture (see [6] and [8]). It has been extend to other situations, notably when
the hypothesis of positivity of c1(L̄) is relaxed: let us quote toric varieties (Bilu,
[3]), curves (Autissier, [1]), this last example including the especially important
case of heights normalized by a dynamical system of the projective line.

The talk was devoted to the analogous question when the complex topology
is replaced by the p-adic one. Indeed, the measures µx defined above, when x
is an algebraic point of X , make sense as measures on the p-adic spaces X(Cp).
However, as is well known, these spaces are badly behaved topological spaces
(totally disconnected and not locally compact). A proper study of this question of
equidistribution requires therefore the introduction of analytic spaces in the sense
of Berkovich (see [2]).

If v is an ultrametric place of F , Berkovich defines from the algebraic variety
XFv a topological space, which we will denote by Xan

v . This space is defined by
glueing local models, defined from an affinoid algebra A by taking its “spectrum”,
namely the space M (A ) of all bounded multiplicative seminorms on A which
extend the norm of Fv.

The space Xan
v contains the closed points of XFv (that is the rigid analytic

points of XFv) as a dense subset, but also many other points. For any normal
model X , flat over the ring of integers Rv of Fv, one has a reduction map from
Xan
v to the scheme X ⊗kv, where kv is the residue field of Rv. The generic points

of the special fibre have a unique preimage in Xan
v . This space is compact, locally

connected, and locally contractible if X is smooth.
To give a flavor of our theorems, let us just quote for the moment the analogue

of Bilu’s theorem. It states as follows:
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Theorem 1. Let F be a number field, let v be an ultrametric place of F and let
(xn) be a sequence of points in P1(F̄ ) such that no strict subvariety contains a
subsequence. If the Weil heights of xn go to zero, then the sequence of measures
(µxn)n on Xan

v converges to the Dirac measure at the unique point of Xan
v which

reduces to the generic point of P1
kv

.

The statement of a proof of a general theorem involves two steps:

• construction of a measures µL̄ on Xan
v attached to a metrized line bundle

L̄;
• proof of the equidistribution theorem under suitable hypotheses.

The measures µL̄ are itself defined in two steps. First, when L̄ is a metrized
line bundle given by a model (X ,L ) of (X,L) over the ring of integers of F , the
measure µL̄ is defined by taking a linear combination of Dirac measures at the
points of Xan

v which reduce to the generic points of the components of the special
fibre of X , the coefficients being the various degrees of these components with
respect to L . One then proves that if L̄ is what Zhang calls semi-positive and
if the metric of L̄ is well approximated by such metrics given by models where
L is nef, the corresponding measures converge to a well-defined measure on Xan

v .
This measure is the analogue of the measure c1(L̄)dimX on X(C) which one can
define even if the hermitian metric at infinity is not smooth but only continuous
and plurisubharmonic. The arguments are close to those of Zhang in [7]; at that
point, it is convenient to make use of constructions of Gubler in [4].

The proof of the equidistribution theorem then follows the strategy of Szpiro,
Ullmo and Zhang. It relies ultimately on the arithmetic analogue of Hilbert-Samuel
formula which requires ampleness hypotheses on the metric when the dimension is
at least 2. However, in the case of curves, Autissier proved such a theorem without
any other hypothesis than the ampleness on the generic fibre.

Our final theorem can be stated as follows:

Theorem 2. Fix a place v of F and assume the metric at the place v is given
by a model (L ,X ), where L is relatively ample at the place v, or that X is a
curve. Let (xn)n be a sequence of algebraic points on X such that hL̄(xn) converges
to (̂c1(L̄)1+dimX |X)/(1 + dimX)(c1(L)dimX |X). If no proper subvariety of X
contains a subsequence of (xn)n, then the sequence of measures (µxn)n on Xan

v

converges vaguely to the measure µL̄/(c1(L)dimX |X).

The proofs of these results are available on the arXiv, (math.NT/0304023) and
will appear in the Journal für die reine und angewandte Mathematik.
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On the Arakelov-Green’s function of a hyperelliptic Riemann surface

Robin de Jong

Let X be a hyperelliptic Riemann surface of genus g ≥ 2, and let G : X ×X →
R≥0 be its Arakelov-Green’s function as in [1] and [3]. In this talk we prove two
formulas for

∏
(W,W ′)G(W,W ′), the product running over all pairs of Weierstrass

points of X . In the case that g = 2, our formulas are certainly implied by the
results of [2].

For the first formula, let ‖J‖ be the jacobian function on SymgX as defined
in [2] (for g = 2) or [4] (for general g). Let δ(X) be Faltings’ delta-invariant on
X , and let ‖ϕg‖(X) be the normalised modular discriminant of X , which is the
Petersson norm of the modular form ϕg defined in [6]. Then we have

∏

(W,W ′)

G(W,W ′)n(g−1)

= e−m(g+2)δ(X)/4‖ϕg‖(X)(g
2−1)/2

∏

{i1,...,ig}
‖J‖(Wi1 , . . . ,Wig )

−(2g+4) .

Here n =
(

2g
g+1

)
,m =

(
2g+2
g

)
and the product on the right hand side is running

over all sets {Wi1 , . . . ,Wig} of g Weierstrass points on X . This formula is a
consequence of the main result of [4].

The second formula is∏

(W,W ′)

G(W,W ′)n(g−1) = e−m(g+2)δ(X)/4π−2g(g+2)m‖ϕg‖(X)−3(g+1)/2 .

This formula can be obtained by working out an explicit version of the Mumford
isomorphism for hyperelliptic curves. When combined, both formulas yield

∏

{i1,...,ig}
‖J‖(Wi1 , . . . ,Wig ) = πgm‖ϕg‖(X)(g+1)/4 ,

which is a symmetric version of a classical identity due to Thomae. Our arguments
provide a geometric explanation of this identity, since they are based on exhibiting
certain correspondences between canonical sections of canonical line bundles under
canonical isomorphisms. It would be interesting to modify the arguments to make
them work entirely in the holomorphic category, which is of course the context in
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which Thomae was working. Probably this requires a replacement of the Arakelov-
Green’s function by the so-called Riemann prime form. For detailed proofs of the
formulas we refer to [5].
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Arithmetic Intersection Theory on Stacks

Henri Gillet

Because of the importance of moduli stacks in arithmetic geometry, it is natural to
ask whether the arithmetic intersection theory introduced in [3] can be extended
to stacks.

In the following, all stacks will be regular Deligne-Mumford stacks flat and
proper over Spec(Z).

We shall assume that all Chow groups etc. have rational coefficients.
Before discussing arithmetic intersection theory on stacks, let us briefly review

the situation for the usual Chow groups.

Definition 1.

1. If X is a stack, the group of codimension p cycles Zp(X) is the free abelian group
on the set of codimension p reduced irreducible substacks of X. This is isomorphic
to the group of codimension p cycles on the coarse space |X|.
2. If W is a integral stack, write k(W) for its function field. This may be defined
as étale H0 of the sheaf of total quotient rings on W; and if f ∈ k(W), we may
define div(f) locally in the étale topology. Therefore, if W ⊂ X is a codimension
p integral substack, and f ∈ k(W), we have div(f) ∈ Zp+1(X).
3. We define CHp(X) to be the quotient of Zp(X) by the subgroup consisting of
divisors of rational functions on integral subschemes of codimension p− 1.

In the 1980’s two different approaches to intersection theory on stacks over fields
were introduced; the first was via Bloch’s formula:

Theorem 2 ([2]). If X is a regular Deligne-Mumford of finite type over a field,
then there is an isomorphism:

Hp
ét(X,Kp(OX))Q ≃ CHp(X)Q
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Sketch of Proof We know that locally on the big Zariski site, there is a quasi-
isomorphism of sheaves

Kp(OX)) ≃ Rp.X

where Rp.X is the (Zarisksi) sheaf of Gersten complexes. However one can show,
using the existence of transfer maps for K-theory, that the étale cohomology of the
K-theory sheaves on the étale site of the spectrum of a field is torsion. It follows
that

CHp(X)Q ≃ Hp(R∗p(X))Q ≃ Hp(X,Rp.X)Q ≃ Hp
ét(X,Kp(OX))Q

The Chow groups then inherit a product from the product structure on Higher
K-theory, which one can show is compatible with the intersection product on the
Chow groups of schemes.

The other construction of intersection theory on stacks was by Vistoli [5], using
“Fulton style” intersection theory.

For the arithmetic Chow groups, the problem is both how to extend the prod-
uct constructed for stacks over fields to stacks over Spec(Z) and how to add the
“archimedean” data. Elsewhere I shall describe an approach via sheaf theory
which is not, to date, completely successful because we do not know whether Ger-
sten’s conjecture holds for arithmetic varieties. Here I shall describe an “extrinsic”
approach to constructing an intersection product.

The idea is to use the existence of hypercovers by regular schemes together with
the fact that we know how do arithmetic intersection theory on any regular scheme
which is projective over Spec(Z).

Combining Théoréme 16.5 of [4], and DeJong’s theorem [1], we have:

Lemma 3 (Existence of Regular Hypercovers). Given a regular stack X, and any
point ξ ∈ X there is a proper, representable morphism p : V → X with V a regular
scheme, which is étale in a neighborhood of ξ

For the construction of the arithmetic Chow groups, we start by observing that
the sheaf Ap,q

X of differential forms of type (p, q) on the stack X makes sense, since

the differential forms are local in the étale topology, as do the ∂ and ∂ operators.
The total deRham complex is a resolution of the constant sheaf C, and so we have
the usual Hodge spectral sequence:

Ep,q1 (X) = Hq(X,Ωp) ⇒ Hp+q(X,C) .

Lemma 4. The Hodge spectral sequence degenerates at E1.

The proof is similar to the case of algebraic spaces: show that given p : V → X

proper and surjective, with V regular, then there is an injective map of spectral
sequences:

Ep,q2 (X) → Ep,q2 (V)

and since Ep,q∗ (V ) degenerates, so must Ep,q∗ (X).

Corollary 5. The ∂∂-lemma holds for X(C).
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Similarily we can talk about the sheaf Dp,q
X of currents on X since this is local

in the étale topology, and the cohomology of the sheaf of currents will be the same
as that of the sheaf of forms.

It therefore makes sense to talk about Green currents for cycles on a stack, and

therefore we can define the groups ĈH
∗
(X), in the usual fashion, so that we have

the usual exact sequence:

CHp,p−1(X) → H2p−1
D (X(C),R(p)) → ĈH

p
(X) →

→ CHp(X) ⊕ Zp,p(X(C)) → H2p(X(C),R(p))

Suppose for a moment that these groups are contravariant and have products.
Then for each p : V → X, with p proper and surjective, and V a regular scheme

we will have a natural homomorphism p∗ : ĈH
∗
(X) → ĈH

∗
(V ). and hence a

homomorphism

ĈH
∗
(X) → lim

←−

p:V→X

ĈH
∗
(V )

Since we already have well defined functorial products on the groups ĈH
∗
(V ), it

follows that lim← ĈH
∗
(V ) has a natural product structure, which is contravariant

with respect to X. If E = (E, h) is a Hermitian vector bundle on X since the

bundle pulls back to any V over X, it has Chern classes in lim← ĈH
∗
(V ).

Now the key point is that, even though we do not have products and pull-backs

on ĈH
∗
(X), we have:

Theorem 6 (Main Theorem). There is a canonical isomorphism

lim
←−

p:V→X

ĈH
∗
(V ) → ĈH

∗
(X)

The idea of the proof is to construct for each p : V → X which is proper, sur-

jective and generically finite, with V regular, a push forward map p∗ : ĈH
∗
(V ) →

C̃H
∗
(X), where C̃H

∗
(X) is group which contains ĈH

∗
(X), and in which one re-

places Zp,p(X(C)) by a space of forms with singularities. This direct image map

then exhibits ĈH
∗
(X) as a direct summand of ĈH

∗
(V )

Corollary 7. There is a product structure on ĈH
∗
(X) which is functorial in X.
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Estimates for Faltings’s delta function

Jürg Kramer

(joint work with Jay Jorgenson)

1. Let X be a compact Riemann surface of genus gX ≥ 1. In [6], G. Faltings
attached to X a new invariant δFal(X), which we call Faltings’s delta function.
The function δFal(X) is defined as a rather complicated function in terms of classi-
cal Riemann theta functions and Arakelov’s Green’s functions. For gX = 1, resp.
gX = 2, G. Faltings, resp. J.-B. Bost gave explicit formulas (see [6], [3]). For
arbitrary genus gX ≥ 1, J. Jorgenson and R. Wentworth were able to give expres-
sions for δFal(X) in terms of Riemann theta functions and abelian integrals (see
[7], [18]).

The aim of this talk is to give explicit bounds for δFal(X) in terms of differential
geometric invariants arising from X , when gX > 1. In the end this will lead to
bounds for Faltings’s delta function for the modular curves X0(N), which is of
particular interest (see [17]).

2. To achieve our goal, we start from an alternative definition of δFal(X), which
is based on the work [2], [5], [16]. Before recalling this definition, we need to
introduce some notation.

By the uniformization theorem, we have X = Γ\H, where Γ is a Fuchsian
subgroup of the first kind of PSL2(R) acting by fractional linear transformations on
the upper half-plane H = {z ∈ C | Im(z) > 0}. We let µhyp, resp. µcan denote the
hyperbolic, resp. canonical metric form on X . By means of the Green’s function
gcan(z, w) attached to the canonical metric, one obtains the residual canonical
metric on the canonical line bundle of X , which is nothing but the Arakelov
metric ‖ · ‖Ar. The difference between the hyperbolic and the Arakelov metric is
measured by the C∞-function φAr defined by µAr = exp(φAr)µhyp; here µAr is
the (1, 1)-form attached to ‖ · ‖Ar. It is convenient to also introduce the scaled
hyperbolic metric µshyp, which measures the volume of X to be 1.

If now det∗(∆Ar), resp. volAr(X) denotes the regularized determinant of the
Laplacian, resp. the volume of X with respect to the Arakelov metric, Faltings’s
delta function is given by the formula

(1) δFal(X) = −6 log

(
det∗(∆Ar)

volAr(X)

)
+ a(gX)

with an explicitly given constant a(gX), which is of order O(gX).

3. Using results of [14] and [15], formula (1) can be rewritten as

δFal(X) = −6 log(Z ′X(1)) − (gX − 1)

∫

X

φAr(z)(µshyp(z) + µcan(z)) + c(gX)

with ZX(s) denoting the Selberg zeta function associated to X , and c(gX) =
O(gX). Introducing the hyperbolic heat kernel Khyp(t; z, w) (t ∈ R>0; z, w ∈ X),
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HKhyp(t; z) = Khyp(t; z, z) −KH(t; 0), and the function

F (z) =

∞∫

0

(
HKhyp(t; z) −

1

volhyp(X)

)
dt ,

we arrive at the following expression for δFal(X), solely in hyperbolic terms,

δFal(X) = 2π

(
1 − 1

gX

)∫

X

F (z)∆hypF (z)µhyp(z) − 6 log(Z ′X(1)) + 2cX + C(gX) ,

where cX = lims→1 (Z ′X/ZX(s) − 1/(s− 1)) and C(gX) = O(gX) (see [11], [12]).

4. Using the techniques developed in [8], we are now able to estimate δFal(X)
working from the last formula. To state the result, put

h(X) = gX +
2

λX,1

(
gX(dsup,X + 1)2 + CHub,X +N

[0,1/4)
ev,X

)
+

1

ℓX
N

(0,5)
geo,X ,

with λX,1 the smallest non-zero eigenvalue for the hyperbolic Laplacian, dsup,X =
supz∈X(µcan/µhyp(z)), CHub,X the implied constant in the error term of the prime

geodesic theorem, N
[0,1/4)
ev,X the number of eigenvalues less than 1/4, N

(0,5)
geo,X the

number of primitive geodesics with length in the interval (0, 5), and ℓX the length
of the shortest geodesic on X . In [12], we then show δFal(X) = O(h(X)).

5. In the case that X → X0 is a covering of finite degree over the fixed base
Riemann surface X0 of genus gX0 > 1, the results of [8], [9], and [10] allow us to
bound the complicated invariants occuring in h(X) in order to obtain the estimate

δFal(X) = O(gX(1 + λ−1
X,1)).

By suitably refining the arguments used to arrive at the previous bound, and using
the uniform bound for the smallest non-zero eigenvalue on the modular curves
X(N) given in [4], we find for the modular curves X0(N)

(2) δFal(X0(N)) = O
(
gX0(N)

)
.

Using the results obtained in [1] and [13], the bound (2) shows that the Falt-
ings height hFal(J0(N)) of the Jacobian J0(N) of X0(N) has the asymptotics
hFal(J0(N)) ∼ 4gX0(N) as N → ∞.
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Bergman kernels and symplectic reduction

Xiaonan Ma

(joint work with Weiping Zhang)

Let (X,ω) be a compact Kähler manifold, and let (L, hL) be a holomorphic
Hermitian line bundle with its holomorphic Hermitian connection ∇L such that√
−1
2π (∇L)2 = ω. Let (E, hE) be a holomorphic Hermitian vector bundle on X .

Let G be a compact connected Lie group with Lie algebra g. We suppose that G
acts holomorphically on X and its action lifts on L,E and preserves hL, hE , then

we have the moment map µ : X → g∗ defined by µ(K) =
√
−1
2π (LK − ∇L

KX ) for

K ∈ g, here KX is the vector field on X induced by K. We suppose that G acts
freely on µ−1(0), then the symplectic reduction of (X,ω) is the Kähler manifold
(XG = µ−1(0)/G, ωG).

It is important to understand the relations on the invariants of X and the
corresponding ones of the fixed point set of g ∈ G or of XG, and in this spirit,
we have varies localization formulas for the equivariant closed differential forms
or the cohomology group. In this talk, we try to understand the relations for the
spectrum invariants such as the important geometric invariant, analytic torsion.
We present some results in this direction, especially, let H0(X,Lp ⊗ E)G be the
G-invariant holomorphic sections of Lp ⊗ E, we show that the isomorphism

σp : H0(X,Lp ⊗ E)G → H0(XG, L
p
G ⊗ EG)

induced by the restriction is asymptotically isometry up to a factor (2p)− dimG/4.
The key point is to study the full asymptotic expansion of theG-invariant Bergman
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kernel PGp (x, x′)(x, x′ ∈ X) which is the smooth kernel of the orthogonal projection

PGp : C∞(X,Lp ⊗ E) → H0(X,Lp ⊗ E)G. Another consequence is that we can

see the scalar curvature of XG from PGp (x, x′) which should have applications in
Donaldson’s program on the Kähler metrics with constant scalar curvature.

This is a joint work with Weiping Zhang (Nankai Institute of Mathematics,
China).

Traces of CM values of modular functions

Jan Hendrik Bruinier

(joint work with J. Funke)

The classical j-function on the complex upper half plane H is defined by

j(τ) =
E4(τ)

3

η(τ)24
= q−1 + 744 + 196884q+ 21493760q2 + . . . .

In this formula η = q1/24
∏∞
n=1(1 − qn) denotes the Dedekind eta function, E4 =

1 + 240
∑∞
n=1

∑
m|nm

3qn is the normalized Eisenstein series of weight 4 for the

group Γ(1) = PSL2(Z), and q = e(τ) = e2πiτ for τ ∈ H. The j-function is a
Hauptmodul for the group Γ(1), i.e., it generates the field of all meromorphic
modular functions for this group.

The values of j(τ) at CM points are known as singular moduli. They are
algebraic integers generating Hilbert class fields of imaginary quadratic fields. In
our talk we consider the traces of singular moduli and more generally the traces
of CM values of modular functions on modular curves of arbitrary genus.

Let D be a positive integer and write QD for the set of positive definite integral
binary quadratic forms [a, b, c] of discriminant −D = b2 − 4ac. The group Γ(1)
acts on QD. If Q = [a, b, c] ∈ QD we write Γ(1)Q for the stabilizer of Q in Γ(1) and

αQ = −b+i
√
D

2a for the corresponding CM point in H. By the theory of complex
multiplication, the values of j at such points αQ are algebraic integers whose degree

is equal to the class number of K = Q(
√
−D). Moreover, K(j(αQ)) is the Hilbert

class field of K. In [3], Gross and Zagier derived a closed formula for the norm to
Z of j(αQ) as a special case of their work on the Gross-Zagier formula. In a later
paper [8], Zagier studies the trace of j(αQ). We briefly recall his result.

To this end it is convenient to consider the normalized Hauptmodul J(τ) =
j(τ) − 744 for Γ(1) instead of j(τ) itself. The modular trace of J of index D is
defined as

(1) tJ (D) =
∑

Q∈QD/Γ(1)

1

|Γ(1)Q|
J(αQ).

Zagier discovered that the generating series

(2) −q−1 +2+
∞∑

D=1

tJ (D)qD = −q−1 +2− 248q3 +492q4− 4119q7 +7256q8 + . . .
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is a meromorphic modular form of weight 3/2 for the Hecke group Γ0(4) whose
poles are supported at the cusps. More precisely, it is equal to the weight 3/2 form

(3) g(τ) =
η(τ)2E4(4τ)

η(2τ)η(4τ)6
.

Zagier gives two different proofs of this result. The first uses certain recursion
relations for the tJ(D), the second uses Borcherds products on SL2(Z) and an
application of Serre duality. Both proofs rely on the fact that (the compactification
of) Γ(1)\H has genus zero. In [4, 5], Kim extends Zagier’s results to other modular
curves of genus zero using similar methods.

The above connection between the weight 3/2 form g for Γ0(4) and the weight
0 form J for Γ(1) reminds us of (a special case of) the Shimura lift which is a
linear map from holomorphic modular forms of weight k + 1/2 for Γ0(4) in the
Kohnen plus space to holomorphic modular forms of weight 2k for Γ(1). Moreover,
it reminds of the theta lift from weight 0 Maass wave forms to weight 1/2 Maass
forms first considered by Maass and later reconsidered by Duke and Katok and
Sarnak. However, there are two obvious differences: First, in our case the half
integral weight form has weight 3/2 rather than 1/2; and second, neither J nor g
is holomorphic at the cusps. The first difference should be not so serious, since
there is often a duality between weight k and weight 2−k forms on modular curves
as a consequence of Serre duality. If we ignore the second difference for a moment,
in view of the work of Shintani and Niwa realizing the Shimura lift as a theta lift,
it is natural to ask, whether Zagier’s result can also be interpreted in the light of
the theta correspondence?

In other words, one might ask if there is a suitable theta function θ(τ, z, ϕ)
which transforms like a modular form of weight 3/2 in τ and is invariant under
Γ(1) in z such that g(τ) is equal to the theta integral

I(τ, J) =

∫

Γ(1)\H
J(z)θ(τ, z, ϕ)

dx dy

y2
.(4)

Clearly one has to be very careful with the convergence of the integral because of
the pole of J at the cusp. We show that it is possible to obtain such a description
by considering the theta kernel corresponding to a particular Schwartz function ϕ
constructed by Kudla and Millson. This generalizes [2] where the lifting I(τ, 1) of
the constant function 1 was studied. A very nice feature of the theta kernel is its
very rapid decay at the cusps which leads to absolute convergence of the integral.

The theta lift description of the correspondence between J and g can now be
used to generalize Zagier’s result to modular functions (with poles supported at
the cusps) on modular curves of arbitrary genus. Moreover, one can study the
lifting for other automorphic functions. It turns out that already the lifting of the
non-holomorphic Eisenstein series E0(z, s) of weight 0 for Γ(1) provides interesting
geometric and arithmetic insights. Combined with the Kronecker limit formula it
can be used to realize a certain generating series of arithmetic intersection numbers
as the derivative of Zagier’s Eisenstein series of weight 3/2. This recovers a result
of Kudla, Rapoport and Yang [7].
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Rigidity of log morphisms

Atsushi Moriwaki

(joint work with Isamu Iwanari)

In this talk, I explained the rigidity of log morphisms and its applications. For
details, see [2] and [4]. You can also find the pdf file of my talk at [6].

Let S be a locally noetherian scheme and let X and Y be schemes of finite type
over S. We assume thatX and Y are semistable over S, that is, X → S and Y → S
are flat and all geometric fibers of X → S and Y → S are semistable varieties. Let
MS , MX and MY be fine log structures on S, X and Y respectively in the sense of
[3]. We assume that the scheme morphisms X → S and Y → S extend to smooth
and integral log morphisms (X,MX) → (S,MS) and (Y,MY ) → (S,MS). Let
φ : X → Y be a scheme morphism over S such that φ is admissible with respect
to MY /MS, i.e., every irreducible component of the geometric fibers of X → S
does not map to the boundary of the log morphism (Y,MY ) → (S,MS). Then,
the rigidity theorem of log morphisms is the following:
Rigidity theorem : The number of extensions (φ, h) : (X,MX) → (Y,MY )
over (S,MS) of φ : X → Y is at most one, that is, if there are log morphisms
(φ, h), (φ, h′) : (X,MX) → (Y,MY ) over (S,MS), then h = h′.

The first application is a generalization of Kobayashi-Ochiai’s theorem in the
category of log schemes, which was conjectured by Kazuya Kato. Kobayashi-
Ochiai’s theorem says that for a connected compact complex manifold X of gen-
eral type and a connected compact complex manifold Y , the number of domi-
nant meromorphic maps Y 99K X is finite. From the viewpoint of Diophantine
geometry, it means that a variety of general type has only finitely many ratio-
nal points for a big function field, which gives an evidence of Lang’s conjecture.
Their theorem was generalized to the case over a field of positive characteristic by
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Dechamps and Menegaux [1]. Furthermore, Tsushima [5] established finiteness for
open varieties over a field of characteristic zero. Let k be an algebraically closed
field and Mk a fine log structure of Spec(k). Let X and Y be proper semistable
varieties over k, and let MX and MY be fine log structures of X and Y over
Mk respectively such that (X,MX) and (Y,MY ) are smooth and integral over
(Spec(k),Mk). We assume that (Y,MY ) is of log general type over (Spec(k),Mk),
that is, det(Ω1

Y/k(log(MY /Mk))) is a big line bundle on Y . Then, our generaliza-

tion is the finiteness of log rational maps

(φ, h) : (X,MX) 99K (Y,MY )

over (Spec(k),Mk) such that (1) φ : X 99K Y is a rational map defined over a
dense open set U with codim(X \ U) ≥ 2, and (φ, h) : (U, MX |U ) → (Y,MY ) is a
log morphism over (Spec(k),Mk), and that (2) for any irreducible component X ′

of X , there is an irreducible component Y ′ of Y such that φ(X ′) ⊆ Y ′ and the
induced rational map φ′ : X ′ 99K Y ′ is dominant and separable.

The second application is the descent theorem of log morphisms. Let (S,MS),
(X,MX), (Y,MY ) and φ : X → Y be the same as in the second paragraph. Let
π : S′ → S be a faithfully flat and quasi-compact morphism of locally noetherian
schemes. Let X ′ = X ×S S′, Y ′ = Y ×S S′ and φ′ = φ×S idS′ , and let us denote
the induced morphisms X ′ → X and Y ′ → Y by πX and πY respectively. Then,
the descent theorem guarantees that a log morphism

(φ′, h′) : (X ′, π∗X(MX)) → (Y ′, π∗Y (MY ))

over (S′, π∗(MS)) descends to a log morphism

(φ, h) : (X,MX) → (Y,MY )

over (S,MS).
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On heights and intersection numbers on arithmetic surfaces

Ulf Kühn

It is expected that there are certain upper bounds for the canonical height func-
tion htω(·) and for the arithmetic self intersection number ω2 associated to an
arithmetic surface (see e.g. [9], [10]). In this talk I presented recent results [6] and
[7] which support these expectations. More precisely there is strong believe in

Conjecture I.(effective Mordell, Vojta’s conjecture) Let K be a number field and
X/K a smooth, projective curve defined over K. Then for any ε > 0 there exists

a constant κ(ε) such that for all P ∈ X(K) we have

htω(P ) ≤ (1 + ε)d(P ) + κ(ε),

where htω(P ) is the normalised height with respect to the metrized line bundle ω
and d(P ) = 1

[K(P ):Q] log |∆K(P )|Q is the logarithmic discriminant of the number

field K(P ).
This conjecture is equivalent to the uniform abc-conjecture for number fields

[3], which in turn has lots of different applications and consequences in number
theory.

We say a subset V ⊆ X(K) is unbounded if for all u, v > 0 there are infinitely
many P ∈ V with [K(P ) : Q] > u and (d) > v. With this notion we have

Theorem I. Let X/K and ε > 0 be as before. Assume all the Dirichlet series

L(χD, s) for χD =
(
D
·
)

with D < 0 a negative prime satisfy the generalized Rie-

mann hypothesis. Then there exists an unbounded subset V ⊆ X(K) and a constant
κ(ε,V) so that for all P ∈ V it holds

htω(P ) ≤ εd(P ) + κ(ε,V).

The main idea of proof is to identify the projective line P1 with the modular
curve X(1) and then define V to be the preimage of the set of Heegner points
on X(1) with respect to a morphism f : X → X(1). Now general properties of
height functions combined with the explicit knowledge of the modular heights and
logarithmic discriminants of Heegner points eventually complete the proof.

We also considered the following conjecture:

Conjecture II. Let X be a regular model of X over SpecOK and let ω be the dual-
izing sheaf equipped with the Arakelov metric. Then the arithmetic self intersection
number ω2 satisfies

ω2 = a1(2g − 2) log |∆K|Q| + a2

( ∑

x∈X sing

log(#k(x)) +
∑

σ:K→C

δFal(Xσ(C))

)
+ a3;

here a1, a2, a3 ∈ R, ∆K|Q is the absolute discriminant of the number field K and
δFal is a function on the moduli space of compact Riemann surfaces.

Conjecture II implies via the Kodaira-Parshin construction an effective version
of Mordell’s conjecture (cf. [10], [9]).
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We approach conjecture II by means of a Belyi uniformization X(Γ) of an
algebraic curve X . Recall that a complex curve X is defined over a number field,
if and only if there exist a morphism β : X → P1 with only three ramification
points, if and only X(C) is isomorphic to a modular curve X(Γ) associated with
a finite index subgroup of Γ(1) = Sl2(Z).

A regular model X of X associated with a Belyi uniformization β is an arith-
metic surface together with an morphism β : X → P1

OK which extends β : X → P1.
In many cases the arithmetic surface X → X (1) can be chosen to be the minimal
regular model, but we have to stress the fact that in general the arithmetic surface
X is not the minimal regular model.

Theorem II. Let β : X → X (1) be an arithmetic surface associated with a Belyi
uniformization X(Γ) of a curve X defined over a number field K. Assume that all
cusps are K-rational points and that all cuspidal divisors (= divisors on X with
support in the cusps of degree zero) are torsion. Then there exists an absolute
constant κ ∈ R independent of X such that the arithmetic self-intersection number
of the dualizing sheaf on X satisfies the inequality

ω2
Ar ≤ (4g − 4)

(
log |∆K|Q| + [K : Q]κ

)
+

∑

p bad

ap log Nm(p),(1)

where a prime p is said to be bad if the fiber of X (Γ) above p is reducible. The co-
efficients ap are rational numbers, which can be calculated explicitly. In particular,

if the fiber of X above p has rp irreducible components C
(p)
j , then

ap ≤ 4g(g − 1)(rp − 1)2 max
j,k

|C(p)
j .C

(p)
k |.

Moreover if β : X → X (1) is a Galois cover, then ap ≤ 0.
If X is not the minimal model Xmin of XK , then our formula (1) will become

additional contributions coming from those primes of OK that give rise to fibers
of X which contain a (−1)-curve. Notice that, the coefficients ap, which could be
seen as a measure of how complicated X is, may be arbitrarily large compared to
the number of singular points.

We can apply our result whenever Γ is a congruence subgroup, this is because of
the Manin-Drinfeld theorem (see e.g. [2]). In particular if Γ is of certain kind, then
the coefficients ap in (1) could be calculated explicitly by using the descriptions of
models for X(Γ) (see e.g. [4]). We illustrated this with the following theorems.

Theorem III. Let X0(N) be the minimal regular model of the modular curve
X0(N), where N is a square free integer having at least two different prime factors
and (N, 6) = 1. Then the arithmetic self-intersection number of its dualizing sheaf
equipped with the Arakelov metric is bounded from above by

ω2
Ar ≤ (4g − 4)κ+ (3g + 1)

∑

p|N

p+ 1

p− 1
log p,

where κ ∈ R is an absolute constant independent of N .
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The modular curves X0(N), with square free N and (6, N) = 1, are defined
over Q. We point to the fact that the completely different methods in [1],[8],[5],
which depend strongly on the specific arithmetic of Γ0(N), give the slightly bet-
ter estimate ω2

X0(N),Ar = 3g log(N)(1 + O(log log(N)/ log(N)), which is the best

possible one.

Theorem IV. Let X (N) be the minimal regular model of the modular curve
X(N), where N has at least two different prime divisors. Then the arithmetic
self-intersection number of its dualizing sheaf equipped with the Arakelov metric is
bounded from above by

ω2
Ar ≤ (4g − 4)

(
log |∆Q(ζN )|Q| + [Q(ζN ) : Q]κ

)

where κ ∈ R is an absolute constant independent of N .
Other examples of curves where our result could be applied are the Fermat

curves xn + yn = zn. In [7] we give formulas the Fermat curves with prime
exponents.

References

[1] Abbes, A; Ullmo, E., Auto-intersection du dualisant relatif des courbes modulaires X0(N).
J. Reine Angew. Math. 484 (1997), 1-70.
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les Pinceaux de Courbes Elliptiques. Astérisque 183 (1990), 37-58.
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Non-Archimedean potential theory and Arakelov geometry

Amaury Thuillier

Let X be a proper and smooth curve over Qp. In [9], R. Rumely elaborated a
non-Archimedean potential theory allowing him to define a notion of capacity for
subsets of X(Cp). One basically encounters two difficulties when dealing with the
topological space X(Cp) : its lack of local connectedness (harmonicity should be
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a local notion) and its lack of local compactness (measure theory is much well-
behaved on locally compact spaces). Rigid geometry is an answer to the first
point and it was indeed used by E. Kani to define a potential theory, in which only
affinoid subsets are allowed [8]. This last article also brought to light the potential
theoretic interpretation of the non-Archimedean part of Arakelov geometry on
curves.

The point of view introduced by V.G. Berkovich in non-Archimedean analytic
geometry (see [1]) provides the good framework to elaborate a potential theory on
curves displaying all usual properties known for Riemann surfaces. From now, k
is a non-Archimedean field with non trivial absolute value |.|, ring of integers k◦

and S := Spf(k◦); all analytic spaces will be strict (see [2], 1.2).
We first define, in any dimension, the notion of a ”smooth function” and a ddc

operator at the level of germs. These definitions come from an analogy between
affinoids/analytic spaces and polytopes/polyhedra. Let X be a geometrically re-
duced k-analytic space; a real function ϕ on X is Z-smooth (resp. smooth) if each
point x has a neighborhood V = V1 ∪ . . . ∪ Vn, Vi ⊂ X affinoid, such that ϕ|Vi
belongs to the subgroup log |OX(Vi)

×| of C0(Vi,R) (resp. if it is locally a real
combination of Z-smooth functions). Smooth functions are the sections of a sheaf
A0
X on X . Given an admissible S-formal scheme X with generic fibre Xη, one

defines a natural map

Div(X )′ := Γ
(
X ,

(
OX ⊗k◦ k

)×
/O×X

)
→ A0(X) := Γ(X,A0

X)

by sending a divisorD, represented by the cocycle {(U, fU )}, to the Z-smooth func-
tion ϕD whose restriction to Uη is − log |fU |. From this follows an interpretation
of smooth functions in terms of Cartier divisors on S-formal schemes.
Theorem. (W. Gubler, [7], Theorem 7.12) The space of smooth functions with
compact support is dense in C0

c(X,R).
Let I(X) be the set of points x ∈ X whose residue field H(x) satisfies the

property that the extension H̃(x)/k̃ has transcendence degree dimx(X). Any x
in I(X) has a fundamental system of neighborhoods in the shape of Xη, where X
is an admissible S-formal scheme such that the reduction map Xη → X̃ maps x

to a generic point, with corresponding irreducible component X̃ [x]. Admissible

blow-ups give rise to a direct system of groups Div(X̃ [x]) and let Div(X,x)R :=

lim−→XDiv(X̃ [x]) ⊗Z R. One then defines a linear operator

ddcx : A0
X,x → Div(X,x)R

by requiring that, for any divisor D ∈ Div(X )′, D = [{(U, fU)}],

ddcx ϕD = ε(x) [{(U ∩ X̃ [x], α̃−1fNU )}],

where the positive integer N and the element α of k× are chosen such that

|fU (x)|N = |α|, α̃−1fNU is the reduction in H̃(x) and ε(x) is a positive rational num-
ber (multiplicity), the general definition of which requires the Grauert-Remmert
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finitness theorem ([4], Theorem 1.3). The following convexity property suits with
the analogy mentioned above.
Proposition. A smooth function ϕ has a local minimum at a point x ∈ I(X) if
and only if cyc(ddcx ϕ) ≥ 0.

One should mention that the constructions just described provide a concrete
interpretation of a (very) small part of what is done in [3].

Let us now restrict to curves. For any smooth k-analytic curve X , we get
a global ddc operator with values in the space A1(X) of measures on X whose
support is a locally finite subset of I(X) :

ddc ϕ =
∑

x∈I(X)

deg k(ddcx ϕ)δx.

A function h on an open subset Ω of X is harmonic if it is smooth and satisfies
the equation ddc h = 0. Subharmonic functions are defined in the usual way with
respect to harmonic functions.

The following two results are basic.
Theorem. (Maximum principle) A point x is a local maximum of a subharmonic
function u if and only if u is constant in a neighborhood of x.

This is an easy consequence of the convexity property above.
Theorem. Every point of X has a fundamental system of relatively compact
neighborhoods on which the Dirichlet problem can be solved.

The proof relies on the semistable reduction theorem and Berkovich’s definition
of skeletons for semistable S-formal schemes.

Spaces of currents are defined by (algebraic) duality :

D0(X) = A1
c(X)∨ and D1(X) = A0

c(X)∨,

where the subscript c means compact support; Ai(X) ⊂ Di(X) and the ddc oper-
ator can be extended to D0(X) by duality. A current of degree 0 being nothing
but a real valued function on I(X), ddc can be applied to any function on X .
Theorem. Assume that X is proper. Given S ∈ D1(X), the equation ddcT = S
has a solution T in D0(X) if and only if 〈S, 1〉 = 1. Moreover, T belongs to A0(X)
if and only if S belongs to A1(X).
Theorem. Assume that X is (the analytification of) an algebraic curve and let
SH(X) (resp. H(X)) be the space of subharmonic (resp. harmonic) functions on
X. The map ddc : D0(X) → D1(X) induces a bijection between SH(X)/H(X)
and the set of positive Radon measures on the locally compact space X.

It should be noticed that this potential theory is very similar to the classical
one in the real dimension one case.

Let us conclude by a few words on applications to Arakelov geometry on curves.
Given a smooth algebraic curve X over Q, the choice of a normal model X over Z
defines for each prime p a finite subset S0(X )p of (X⊗QQp)

an, corresponding to the
set of generic points of X ⊗Z Fp. As Kani showed in [8], the p-adic contribution to
classical Arakelov theory on X can be understood in terms of equilibrium potentials
with respect to S0(X )p; in particular, intersection numbers can be expressed as a
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star-product. We can now define generalized Arakelov divisors on X , going from
smooth Green functions to Green functions with L1

2-regularity as shown in [5] on
the archimedean side, and reformulate previous generalizations.
Theorem. At any place, Zhang’s integral metrics are exactly the continuous met-
rics with measure curvature.

This generalized Arakelov geometry can be applied to prove a refined equidistri-
bution theorem for points of small height. It is also possible to give another proof
of the main theorem of [10], based on the arithmetic Hilbert-Samuel theorem and
an approximation result for subharmonic functions.
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Harmonic analysis on adelic spaces and local fields

A. N. Parshin

If X is a scheme of dimension n and of finite type over Z and Xn ⊂ Xn−1 ⊂
. . . X1 ⊂ X0 = X is a flag of irreducible subschemess (codim(Xi) = i), then one
can define a ring KX0,...,Xn−1 associated to the flag. In case everything is regularly
embedded the ring is an n-dimensional local field. Then one can form an adelic
object

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions
on components of adeles [Hu]. For a scheme over a finite field Fq this is the right
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definition of the adelic space attached to X . In general case, one has to extend it
to AX ⊕ AX⊗R.

In dimension 1 the adelic groups AX and A∗X are locally compact groups and
thus we can apply the classical harmonic analysis. The starting point for that
is the measure theory on locally compact local fields attached to the points on
schemes X of dimension 1.

J. Tate and independently K. Iwasawa have introduced an analytically defined
L-function L(s, χ, f) =

∫
A∗
f(a)χ′(a)|a|sd∗a, where d∗ is a Haar measure on A∗,the

function f belongs to the Bruhat-Schwartz space of functions on AX and χ is an
abelian character, coming from the Galois group Gal(Kab/K) by the reciprocity
map. For L(s, χ, f) they have proved the analytical continuation to the whole

s-plane and the functional equation L(s, χ, f) = L(1 − s, χ−1, f̂), using Fourier
transform for functions f on the space AX .

For a long time the author has advocated the following
Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions. (see,

in particular, [P2]).
The higher adeles have been introduced exactly for this purpose. So we have

the following underlying
Problem. Develop a measure theory and harmonic analysis on n-dimensional

local fields.
Note that the n-dimensional local fields are not locally compact topological

spaces for n > 1 and by Weil’s theorem the existence of the Haar measure (in the
usual sense) on a topological group implies its locally compactness.

In the talk, we show how to construct the harmonic analysis and the measure
theory in the first non-trivial case of algebraic surface X over a finite field k. Let
P be a closed point of X , C ⊂ X be an irreducible curve such that P ∈ C.

If X and C are smooth at P then we let t ∈ OX,P be a local equation
of C at P and u ∈ OX,P be such that u|C ∈ OC,P is a local parameter at
P . Denote by ℘ the ideal defining the curve C near P . Now we can intro-
duce the two-dimensional local field attached to the pair P,C by the following

procedure including completions and localizations: KP,C = Frac( ̂(ÔX,P )℘) =
k(P )((u))((t)). Let KP be the minimal subring of KP,C which contains K = k(X)

and ÔP . Then K ⊂ KP ⊂ KP,C and there is another intermediate subring
KC = Frac(OC) ⊂ KP,C . Now we can compare the structure of adelic com-
ponents in dimension 1 and 2. In dimension 1 the adelic complex reads as

K ⊕
∏
x∈C

Ôx →
∏′
x∈CKx and we shorten it to A0 ⊕ A1 → A01. In dimension

2, we have to start from the complex A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → A012,

where A0 = K = k(X),A1 =
∏
C⊂X ÔC ,A2 =

∏
x∈X Ôx,A01 =

∏′
C⊂XKC ,A02 =∏′

x∈XKx,A12 =
∏′
x∈CÔx,C ,A012 = AX =

∏′Kx,C .
In dimension 1, the group AC is a locally compact group and the analysis starts

with a definition of the functional spaces. Let V be a finite dimensional vector
space over adelic ring AC (or over an one-dimensional local field K with finite
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residue field Fq). We put

D(V ) = { locally constant functions with compact support}
E(V ) = {locally constant functions}
D(V )′ = {dual to D = all distributions}
E(V )′ = {dual to E = distributions with compact support}

The harmonic analysis includes definitions of direct and inverse images in some
category C1 of spaces like V , definition of the Fourier transform F as a map from
D′(V ) ⊗ µ(V ) to D′(V̌ ) as well for other types of spaces. Here µ(V ) is a space of
the Haar measures on V and V̌ is the dual space. The main result is the following
Poisson formula

F (δW,µ0 ⊗ µ) = δW⊥,µ−1/µ−1
0

for any closed subgroup i : W → V . Here µ0 ∈ µ(W ), µ ∈ µ(V ), δW,µ0 = i∗(1W ⊗
µ0) and W⊥ is the annulator ofW in V̌ . This general formula combines the follow-
ing facts of analysis on the self-dual group AC : F (δA1(D)) = vol(A1(D))δA1((ω)−D),

and F (δK) = vol(A/K)−1δK for the standard subgroups in AC( correspondingly,
attached to a divisor D and to the principal adeles). This easily implies Riemann-
Roch and Serre duality for divisors on the curve C (see[P2]).

For dimension 2, the space AX has a filtration by the subspaces A12(D) where
D runs through the Cartier divisors on X . The quotients A12(D)/A12(D

′) will
be the spaces of the type considered above in the one-dimensional situation. This
allows us to introduce the following spaces of functions(distributions),using a trick
suggested by M. Kapranov [K]:

DP0(V ) = lim lim D(P/Q) ⊗ µ(P0/Q, )
←
j∗

←
i∗

D′P0(V ) = lim lim D′(P/Q) ⊗ µ(P0/Q),
→
j∗

→
i∗

E(V ) = lim lim E(P/Q), E ′(V ) = lim lim E ′(P/Q),
←
j∗

→
i∗

→
j∗

←
i∗

where P ⊃ Q ⊃ R are some elements of the filtration in AX(or more generally, in a
reasonable filtered space V with locally compact quotients), P0 is a fixed subspace
from the filtration and j : Q/R → P/R, i : P/R → P/Q are the canonical maps.
Note that both spaces DP0(V ),D′P0

(V ) are E(V )-modules.
Just as in the case of dimension 1, one can define direct and inverse images in

some category C2 (see [O]) of filtered spaces like V and including all components
of the adelic complex, the Fourier transform F that preserves the spaces D and
D′ but interchanges the spaces E and E ′, characteristic functions δW of subspaces
and then prove a generalization of the Poisson formula. It is important that for a
class of spaces V (but not for AX itself) there exists an invariant measure, defined
up to a constant, as an element of D′. There is also an analytical expression
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for the intersection number of two divisors based on an adelic approach to the
intersection theory [P1]. As a corollary, we get an analytical proof of the (easy
part of) Riemann-Roch theorem for divisors on X .
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Dyson Theorem for curves

Carlo Gasbarri

§1 Introduction. In this talk I will describe an analogue of Dyson theorem for
curves, which in particular gives a proof of Siegel theorem independent on the
other big theorems. The proof is much easier of, for instance, Roth theorem and
it is in the same spirit of the classical theorem by Dyson.

§2 Qualitative Statement. Let K be a number field, L1, . . . , Lr be finite exten-
sions of K and define d := max{[Li · Lj : K]}. We also pose A := ⊕Li. Let C1

and C2 be smooth projective curves over K and

Di = Spec(A) → Ci,

be effective geometrically reduced divisors of degree
∑

[Li : K] on Ci. Let Li
be line bundle of degree one over Ci and hLi(·) height functions associated to Li.
Finally, let S be e a finite set of places of K and λDi,S be Weil functions associated
to Di and S.

Theorem 1. Let ϑ1, ϑ2 and ǫ be three rational numbers such that

ϑ1 · ϑ2 ≥ 2d+ ǫ

then the set of rational points (P,Q) ∈ C1(K) × C2(K) such that

λD1,S(P ) > ϑ1 · hL1(P )

and

λD2,S(Q) > ϑ2 · hL2(Q)

is contained in a proper closed subset whose irreducible components are either
fibers or points.

One easily sees that if we apply this to C1 = C2, D1 = D2 and ϑi =
√

2d + ǫ
we obtain:
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Corollary 1. Let C be a curve and D a divisor of degree d on C then

λD,S ≤ (
√

2d+ ǫ)hL +O(1).

If deg(D) ≥ 3 the corollary is enough to imply Siegel theorem. To obtain the
general case of it one take a suitable covering of the curve and conclude.

Remark. Classically one can prove that, if the genus of C is at leat one, then
λD,S ≤ ǫhL + O(1).; but the the proof needs Roth and weak Mordell–Weil. The
proof of the theorem above is independent on these ”big” theorems.

§3 Effective statement. Let K be a number field, OK its ring of integers; let

fi : Xi −→ Spec(OK)

(i = 1, 2) be two regular arithmetic surfaces. We fix symmetric metrics on the line
bundle O(∆i), where ∆i →֒ Xi × Xi are the diagonals; if PXi(OK) is a section
then we define a metric on O(P ) by imposing that the isomorphism OXi(P ) ≃
ι∗P (O(∆)), where ιP : Xi → Xi × Xi is the embedding x 7→ (x, P ), is an isometry.
This gives a well defined metric and a well defined Weil function for every divisor
D on Xi. We also fix hermitian line bundles Mi of degree one on Xi.

We fix a positive integer n, a rational positive number ǫ and two rational num-
bers ϑi such that

ϑ1 · ϑ2 ≥ 2n+ ǫ.

Finally let S be a finite set of places of K.

Theorem 2. There exist two effectively computable constants R1 and R2 having
the following property: Let L1, . . . , Lr be extensions of K, n = max{[Li · Lj : K]}
and A := Spec(⊕OLi). Let

Di : A −→ Xi
be effective divisors; Denote by D1 :=

∑
Pi and by D2 =

∑
Qj; we then pose

A(D1, D2) := max{hM1(Pi), hM2(Qj)},

B(D1, D2) := max{− (O(Pi),O(Pi))

[K(Pi) : K]
, 1} · max{− (O(Qj),O(Qj))

[K(Qj) : K]
, 1}

and

C(D1, D2) := max
v∈S

{dv(Pi, Pj), dv(Qi, Qj)}.

If (P,Q) ∈ X1(K) ×X2(K) is a couple of points such that

a) hM1(P ) ≥ N1

ǫ · A(D1, D2) ·B(D1, D2) · C(D1, D2);

b) λD1,S(P ) ≥ ϑ1hM1(P1) and λD1,S(Q) ≥ ϑ1hM1(Q); Then

hM2(Q) ≤ N2(A ·B · C) · hM1(P ).

Remark that if you could replace in the theorem the condition ϑ1 · ϑ2 ≥ 2n+ ǫ
by the condition ϑ1 ·ϑ2 ≥ 2n− ǫ, then the statement above would give as corollary
effective theorem and of Siegel Theorem:
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Indeed you take as X1 the projective line and ϑ1 = 2; You suppose that Di

is irreducible over K and, and by Dirichlet theorem you can find infinitely many
rational points such that

λD1,S(P ) ≥ 2hM1(P )

(and these can be explicitly constructed, for instance by using continued fractions)
consequently you can effectively bound the height of points of X2 which do not
satisfy

λD2,S(Q) ≤ (n− ǫ)hM2(Q)

in particular the height of (D,S)–integral points.

Corollary 2. Fix an integer n and suppose that you have a curve X (not of
general type) and an effective sequence of couples (Dm, Pm) ∈ Divn(X ) × X (K)
such that

λDm,S(Pm) ≥ (2 + ǫ)hM (P )

and

Rm :=
hM (Pm)

max{− (O(Dm),O(Dm))
[K(Dm):K] , 1} · maxv∈S{dv(Dm, Dm)}

→ ∞

then we can prove an effective version of Siegel Theorem.

By effective sequence we mean that given a positive number W we can explicitly
construct elements (Dm, Pm) in the sequence for which Rm ≥W .

The corollary can be restated, informally in the following way: If we can prove
an effective version of Roth theorem then we can prove an effective version of
Siegel theorem; but if we we can disprove effectively Roth theorem then we can
prove again an effective version of Siegel Theorem.
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Around Chowla-Selberg formula

Vincent Maillot

(joint work with Damian Rössler)

The first part of this talk is mostly historical and devoted to the computation
by Fagnano of the length of Bernoulli’s Lemniscate (1750). We uncover the al-
gebraic geometric construction underlying Fagnano’s result. Some generalizations
by Legendre (1811) and Lerch (1892) are presented as well, all of them encom-
passed by the Lerch (1896) & Chowla-Selberg (1949) formula. In the second part,
we outline further developments by Gross & Deligne (1978) , Anderson (1982),
Colmez (1993) et al. We end by presenting new results and conjectures in those
directions due to Rössler and ourself (cf. [1], [2] and [3]) and relying mostly on a
marvelous Lefschetz fixed point formula in Arakelov Geometry proven by Koehler
and Rössler.
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Analytic torsion for Calabi-Yau threefolds

Ken-Ichi Yoshikawa

(joint work with Hao Fang, Zhiqin Lu)

Let X be a Calabi-Yau threefold. Let γ be a Kähler form on X and set
X = (X, γ). Let τ(X,Ω

p

X) be the Ray-Singer analytic torsion of ΩpX = ∧pT ∗X
with respect to γ. Bershadsky-Cecotti-Ooguri-Vafa [2] introduced the following
combination of analytic torsions, which we call the BCOV torsion

TBCOV(X) =
∏

p≥0

τ(X,Ω
p

X)(−1)pp.

Let VolL2(H2(X,Z), [γ]) be the covolume of the lattice H2(X,Z)/Torsion with
respect to the L2-metric induced from the Kähler class [γ]. Let η be a nowhere
vanishing holomorphic 3-form on X . Let c3(X) be the top Chern form of X. Let
χ(X) be the topological Euler number of X . We define

A(X) = Vol(X)
χ(X)
12 exp

[
− 1

12

∫

X

log

(√
−1 η ∧ η̄
γ3/3!

· Vol(X)

‖η‖2
L2

)
c3(X)

]
,

which is independent of the choice of η. We define the real number τBCOV(X) as

τBCOV(X) = Vol(X)−3 VolL2(H2(X,Z), [γ])−1 A(X) TBCOV(X).
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Then τBCOV(X) is independent of the choice of γ, so that τBCOV(X) is an invariant
ofX . We regard τBCOV as a function on the moduli space of Calabi-Yau threefolds.

Let X be a smooth projective fourfold, and let π : X → P1 be a surjective flat
morphism with discriminant locus D. Let ψ be the inhomogeneous coordinate of
P1, and set Xψ := π−1(ψ) for ψ ∈ P1. We assume the following:
• ∞ ∈ D and Xψ is a Calabi-Yau threefold with h2(Ω1

Xψ
) = 1 for ψ ∈ P1 \ D;

• SingXψ consists of a unique ordinary double point for ψ ∈ D \ {∞};
• The Kodaira-Spencer map for p : X → P1 is an isomorphism at ∀ψ ∈ P1 \{∞}.

Outside D, TP1 is equipped with the Weil-Petersson metric. Let ‖ · ‖ be the
singular Hermitian metric on (π∗KX/P1)⊗(48+χ) ⊗ (TP1)⊗12 induced from the

L2-metric on π∗KX/P1 and from the Weil-Petersson metric on TP1.

Theorem 1. [5] Let Ξ be a meromorphic section of π∗KX/P1 with divisor

div(Ξ) =
∑

i∈I
mi Pi +m∞ P∞, Pi 6= P∞ (i ∈ I).

Identify the points Pi, Dk with their coordinates ψ(Pi), ψ(Dk) ∈ C, respectively.
Set χ = χ(Xψ), ψ ∈ P1 \ D. Then

τBCOV(Xψ) = Const.

∥∥∥∥∥

∏
k∈K(ψ −Dk)

2

∏
i∈I(ψ − Pi)(48+χ)mi

Ξ48+χ
ψ ⊗

(
∂

∂ψ

)12
∥∥∥∥∥

1
6

.

Theorem 1 applied to a family of quintic mirror threefolds yields a partial answer
to the conjecture of Bershadsky-Cecotti-Ooguri-Vafa [1], [2].

Let p : X → P1 be the pencil of quintic threefolds of P4 defined by

X = {([z], ψ) ∈ P4×P1; Fψ(z) = 0}, Fψ(z) = z5
0+z5

1+z5
2+z5

3+z5
4−5ψ z0z1z2z3z4.

On X , a group G of order 125 acts and preserves the fibers of p. We have the
induced family p : X/G→ P1. There exist a resolution r : W → X/G satisfying:
(1) Set rψ = r|Wψ

. Then rψ : Wψ → Xψ/G is a crepant resolution for ψ ∈ P1 \D;

(2) SingWψ consists of a unique ordinary double point if ψ5 = 1.
Set π = r ◦ q. A family π : W → P1 satisfying (1), (2) is called a family of

quintic mirror threefolds, whose general fiber is a smooth Calabi-Yau threefold.

Theorem 2. [1], [2], [5] The following identity holds

τBCOV(Wψ) = Const.

∥∥∥∥∥ψ
−62(ψ5 − 1)1/2 (Ξψ)62 ⊗

(
d

dψ

)3
∥∥∥∥∥

2/3

.

Here Ξψ is the 3-form on Wψ induced from the following 3-form on Xψ/G by rψ

Ωψ =

(
2πi

5

)−3

5ψ
dz0 ∧ dz1 ∧ dz2
∂Fψ(z)/∂z3

, Ξψ = r∗ψΩψ .

Bershadsky-Cecotti-Ooguri-Vafa [1], [2] conjectured that the genus-g Gromov-
Witten invariants {Ng(d)}g≥0,d≥1 of a general quintic hypersurface of P4 and the
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BCOV invariant of the quintic mirror threefolds satisfy the identity

τBCOV(Wψ) =

∥∥∥∥∥∥

{
q

25
12

∞∏

d=1

η̃(qd)N1(d)(1 − qd)
N0(d)

12

}6 (
Ξψ
y0(ψ)

)62

⊗
(
q
d

dq

)3
∥∥∥∥∥∥

2
3

up to a constant. Here

η̃(q) =

∞∏

n=1

(1 − qn), y0(ψ) =

∞∑

n=1

(5n)!

(n!)5(5ψ)5n
,

and the parameters q and ψ5 are identified via the “mirror map”:

q = (5ψ)−5 exp


 5

y0(ψ)

∞∑

n=1

(5n)!

(n!)5





5n∑

j=n+1

1

j





1

(5ψ)5n


 , |ψ| ≫ 1.

Define the function F top
1,B(ψ) by the following formula:

ψ−62(ψ5 − 1)
1
2 (Ξψ)62 ⊗

(
d

dψ

)3

=
1

F top
1,B(ψ)3

(
Ξψ
y0(ψ)

)62

⊗
(

2πi q
d

dq

)3

,

and set F top
1,A(q) = F top

1,B(ψ(q)). By Theorem 2, the conjecture of BCOV is reduced

to the following identity, which is studied by Li-Zinger [6]:

q
d

dq
logF top

1,A(q) =
50

12
−

∞∑

n,d=1

N1(d)
2nd qnd

1 − qnd
−

∞∑

d=1

N0(d)
2d qd

12(1 − qd)
.

Since the choice of a crepant resolution of a Calabi-Yau orbifold is not unique
in general, it is worth asking the following:

Question 1. If Calabi-Yau threefolds X and X ′ are birationally equivalent, then

τBCOV(X) = τBCOV(X ′) ?

Notice that under the same assumption, the Hodge numbers of X and X ′ are
equal, i.e., hp,q(X) = hp,q(X ′) for p, q ≥ 0.

To prove Theorem 1, we use the curvature formula and the anomaly formula
for Quillen metrics [4] as well as the following results on Quillen metrics.

Let π : Y → S be a surjective holomorphic map from a compact Kähler manifold
(Y, gY ) to a compact Riemann surface S. Let Σπ be the critical locus of π and
set ∆ = π(Σπ). Let (ξ, hξ) be a holomorphic Hermitian vector bundle on Y . Set
λ(ξ) = detRπ∗ξ. Let ‖ · ‖Q,λ(ξ) be the Quillen metric on λ(ξ) with respect to
gY |TY/S and hξ. Let σ be a local, nowhere vanishing holomorphic section of λ(ξ)
near ∆. Let 0 ∈ ∆.

Let µ : Y \ Σπ → P(TY )∨ be the Gauss map that assigns y ∈ Y \ Σπ the
hyperplane ker(π∗)y ∈ P(TyY )∨. Since µ is meromorphic, there is a resolution

q : (Ỹ , E) → (Y,Σπ) of the indeterminacy of µ, so that µ̃ = µ ◦ q is a morphism

from Ỹ to P(TY )∨. Let U be the universal hyperplane bundle on P(TY )∨ and
let H = OP(TY )∨(1).
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Theorem 3. [3], [7] Let s be a local parameter of S with div(s) = ∆. Then

log ‖σ(s)‖2
Q,λ(ξ) =

(∫

E∩q−1(Y0)

µ̃∗
{

Td(U)
Td(H) − 1

c1(H)

}
q∗ch(ξ)

)
log |s|2 +O(1).
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Equidistribution and generalized Mahler measure

Lucien Szpiro

The Mahler measure formula expresses the height of an algebraic number as the
integral of the log of the absolute value of its minimal polynomial on the unit circle.
The height is in fact the canonical height associated to the monomial maps xn.
We show in a paper with J.Pineiro and T.Tucker that for any rational map ϕ(x)
the canonical height of an algebraic number with respect to ϕ can be expressed as
the integral of the log of its equation against the invariant Brolin-Lyubich measure
associated to ϕ, with additional adelic terms at finite places of bad reduction:

deg(F )hϕ(α) =
∑

v

∫

P 1(Cv)

log |F |vdµv,ϕ

We give a complete proof of this theorem using integral models for each iterate
of ϕ. In a subsequent paper with T.Tucker on equidistribution and Julia sets,
we give a survey of results obtained by P. Autissier, M. Baker, R. Rumely, and
ourselves. In particular, our results, when combined with technics of diophantine
approximation, will allow us to compute the integrals in the generalized Mahler
formula by averaging on periodic points: For any α ∈ K and any nonzero irre-
ducible F ∈ K[t] such that F (α) = 0 we have

[K(α) : Q](hϕ(α) − hϕ(∞)) =
∑

v

lim
k→∞

1

dk

∑

ϕk([w:1])=[w:1],F (w) 6=0

log |F (w)|v .

Papers are available on the authors web pages.
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Arakelov theory on symplectic and orthogonal flag varieties

Harry Tamvakis

The goal of this talk is to describe the multiplicative structure of the arithmetic

Chow ring ĈH(G/P ), where G is a classical Lie group and P is a parabolic sub-
group of G. For simplicity we will assume here that P = B is a Borel subgroup.
We regard the homogeneous space X = G/B as a smooth scheme over the ring
of integers. When G = GLn, the question was studied in the author’s thesis, and
published in [7]. Here we will extend these results to the symplectic and orthogo-
nal Lie groups. We use the notation of Gillet and Soulé’s arithmetic intersection
theory, following the exposition of [6]. In each case, there is a short exact sequence

(1) 0 → Ã(XR)
a→ ĈH(X) → CH(X) → 0,

and one has to choose a good splitting map ǫ : CH(X) → ĈH(X) for (1).
When G is the symplectic group Sp2n, the situation is as follows. There is a

tautological hermitian filtration of the trivial vector bundle E of rank 2n over X ,

E : 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E2n = E.

Here rank(Ei) = i for each i and the middle bundle En is a Lagrangian subbundle
of E. Furthermore, all the hermitian metrics are induced from the trivial metric
on E(C), which is compatible with the symplectic form. For 1 ≤ i ≤ n let Li
denote the quotient line bundle Ei/Ei−1 equipped with the quotient metric and
set x̂i = −ĉ1(Li).

The Chow ring CH(X) may be presented as a quotient of the polynomial ring
Z[X1, . . . , Xn] modulo the ideal In generated by the relations

(2) ei(X
2
1 , . . . , X

2
n) = 0

for 1 ≤ i ≤ n, where the ei are the elementary symmetric polynomials. Let Sn
denote the symmetric group, Πn the set of partitions λ with λ1 ≤ n, and Dn the
set of 2n strict partitions in Πn. The polynomial ring Z[X1, . . . , Xn] has a natural
product basis {Cw,λ(X1, . . . , Xn)} for w ∈ Sn and λ ∈ Πn, which was studied in
[2, 3]. We have that Cw,λ = CwCλ, where the Cw are essentially type A Schubert

polynomials Sw, defined by Lascoux and Schützenberger [4], and the Cλ = Q̃λ
are the Q̃-polynomials of Pragacz and Ratajski [5]. There are integer structure
constants eλµνuvw defined by the equation

Cu,λ · Cv,µ =
∑

eλµνuvw Cw,ν.

Moreover, the set {Cw,λ | w ∈ Sn, λ ∈ Dn} forms a Z-basis for the quotient ring
Z[X1, . . . , Xn]/In ∼= CH(X). This basis of CH(X) corresponds in geometry to the
fibration of X over the Lagrangian Grassmannian LG(n, 2n), with fiber the type
A flag variety GLn/B. However, it should be emphasized that the polynomials
Cw,λ do not represent the Schubert classes in CH(X).

The map ǫ we use to split the sequence (1) is defined by

ǫ(Cw,λ(X1, . . . , Xn)) = Cw,λ(x̂1, . . . , x̂n) =: Ĉw,λ.
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The following basic equation then holds in ĈH(X).

Ĉu,λ · Ĉv,µ =
∑

ν∈Dn
eλµνuvw Ĉw,ν +

∑

ν /∈Dn

eλµνuvw C̃w,ν .

Here, for ν ∈ Πn \ Dn, the element C̃w,ν := Ĉw,ν(x̂1, . . . , x̂n) is the image under
the map a in (1) of an Sp(2n)-invariant differential form on X(C). This form may
be computed by an explicit algorithm, which uses the arithmetic analogue of the
relations (2), namely

ei(x̂
2
1, . . . , x̂

2
n) = (−1)ia(c̃i(E)).

The elements c̃i(E) are the Bott-Chern forms of the hermitian filtration E . The
point is that these forms are given by complex transgression as polynomials in the
entries of the curvature matrices of the vector bundles involved, and these entries
may be expressed using the Maurer-Cartan forms of Sp(2n) (see for example [1]).
As a consequence, one proves that all the natural arithmetic intersection numbers
on X are rational numbers.

For the case of the even orthogonal group SO2n, an extra ingredient is needed
in the above analysis. This is because the classical Chow ring of SO2n/B carries
the additional relation X1 · · ·Xn = 0. In the arithmetic Chow ring, this becomes

x̂1 · · · x̂n = ĉn(En) + a(c̃n(E
′
)),

where E ′ denotes the hermitian filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En.

According to [10], we have an equation

ĉn(En) = −1

2
Hn−1a(cn−1(En)),

with Hn−1 a harmonic number. Using this, one completes the story as in the
symplectic case.

In conclusion, we note that when X = G/P is a hermitian symmetric space,
there is a canonical choice of invariant hermitian metric on X(C), and an Arakelov

Chow ring CH(X) which is a subring of ĈH(X), containing all the above products.
In this case, there are combinatorially explicit formulas available, which lead to
an ‘arithmetic Schubert calculus’, extending the classical one. The corresponding
theory has been studied in the author’s papers [8, 9, 10].
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Subquotient metrics and arithmetic Hilbert-Samuel theorem

Hugues Randriam

The main aim of this talk was the construction of an arithmetic Hilbert-Samuel
function for a coherent sheaf on an arithmetic variety, and the proof that such a
function satisfies an analogue of the arithmetic Hilbert-Samuel theorem. In order
to do that, one needs some notion of metrics on this coherent sheaf, or at least, on
its spaces of global sections. Two cases are of particular interest: the case where
the coherent sheaf is a subsheaf of a locally free hermitian sheaf (for example, the
subsheaf of sections satisfying certain vanishing conditions), and the case where
the coherent sheaf is a quotient of a locally free hermitian sheaf (for example, the
structural sheaf of a closed subscheme). One can generalize both situations by
considering a coherent sheaf that is given as a subquotient of some locally free
hermitian sheaf, as follows.

Let K be a number field, OK its ring of integers, X a scheme projective over
SpecOK with generic fiber XK reduced, and L an ample invertible OX-module
whose complex fibers are equipped with a complex conjugation invariant contin-
uous metric with semi-positive curvature. Let also C be a coherent OX-module.
Then a subquotient metric on C consists in:

• a locally free hermitian OX-module E ,
• a coherent OX-submodule F of E , and
• an epimorphism of OX-modules from F onto C.

Let us denote by C the coherent OX-module C equipped with this subquotient
metric.

Then, for any integer n, the OK-module Γ(X, E⊗L⊗n) can be equipped with the
L∞(Xσ) metrics (with σ ranging over embeddings ofK into C), and Γ(X,F⊗L⊗n),
which is an OK-submodule, with the induced metrics. Now, if n is big enough,
Γ(X, C⊗L⊗n) is a quotient of the latter, and can then be equipped with the quotient

metrics. We denote by Γ(X, C ⊗ L⊗n) the metrized OK-module just constructed.
Then the function that to n big enough associates the arithmetic Euler-Poincaré
characteristic of this metrized OK-module can be considered as an arithmetic
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Hilbert-Samuel function for C:

h(C;n) = χ̂
(
Γ(X, C ⊗ L⊗n)

)
.

An important fact is then that, if [C] denotes the cycle of dimension d = dim |C|
associated to C, one has the following asymptotic estimate for h(C; .), which is a
generalization to this setting of the so-called arithmetic Hilbert-Samuel theorem:

Theorem ([1], Th. A). The arithmetic Hilbert-Samuel function of C satisfies

h(C;n) =
nd

d!
(ĉ1(L)d.[C]) + o(nd)

when n tends to infinity.

It should be noted that (the leading term of) this estimate does not depend on
the choice of the metric on C.

To prove this theorem, since subquotient metrics are compatible with dévissage,
one is easily reduced to the case where C is of the form C = i∗M where i is
the inclusion morphism of a closed integral subscheme Y of X and where M is
an invertible OY-module. In this setting, if M is equipped with any hermitian

metric, one can estimate χ̂L∞
(
Γ(Y,M⊗L⊗n)

)
with (Zhang’s version [2] of) the

classical arithmetic Hilbert-Samuel theorem. In order to use this estimate, one has
to be able to compare the L∞ metrics on Y and the subquotient metrics coming
from the L∞ metrics on X. Such a comparison is given essentially by the following
result:

Theorem ([1], Th. B). Let X be a reduced complex analytic space, L an invertible
hermitian OX-module, E a locally free hermitian OX -module of finite type, i : Y →֒
X a reduced closed analytic subspace, and V a locally free hermitian OY -module of
finite type. Suppose given a coherent OX -submodule F of E and an epimorphism
p of coherent OX-modules from F onto i∗V . Then:

(1) For any ǫ > 0 and any non-empty compact B of Y , there exists a constant
c > 0 and a non-empty compact A of X, such that for any n ≥ 0, for any
s ∈ Γ(Y, V ⊗ L⊗n) and any s̃ ∈ Γ(X,F ⊗ L⊗n) satisfying p(s̃) = i∗s, one
has

‖s̃‖L∞(A) ≥ ce−nǫ‖s‖L∞(B).

(2) If moreover X is 1-convex and L has strictly positive curvature, there
exists an integer n0 and, for any ǫ > 0 and any non-empty compact A
of X, a constant c′ > 0 and a non-empty compact B of Y , such that for
any n ≥ n0 and any s ∈ Γ(Y, V ⊗ L⊗n) there exists s̃ ∈ Γ(X,F ⊗ L⊗n)
satisfying p(s̃) = i∗s and

‖s̃‖L∞(A) ≤ c′enǫ‖s‖L∞(B).

The proof of this theorem uses a technique introduced by Bost, after ideas of
Grauert and others. One considers the unit disc bundle of the total space of the
dual of L, and one lifts all the involved sheaves to this disc bundle. The spaces
of analytic sections of these sheaves are then equipped with a canonical Fréchet
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topology, and the first part of the theorem just expresses the continuity of the
lifting of p to the disc bundle, while the second is obtained by applying to it
Banach’s open mapping theorem.
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A quantitative sharpening of the arithmetic Bogomolov inequality

Niko Naumann

We reported on [N]. Let K be a number field with ring of integers OK and
X/Spec (OK) an arithmetic surface, i.e. a regular, integral, purely two-dimensional
scheme, proper and flat over Spec (OK) and with smooth and geometrically con-
nected generic fibre. Attached to a hermitian coherent sheaf on X are the usual

characteristic classes with values in the arithmetic Chow-groups ĈH
i
(X) (cf.

[GS1], 2.5), and in particular the discriminant of E

∆(E) := (1 − r)ĉ1(E)2 + 2rĉ2(E) ∈ ĈH
2
(X)

where r := rk(E). The arithmetic degree map

d̂eg : ĈH
2
(X)R −→ R

is an isomorphism [GS2] and we will use the same symbol to to denote an ele-

ment in ĈH
2
(X)R and its arithmetic degree in R, see [GS2], 1.1 for the definition

of arithmetic Chow-groups with real coefficients ĈH
∗
(X)R. Following [Mo2] we

define the positive cone of X to be

Ĉ++(X) := {x ∈ ĈH
1
(X)R |x2 > 0 and degK(x) > 0} .

Given a torsion-free hermitian coherent sheaf E of rank r ≥ 1 on X and a subsheaf
E′ ⊆ E we endow E′ with the metric induced from E and consider the difference
of slopes

ξE′,E :=
ĉ1(E

′
)

rk(E′)
− ĉ1(E)

r
∈ ĈH

1
(X)R.

Recall that a subsheaf E′ ⊆ E is saturated if the quotient E/E′ is torsion-free.
Our main result is the following.
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Theorem 1. Let E be a torsion-free hermitian coherent sheaf of rank r ≥ 2 on
the arithmetic surface X, satisfying

∆(E) < 0 .

Then there is a non-zero saturated subsheaf E
′ ⊆ E such that ξE′,E ∈ Ĉ++(X)

and

(1) ξ2
E
′
,E

≥ −∆

r2(r − 1)
.

Remark 2. The existence of an E
′ ⊆ E with ξE′,E ∈ Ĉ++(X) is the main result

of [Mo2] and means that E
′ ⊆ E is arithmetically destabilising with respect to any

polarisation of X, c.f. loc. cit. for more details on this. The new contribution here
is the inequality (1) which is the exact arithmetic analogue of a known geometric
result, c.f. for example [HL], Theorem 7.3.4.

Remark 3. A special case of Theorem 1 appears in disguised form in the proof of
[So], Theorem 2: Given a sufficiently positive hermitian line bundle L on the arith-
metic surface X and some non-torsion element e ∈ H1(X,L−1) ≃ Ext1(L,OX),
C. Soulé establishes a lower bound for

||e||2 := sup
σ:K →֒C

||σ(e)||2L2

by considering the extension determined by e

E : 0 −→ OX −→ E −→ L −→ 0

and suitably metrised as to have ĉ1(E) = L and 2ĉ2(E) =
∑
σ ||σ(e)||2L2 , hence

∆(E) = −L2
+ 2

∑
σ ||σ(e)||2L2 (where we write L = ĉ1(L) following the notation

of loc. cit.).
If E

Q
is semi-stable the arithmetic Bogomolov inequality concludes the proof. Oth-

erwise, the main point is to show the existence of of an arithmetic divisor D
satisfying

degK(D) ≤ degK(L)/2 and(2)

2(L−D)D ≤ [K : Q] · ||e||2,(3)

c.f. (28) and (32) of loc. cit. where these inequalities are established by some
direct argument. We wish to point out that the existence of some D satisfying (2)

and (3) is a special case of Theorem 1. In fact, let E
′ ⊆ E be as in Theorem 1

and define D := L− ĉ1(E′). We then compute

ξE′,E =
L

2
−D
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and ξE′,E ∈ Ĉ++(X) implies (2). Furthermore, the inequality (1) in the present

case reads

ξ2
E
′
,E

=
L

2

4
+D

2 − L D ≥ −∆

4
=
L

2

4
− 1

2

∑

σ

||σ(e)||2L2 , i.e.

2(L−D)D ≤
∑

σ

||σ(e)||2L2 ,

hence the trivial estimate [K : Q] · ||e||2 ≥ ∑
σ ||σ(e)||2L2 gives (3).
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