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Chapter 1

Motivation and informal discussion

Consider a family of hypersurfaces {Γ(t)}t≥0 ⊂ Rn+1 given as a graph of a height function h over
Rn. To be precise we have

Γ(t) = {(x, xn+1) ∈ Rn × R : xn+1 = h(t, x)}.

Assume furthermore that the evolution of Γ(t) is governed by the surface diffusion law

VΓ(t) = −∆Γ(t)HΓ(t), t ≥ 0, (1.1)

where VΓ(t) is the normal velocity of Γ(t), HΓ(t) = −divΓ(t)νΓ(t) is the mean curvature of Γ(t) and
the operators divΓ(t) and ∆Γ(t) denote the surface divergence and the Laplace-Beltrami operator,
respectively, acting on Γ(t). Let us make the convention that the unit normal field νΓ(t) on Γ(t)
points from

{(x, xn+1) ∈ Rn × R : xn+1 < h(t, x)}

to
{(x, xn+1) ∈ Rn × R : xn+1 > h(t, x)}.

It is convenient to rewrite (1.1) in terms of the height function h. To this end let β := 1/
√

1 + |∇h|2
and denote by δij the Kronecker delta. Then we obtain from Prüss & Simonett [22] that

∆Γϕ = (δkl − β2∂kh∂lh)(∂k∂lϕ− β2∂k∂lh ∂mh ∂mϕ),

for functions ϕ which are smooth enough and

HΓ = (δij − β2∂ih∂jh)β∂i∂jh,

where we employed sum convention. Furthermore we have

νΓ = β(−∇h, 1)T and VΓ = ∂th(en+1|νΓ) = β∂th.

Inserting the above expressions into (1.1) yields the equation

∂th+

n∑
i,j,k,l=1

(δkl − β2∂kh∂lh)(δij − β2∂ih∂jh)∂i∂j∂k∂lh = G(∇h,∇2h,∇3h), (1.2)

G(∇h,∇2h,∇3h) =
∑

|σ|=3,|τ |=2

bστ (∇h)DσhDτh+
∑

|σ|=|τ |=|χ|=2

cστχ(∇h)DσhDτhDχh,

where Dα := (−i)|α|∂α1
1 · · · ∂αnn and α ∈ Nn0 is a multiindex.

We note that (1.2) can be written as an abstract quasilinear evolution equation

ḣ(t) +A(h(t))h(t) = F (h(t)), t > 0, h(0) = h0, (1.3)

in some Banach space X0, where A : X → B(X1, X0) is defined by

A(h)u :=

n∑
i,j,k,l=1

(δkl − β2∂kh∂lh)(δij − β2∂ih∂jh)∂i∂j∂k∂lu,
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6 CHAPTER 1. MOTIVATION AND INFORMAL DISCUSSION

with X1 ⊂ X0 being the domain of A(h) in X0 and X is some appropriate space such that

X1 ↪→ X ↪→ X0,

reflecting the fact that the coefficients of the operator A(h) as well as of F : X → X0 given by

F (h) := G(∇h,∇2h,∇3h)

are of lower order.
For solving (1.3), the following strategy may be applied.

1. We write
ḣ(t) +A(0)h(t) = F (h(t)) + [A(0)−A(h(t))]h(t) =: F̃ (h(t))

and define A0 : X1 → X0 by A0 := A(0).

2. We prove that the linear problem

ḣ(t) +A0h(t) = f, t > 0, h(0) = h0, (1.4)

has for a suitable space F and for each (f, h0) ∈ F × X a unique solution u ∈ E such that
E ↪→ F.

Hence, the operator L : E→ F×X, defined by

Lh := (ḣ+A0h, h(0))

is an isomorphism (maximal regularity comes into play).

3. We prove that the mapping
E 3 h 7→ L−1(F̃ (h), h0) ∈ E

has a unique fixed point (e.g. by the contraction mapping principle).

Evidently, this fixed point is the unique solution of (1.3).

There are several functional analytic settings for solving (1.4), e.g.

• maximal Hölder regularity (in singular Hölder spaces);

• maximal continuous regularity;

• maximal Sobolev regularity.

We refer to the book of Amann [2] for a detailed exposition of these functional analytic settings.
In these lectures, we will only consider maximal Sobolev regularity, also called maximal Lp-
regularity and we follow Kunstmann & Weis [15] as well as Prüss & Simonett [22].

For the surface diffusion flow, we have A0h = ∆2h, hence A0 is the bi-Laplacian, an operator
of order 4. One could e.g. choose X0 = Lq(Rn), 1 < q < ∞, so that the domain of A0 in X0 is
X1 = W 4

q (Rn). We are thus looking for solutions

h ∈W 1
p (R+;Lq(Rn)) ∩ Lp(R+;W 4

q (Rn)) =: E,

of the linear equation (1.4), where f ∈ Lp(R+;Lq(Rn)) =: F. The intermediate space X will be
derived in Section 4.2.



Chapter 2

Maximal Regularity

2.1 Definitions

Let X0, X1 be Banach spaces such that X1 ↪→ X0 and X1 is dense in X0. Suppose that A :
X1 → X0 is a linear and closed operator (X1 = D(A) is the domain of A in X0). We consider the
abstract evolution equation

u̇(t) +Au(t) = f(t), t > 0, u(0) = 0. (2.1)

and have the following

Definition 2.1.1. Let 1 < p <∞ and J = (0, T ), T ∈ (0,∞]. The operator A has the property of
maximal Lp-regularity in X0 if for each f ∈ Lp(J ;X0) there exists a unique solution

u ∈W 1
p (J ;X0) ∩ Lp(J ;X1) =: E1(J)

of (2.1). If this is the case, we write for short A ∈MRp(J,X0) andMRp(R+, X0) =:MRp(X0).

Corollary 2.1.2. Let A ∈ MRp(J,X0) for some p ∈ (1,∞). Then there exists a constant C > 0
such that the unique solution u of (2.1) satisfies the estimate

‖u‖E1(J) ≤ C‖f‖Lp(J;X0),

where
‖u‖E1(J) := ‖u̇‖Lp(J;X0) + ‖Au‖Lp(J;X0) + ‖u‖Lp(J;X0).

Proposition 2.1.3 ([10, 22]). Let A ∈MRp(J,X0) for some p ∈ (1,∞).

1. If |J | <∞, then ∃ω > 0, M ≥ 1 such that

{Reλ ≥ ω} ⊂ ρ(−A) and ‖λ(λ+A)−1‖B(X0) ≤M, Reλ ≥ ω.

In particular, ω +A is sectorial1 with spectral angle < π/2.

2. If J = R+, then ∃M ≥ 1 such that

{Reλ ≥ 0} ⊂ ρ(−A) and ‖(1 + |λ|)(λ+A)−1‖B(X0) ≤M, Reλ ≥ 0.

In particular A is sectorial with spectral angle < π/2 and

s(−A) := sup{Reλ | λ ∈ σ(−A)} < 0.

Note that by a Theorem of Hille, Proposition 2.1.3 states that if A ∈ MRp(J,X0), then −A is
the generator of an analytic semigroup in X0 and in case J = R+ the semigroup is in addition
exponentially stable.

1A : D(A)→ X0 is called sectorial, if (i) A is injective & densely defined with dense range and (ii) (0,∞) ⊂ ρ(−A) &
∃M > 0 ∀λ > 0 : ‖λ(λ+A)−1‖B(X) ≤M .
Taylor expansion yields that ∃φ ∈ (0, π), Cφ > 0 : Σπ−φ ⊂ ρ(−A) and ∀λ ∈ Σπ−φ : ‖λ(λ+A)−1‖B(X0) ≤ Cφ.
The angle φA := inf{φ ∈ (0, π) : ∀λ ∈ Σπ−φ : ‖λ(λ+A)−1‖B(X0) ≤ Cφ} is called spectral angle of A.
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8 CHAPTER 2. MAXIMAL REGULARITY

Remark 2.1.4.

1. If A ∈MRp(X0), then A ∈MRp(J,X0) for any interval J = (0, T ).

2. If |J | <∞, then

∀ω ∈ R : ω +A ∈MRp(J,X0)⇐⇒ A ∈MRp(J,X0).

3. If A ∈MRp(J,X0) and s(−A) < 0, then A ∈MRp(X0) (Dore [10]).

4. If A ∈MRp(J,X0), then ∃ω0 > 0 ∀ω > ω0 : ω +A ∈MRp(X0).

5. IfA ∈MRp(J,X0) for some p ∈ (1,∞), thenA ∈MRq(J,X0) for all q ∈ (1,∞) (Sobolevskii
[25]).

2.2 Conditions for maximal regularity

By Proposition 2.1.3, A ∈MRp(X0) implies that A is a sectorial operator inX0 with spectral angle
less than π/2 and s(−A) < 0. Unfortunately, the converse of Proposition 2.1.3 is in general not
true as a result of Kalton & Lancien [13] from 2000 shows. For the particular case X0 = Lq(Rn),
this result reads as follows.

If each generator of an analytic semigroup in Lq(Rn) has the maximal Lp-regularity property,
then q = 2.

To prove A ∈ MRp(X0) for a given operator A is in general a formidable task. To see the
difficulties, let A be sectorial with spectral angle < π/2 and e−At the exponentially stable analytic
semigroup generated by −A. Define

u(t) :=

∫ t

0

e−A(t−s)f(s)ds

Then, A ∈MRp(X0) provided

f 7→ A

∫ t

0

e−A(t−s)f(s)ds

is bounded from Lp(R+;X0) to Lp(R+;X0). This however is in general nontrivial, since by analyt-
icity of e−At,

‖Ae−Atx‖X0 ≤M
e−ωt

t
‖x‖X0

and so there is a non-integrable singularity at t = 0.
A first positive result concerning maximal Lp-regularity we want to mention, is

Theorem 2.2.1 (Da Prato & Grisvard [7]). Let X0 be a Banach space and A a sectorial invertible
operator in X with spectral angle < π/2 and domain X1. Then A ∈ MRp((X0, X1)α,p), where
(X0, X1)α,p is a real interpolation space with α ∈ (0, 1) and p ∈ (1,∞).

Example. Let X0 = Lq(Rn), 1 < q < ∞ and A = −∆x the Laplacian in X0 with domain X1 :=
W 2
q (Rn). Then A : X1 → X0 is closed, densely defined and sectorial in X0 with spectral angle 0

(see e.g. Abels [1] or Lunardi [18]). Moreover, for any ω > 0, the operator ω + A : X1 → X0 is
invertible. It follows from Theorem 2.2.1 that ω +A ∈MRp((X0, X1)α,p) for each ω > 0, where

(X0, X1)α,p = (Lq(Rn),W 2
q (Rn))α,p = B2α

qp (Rn)

is a Besov space (see e.g. [3, 26, 27]). Hence, for any f ∈ Lp(R+;B2α
qp (Rn)) there exists a unique

solution
u ∈W 1

p (R+;B2α
qp (Rn)) ∩ Lp(R+;B2α+2

qp (Rn))

of the PDE

∂tu(t, x) + (ω −∆x)u(t, x) = f(t, x), t > 0, x ∈ Rn, u(0, x) = 0.
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We note that not every Banach space can be written as a real interpolation space, e.g. Lq(Ω),
Ω ⊂ Rn. To exploit the general strategy, let us write u(t) from above as

Au(t) =

∫
R
k(t− s)f̃(s)ds = k ∗ f̃(t), t ∈ R,

where f̃(s) := χ(0,∞)(s)f(s) and k(s) := χ(0,∞)(s)Ae
−As. Applying the Fourier Transformation F

w.r.t. t yields
F(Au) = FkF f̃ ,

with

(Fk)(τ) = A

∫ ∞
0

e−iτse−Asds = A(iτ +A)−1,

and hence
Au = F−1A(iτ +A)−1F f̃ .

Therefore, Au ∈ Lp(R+;X0) follows if

τ 7→ A(iτ +A)−1 ∈ B(X0)

is a Fourier multiplier in Lp(R;X0). Let us collect some classical facts:

• If X0 = C, then the classical multiplier theorem of Mikhlin (in the 1D-case) states that

m ∈ C1(R \ {0};C)

‖m‖M := max
α∈{0,1}

sup
ξ∈R\{0}

|ξ|α|m(α)(ξ)| <∞

 =⇒ F−1mF ∈ B(Lp(R;C)),

and
‖F−1mF‖B(Lp(R;C)) ≤ C‖m‖M ,

see e.g. Abels [1].

• If X0 = H is a Hilbert space, then a result due to Schwartz [24] (1961) says that

m ∈ C1(R \ {0};B(H))

max
α∈{0,1}

sup
ξ∈R\{0}

|ξ|α‖m(α)(ξ)‖B(H) <∞

 =⇒ F−1mF ∈ B(Lp(R;H)). (2.2)

The multiplier result (2.2) yields the following

Theorem 2.2.2 (de Simon [8, 22]). Let 1 < p < ∞, H be a Hilbert space and A be a sectorial
invertible operator in H with spectral angle < π/2. Then A ∈MRp(H).

Example. Let H = L2(Rn), 1 < q < ∞ and A = −∆x the Laplacian in X0 with domain DA :=
W 2

2 (Rn) =: H2(Rn). Then A : DA → H is closed, densely defined and sectorial in H with
spectral angle 0. Moreover, for any ω > 0, the operator ω + A : DA → H is invertible. It follows
from Theorem 2.2.2 that ω + A ∈ MRp(H) for each ω > 0. Hence, for any f ∈ Lp(R+;L2(Rn))
there exists a unique solution

u ∈W 1
p (R+;L2(Rn)) ∩ Lp(R+;H2(Rn))

of the PDE

∂tu(t, x) + (ω −∆x)u(t, x) = f(t, x), t > 0, x ∈ Rn, u(0, x) = 0.

By a result of Lancien, Lancien & Le Merdy [16] (1998), it follows that (2.2) is only true if H is
a Hilbert space and therefore the boundedness of maxα∈{0,1} supξ∈R\{0} |ξ|α‖m(α)(ξ)‖B(X0) is for
non-Hilbert spaces X0 not sufficient.

At this point, the concept of R-boundedness comes into play (Bourgain [5]).
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Definition 2.2.3. Let X and Y be Banach spaces. A family of operators T ⊂ B(X,Y ) is called
R-bounded, if there is a constant C > 0 and p ∈ [1,∞), such that for each N ∈ N, Tj ∈ T ,
xj ∈ X and for all independent, symmetric, {−1, 1}-valued random variables εj on a probability
space (Ω,M, µ) the inequality

‖
N∑
j=1

εjTjxj‖Lp(Ω;Y ) ≤ C‖
N∑
j=1

εjxj‖Lp(Ω;X),

is valid. The smallest of such constants C > 0 is calledR-bound of T , which is denoted byR(T ).

Remark 2.2.4.

• If T ⊂ B(X,Y ) is R-bounded, then T ⊂ B(X,Y ) is uniformly bounded (set N = 1 in
Definition 2.2.3).

• If X and Y are Hilbert spaces, then T ⊂ B(X,Y ) is R-bounded if and only if T ⊂ B(X,Y )
is uniformly bounded. Indeed, let T ⊂ B(X,Y ) be uniformly bounded by a constant C > 0.
Then

‖
N∑
j=1

εjTjxj‖2L2(Ω;Y ) =

N∑
j,k=1

[∫
Ω

εj(ω)εk(ω)dµ

]
(Tjxj |Tkxk)Y

=

N∑
j=1

[∫
Ω

ε2
j (ω)dµ

]
‖Tjxj‖2Y

≤ C2
N∑
j=1

[∫
Ω

ε2
j (ω)dµ

]
‖xj‖2X

= C2
N∑

j,k=1

[∫
Ω

εj(ω)εk(ω)dµ

]
(xj |xk)X = C2‖

N∑
j=1

εjxj‖2L2(Ω;X).

• Definition 2.2.3 does not depend on p ∈ (1,∞). This follows from Kahanes inequality (see
e.g. Prüss & Simonett [22]).

Based on the concept of R-boundedness, the following multiplier theorem holds.

Theorem 2.2.5 (Weis [28]). Let X and Y be Banach spaces of class HT and p ∈ (1,∞). Then

m ∈ C1(R \ {0};B(X,Y ))

max
α∈{0,1}

R
(
{ξαm(α)(ξ) | ξ ∈ R \ {0}}

)
<∞

 =⇒ F−1mF ∈ B(Lp(R;X), Lp(R;Y )). (2.3)

We note that, by definition, a Banach space X is of class HT if the Hilbert transform is bounded
in Lp(R;X) for some p ∈ (1,∞). We list some facts of HT spaces (see e.g. [2]).

• Every Hilbert space is of class HT .

• Closed subspaces and the dual of HT spaces are of class HT .

• If X is of class HT , then Lp(Rn;X) is of class HT for p ∈ (1,∞).

• If p, q ∈ (1,∞), s ∈ R and X = R, then the scalar versions of the Bessel potential spaces
Hs
p , the Besov spaces Bspq, the Triebel-Lizorkin spaces F spq are of class HT .

• Every HT space is reflexive, hence e.g. L1 and L∞ are not of class HT .

The multiplier theorem 2.2.5 yields the following characterization of operators in Banach spaces
of class HT having maximal Lp-regularity.
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Theorem 2.2.6 ([15, 22]). Let X0 be an Banach space of class HT , 1 < p < ∞, and let A be a
sectorial operator in X0 with spectral angle < π/2. Then the following assertions are equivalent.

1. For every f ∈ Lp(R+;X0), there exists a unique function u solving (2.1) for a.e. t > 0 with
u̇, Au ∈ Lp(R+;X0).

2. R({A(iτ +A)−1 | τ ∈ R \ {0}}) <∞;

3. R({A(λ+A)−1 | λ ∈ Σφ}) <∞ for some φ > π/2.

If one of these conditions is satisfied, then ω + A ∈ MRp(X0) for each ω > 0, since the analytic
semigroup generated by −(ω+A) in X0 is exponentially stable, as s(−(ω+A)) < 0. In particular,
if in addition 0 ∈ ρ(A), then A ∈MRp(X0).
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Chapter 3

Application to Partial Differential
Equations

3.1 Full space problems

We consider the problem
∂tu+A(x,D)u = f in Rn,

u(0) = 0 in Rn,
(3.1)

with the differential operator
A(x,D) =

∑
|α|≤2m

aα(x)Dα,

where aα : Rn → CN×N and Dα = (−i)|α|∂α1
x1
· · · ∂αnxn . The symbol A#(x, ξ) =

∑
|α|=2m aα(x)ξα

of the principal part
A#(x,D) =

∑
|α|=2m

aα(x)Dα,

of the operator A(x,D) should satisfy the following condition:

(E) (Ellipticity1 of the principal part) For all x ∈ Rn ∪ {∞}, A#(x, ξ) is normally elliptic, i.e.

σ(A#(x, ξ)) ⊂ Σφ, (3.2)

for all ξ ∈ Rn, |ξ| = 1, where

φA := inf{φ ∈ [0, π) | (3.2) holds} < π/2.

In X0 := Lq(Rn;CN ) we define operators Aq, Aq,# : X1 → X0 with X1 := W 2
q (Rn;CN ) by

Aqu := A(x,D)u Aq,#u := A#(x,D)u,

so that Aq and Aq,# are densely defined .
We consider first the case of constant coefficients aα(x) = aα ∈ CN×N . By the classical

Mikhlin multiplier theorem (in the nD-case), there exists a constant C > 0 such that

‖Dβu‖X0 ≤ C‖Aq,#u‖X0 , |β| = 2m

for any u ∈ X1. Therefore, Aq and Aq,# are closed in X0.

Theorem 3.1.1. Let aα(x) = aα ∈ CN×N and let assumption (E) be satisfied. Then C+ \ {0} ⊂
ρ(−Aq,#) and

R({λ(λ+Aq,#)−1 | λ ∈ C+ \ {0}}) <∞.

In particular, ω + Aq,# ∈ MRp(X0) for any ω > 0, since the analytic semigroup generated by
−(ω +Aq,#) in X0 is exponentially stable, as s(−(ω +Aq,#)) < 0.

1For a journey through the elliptic jungle, we refer to [22, Chapter 6].

13



14 CHAPTER 3. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

Example. We consider the negative Laplacian resp. the bi-LaplacianA#(D) = (−∆)k, k ∈ {1, 2},
with symbol

A#(ξ) = |ξ|2k.

It follows that
σ(A#(ξ)) = {1},

for all ξ ∈ Rn with |ξ| = 1 and therefore A#(ξ) is normally elliptic. By Theorem 3.1.1 and for any
ω > 0, it holds that

ω +Aq,# ∈MRp(X0),

since the analytic semigroup generated by −(ω +Aq,#) in X0 is exponentially stable, as s(−(ω +
Aq,#)) < 0.

Since R-bounds behave well under perturbations, Theorem 3.1.1 can be extended to small
perturbations ∑

|α|=2m

bα(x)Dα,
∑
|α|=2m

‖bα‖L∞(Rn) ≤ ε

of the constant coefficients case. A localization procedure finally yields the following

Theorem 3.1.2 ([22]). Let assumption (E) be satisfied and assume that

aα ∈ C`(Rn;CN×N ) (|α| = 2m)

aα ∈ L∞(Rn;CN×N ) (|α| < 2m).

Then ∃ω0 > 0 such that Σφ ⊂ ρ(−(ω0 +Aq)) and

R({λ(λ+ ω0 +Aq)
−1 | λ ∈ Σφ}) <∞

for some φ > π/2. In particular, ω + ω0 + Aq ∈ MRp(X0) for any ω > 0 since the analytic
semigroup generated by −(ω + ω0 +Aq) in X0 is exponentially stable, as s(−(ω + ω0 +Aq)) < 0.

3.2 General domains

In case that Ω ⊂ Rn is open and bounded with boundary ∂Ω ∈ C2m, we consider the problem

∂tu+A(x,D)u = f in Ω,

Bj(x,D)u = gj on ∂Ω, j ∈ {1, . . . ,m}
u(0) = 0 in Ω.

(3.3)

with the differential operators

A(x,D) =
∑
|α|≤2m

aα(x)Dα, x ∈ Ω

and
Bj(x,D) =

∑
|β|≤mj

bjβ(x)Dβ , mj < 2m, x ∈ ∂Ω, j ∈ {1, . . . ,m}

with coefficients
aα ∈ C(Ω;CN×N ) (|α| = 2m)

aα ∈ L∞(Ω;CN×N ) (|α| < 2m)

and
bj,β ∈ C2m−mj (∂Ω;CN×N ) (|β| ≤ mj).

By a localization procedure, change of coordinates and perturbation arguments, one obtains full-
space problems for the charts which do not intersect the boundary ∂Ω and problems in the half-
space

Rn+ := {x = (x′, y) ∈ Rn−1 × R | y > 0}
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induced by the charts which intersect the boundary ∂Ω. The corresponding problem for the case
of constant coefficients for the principle parts reads

∂tu+A#(D)u = f in Rn+,
Bj#(D)u = gj on ∂Rn+, j ∈ {1, . . . ,m}

u(0) = 0 in Rn+.
(3.4)

Note that w.l.o.g. one may always assume f = 0 in (3.4), by extending f to f̃ on Rn by zero
and solving a full space problem. Taking Laplace transform w.r.t t and Fourier-Transform w.r.t.
x′ ∈ Rn−1 we obtain

λv(y) +A#(ξ′, Dy)v(y) = 0 , y > 0,

Bj#(ξ′, Dy)v(0) = gj , y = 0, j ∈ {1, . . . ,m}.
(3.5)

This is a boundary value problem for an ordinary differential equation on R+ of order 2m in the
variable y with parameters λ ∈ C and ξ′ ∈ Rn−1. The unique solvability of (3.5) is ensured by

(LS) (Lopatinskii-Shapiro condition) For all ξ′ ∈ Rn−1, λ ∈ Σφ (for some φ > π/2), the problem
(3.5) has a unique solution v ∈ C0(R+;CN ) for any given gj ∈ CN .

The philosophy of the Lopatinskii-Shapiro condition is to check whether the boundary condi-
tions Bj(x,D) fit to the operator A(x,D).

Based on a solution formula for the solution v(y) of (3.5) and some very technical kernel
estimates, one obtains an analogous result to Theorem 3.1.1 for the case of the half space with
constant coefficients. This in turn can be extended to coefficients having a small perturbation in
the principal parts. The localization procedure for the domain Ω then yields the following result.

Theorem 3.2.1 ([22]). Let Ω ⊂ Rn open and bounded with boundary ∂Ω ∈ C2m and let
p, q ∈ (1,∞). Assume that the ellipticity condition (E) for each x ∈ Ω and the Lopatinskii-Shapiro
condition (LS) for each x ∈ ∂Ω are satisfied.

Then there exists ω0 > 0 such that for each ω ≥ ω0 the problem

∂tu+ ωu+A(x,D)u = f in Ω,

Bj(x,D)u = 0 on ∂Ω, j ∈ {1, . . . ,m}
u(0) = 0 in Ω,

(3.6)

has a unique solution

u ∈W 1
p (R+;Lq(Ω;CN )) ∩ Lp(R+;W 2m

q (Ω;CN ))

if and only if f ∈ Lp(R+;Lq(Ω;CN )). In other words, for the operator Aqu := A(x,D)u in X0 :=
Lq(Ω;CN ) with domain

X1 := {u ∈W 2m
q (Ω;CN ) | Bj(x,D)u = 0, x ∈ ∂Ω, j ∈ {1, . . . ,m}}

there holds ω +Aq ∈MRp(X0) for each ω ≥ ω0.

Example. We consider the negative Laplacian A(x,D) = −∆ with either one of the boundary
conditions

• B(x,D) = u|∂Ω (Dirichlet BC) or;

• B(x,D) = ∇u|∂Ω · ν∂Ω (Neumann BC);

where Ω ⊂ Rn is a bounded domain with ∂Ω ∈ C2 and ν∂Ω is the outer unit normal field on ∂Ω.
We already know that A(D) is normally elliptic. Thus, it remains to verify the Lopatinskii-

Shapiro condition. To this end, we have to consider the parameter-dependend ODE

λv(y) + (|ξ′|2 − ∂2
y)v(y) = 0, (λ, ξ′) ∈ Σφ × Rn−1, φ > π/2,

with v(0) = g in case of Dirichlet BCs or ∂yv(0) = −g in case of Neumann BCs. We note that the
general solution of the ODE is given by

v(y) = c1e
−y
√
λ+|ξ′|2 + c2e

y
√
λ+|ξ′|2 , y ≥ 0, cj ∈ C.
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Since v(y)→ 0 as y →∞, we necessarily have c2 = 0 hence

v(y) = c1e
−y
√
λ+|ξ′|2 and ∂yv(y) = −c1

√
λ+ |ξ′|2e−y

√
λ+|ξ′|2 .

The initial conditions imply c1 = g in case of a Dirichlet BC, or c1 = g/
√
λ+ |ξ′| in case of a

Neumann BC and therefore, (LS) is fulfilled.



Chapter 4

Trace spaces and time-weights

4.1 Time-weighted spaces

As a generalization of the classical Lp-spaces in Chapter 2, we consider now Lp-spaces with
certain time-weights. For an arbitrary Banach space X and for 1 < p <∞, we define the weighted
Lp-space Lp,µ(R+;X) by

Lp,µ(R+;X) := {f ∈ L1,loc(R+;X) : [t 7→ t1−µf(t)] ∈ Lp(R+;X)},

where µ ∈ (1/p, 1]. Note that Lp(R+;X) is the classical Bochner-Lebesgue space and evidently,
it holds that Lp,1(R+;X) = Lp(R+;X).

The weighted Sobolev-space W 1
p,µ(R+;X) is accordingly defined by

W 1
p,µ(R+;X) := {u ∈ Lp,µ(R+;X) ∩W 1

1,loc(R+;X) : u̇ ∈ Lp,µ(R+;X)}.

The spaces Lp,µ(R+;X) and W 1
p,µ(R+;X) are equipped with the norms

‖f‖Lp,µ(R+;X) :=

(∫ ∞
0

‖t1−µf(t)‖pXdt
)1/p

and
‖u‖W 1

p,µ(R+;X) :=
(
‖u‖pLp,µ(R+;X) + ‖u̇‖pLp,µ(R+;X)

)1/p

,

respectively, which turn them into Banach spaces. Moreover, it can be shown that

W 1
p,µ(R+;X) ↪→W 1

1,loc(R+;X),

for any µ ∈ (1/p, 1], hence any function u ∈W 1
p,µ(R+;X) has a well-defined trace u(0) in X.

In accordance with Definition 2.1.1 we have the following

Definition 4.1.1. Let 1 < p <∞ and µ ∈ (1/p, 1]. The operator A has the property of maximal
Lp,µ-regularity in X0 if for each f ∈ Lp,µ(R+;X0) there exists a unique solution

u ∈W 1
p,µ(R+;X0) ∩ Lp,µ(R+;X1)

of (2.1). If this is the case, we write for short A ∈MRp,µ(X0) and

MRp,1(X0) =:MRp(X0)

if µ = 1.

Corollary 4.1.2. Let A ∈ MRp,µ(X0) for some p ∈ (1,∞). Then there exists a constant C > 0
such that the unique solution u of (2.1) satisfies the estimate

‖u‖E1,µ(R+) ≤ C‖f‖Lp,µ(R+;X0),

where
‖u‖E1,µ(R+) := ‖u̇‖Lp,µ(R+;X0) + ‖Au‖Lp,µ(R+;X0) + ‖u‖Lp,µ(R+;X0).

The following important theorem draws a connection between the classes MRp(X0) and
MRp,µ(X0).

17
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Theorem 4.1.3 (Prüss & Simonett [21]). For all 1 < p < ∞ and µ ∈ (1/p, 1] the following asser-
tions are equivalent:

1. A ∈MRp,µ(X0);

2. A ∈MRp(X0).

In particular, Theorem 4.1.3 asserts that the case of classical (unweighted) maximal Lp-
regularity extrapolates to the weighted maximal Lp,µ-regularity setting without any additional as-
sumptions, as long as µ ∈ (1/p, 1].

4.2 Trace spaces

So far, we have only considered trivial initial values u(0) = 0. Let us consider the question, under
which assumptions on u0, there exists a unique solution

u ∈W 1
p,µ(R+;X0) ∩ Lp,µ(R+;X1)

of the problem
u̇(t) +Au(t) = f(t), t > 0, u(0) = u0, (4.1)

provided A ∈ MRp(X0) and f ∈ Lp,µ(R+;X0). Recall that A : X1 → X0 is a closed and
densely defined operator in X0. By Proposition 2.1.3, −A generates an exponentially stable
analytic semigroup e−At in X0. Suppose [t 7→ Ae−Atx] ∈ Lp,µ(R+;X0). Then, by definition of the
weighted Lp-spaces, there holds ∫ ∞

0

‖t1−µAe−Atx‖pX0
dt <∞.

This motivates the definition of intermediate spaces.

Definition 4.2.1 (Lunardi [18]). Let A be a sectorial and invertible operator with spectral angle
< π/2, α ∈ (0, 1) and p ∈ [1,∞). We define

DA(α, p) :=

{
x ∈ X0 | [x]α,p :=

(∫ ∞
0

‖t1−αAe−Atx‖pX0

dt

t

)1/p

<∞

}
.

If DA(α, p) is equipped with the norm ‖x‖α,p := ‖x‖X0
+ [x]α,p, then DA(α, p) is a Banach space.

There is a connection between the intermediate spacesDA(α, p) and real interpolation spaces
(X0, X1)θ,p, θ ∈ (0, 1).

Proposition 4.2.2 (Lunardi [18]). Let A be a sectorial invertible operator in X0 with spectral angle
< π/2. Suppose that α ∈ (0, 1) and p ∈ [1,∞). Then

DA(α, p) = (X0, X1)α,p

up to equivalent norms, where X1 is the domain of A in X0. Furthermore,

X1 ↪→ DA(β, p) ↪→ DA(α, p) ↪→ X0, 0 < α < β < 1.

For α = µ− 1/p, µ ∈ (1/p, 1], it follows that

x ∈ (X0, X1)µ−1/p,p ⇐⇒ x ∈ DA(µ− 1/p, p)⇐⇒ ‖[t 7→ t1−µAe−Atx]‖Lp(R+;X0) <∞.

Hence, we have the following result

Theorem 4.2.3. Let 1 < p < ∞, µ ∈ (1/p, 1] and A ∈ MRp(X0). Then there exists a unique
solution

u ∈W 1
p,µ(R+;X0) ∩ Lp,µ(R+;X1) =: E1,µ(R+)

of
u̇(t) +Au(t) = f(t), t > 0, u(0) = u0, (4.2)

if and only if
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1. f ∈ Lp,µ(R+;X0);

2. u0 ∈ (X0, X1)µ−1/p,p.

Furthermore, there exists a constant C > 0 such that

‖u‖E1,µ(R+) ≤ C
(
‖f‖Lp,µ(R+;X0) + ‖u0‖(X0,X1)µ−1/p,p

)
.

Remark 4.2.4. Theorem 4.2.3 asserts in particular, that the regularity of the initial value can be
reduced by decreasing the exponent µ ∈ (1/p, 1] of the time-weight. This in turn implies that the
number of compatibility conditions in the context of initial-boundary value problems for parabolic
partial differential equations may be reduced to a minimum.

Example. We consider the negative Laplacian Aqu := −∆u in X0 := Lq(Ω;CN ) with domain

X1 := {u ∈W 2
q (Ω;CN ) | u|∂Ω = 0 on ∂Ω}.

Then we already know that ∃ω > 0 : ω + Aq ∈ MRp(X0), see Section 3.2. The trace space
Xγ,µ = (X0, X1)µ−1/p,p is then computed to the result

Xγ,µ =

{
{u ∈ B2µ−2/p

qp (Ω;CN ) | u|∂Ω = 0 on ∂Ω}, if µ > 1/p+ 1/(2q),

B
2µ−2/p
qp (Ω;CN ), if µ < 1/p+ 1/(2q).

Therefore, for each (f, u0) ∈ Lp,µ(R+;Lq(Ω;CN ))×Xγ,µ there exists a unique solution

u ∈W 1
p,µ(R+;Lq(Ω;CN )) ∩ Lp,µ(R+;W 2

q (Ω;CN ))

of the parabolic initial-boundary-value problem

∂tu+ ωu−∆u = f in Ω,

u|∂Ω = 0 on ∂Ω,

u(0) = u0 in Ω.

In particular, if 1/p < µ < 1/p+ 1/(2q), there is NO compatibility condition for u0 on ∂Ω.

One can even prove a more general result for the trace at t = 0.

Lemma 4.2.5 ([22]). Let 1 < p <∞ and µ ∈ (1/p, 1]. Then the trace operator

tr : E1,µ(R+)→ (X0, X1)µ−1/p,p tru := u(0)

is linear, surjective and bounded, hence

∃C > 0 ∀u ∈ E1,µ(R+) : ‖ tru‖(X0,X1)µ−1/p,p
≤ C‖u‖E1,µ(R+).

Moreover,
E1,µ(R+) ↪→ BUC(R+; (X0, X1)µ−1/p,p).

Let us point out another advantage of working in the setting of weighted Lp-spaces. To see
the benefit, observe that for all τ > 0, the estimate

τ1−µ‖u‖E1,1(τ,∞) ≤ ‖u‖E1,µ(τ,∞) ≤ ‖u‖E1,µ(R+)

for the solution u of (4.2) holds, hence

u ∈W 1
p,loc((0,∞);X0) ∩ Lp,loc((0,∞), X1) ↪→ C((0,∞);Xγ,1),

This shows that the solution u(t) of (4.2) with initial value u0 ∈ Xγ,µ = (X0, X1)µ−1/p,p regularizes
instantaneously for t > 0 provided µ < 1.
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Chapter 5

Quasilinear parabolic evolution
equations

5.1 Local well-posedness

Consider the quasilinear evolution equation

u̇(t) +A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0, (5.1)

under the assumption that there exist two Banach spaces X0, X1, with dense embedding X1 ↪→
X0 such that the nonlinear mappings (A,F ) satisfy

(A,F ) ∈ C1−(Vµ;B(X1, X0)×X0), (5.2)

where Vµ ⊂ (X0, X1)µ−1/p,p =: Xγ,µ is open and nonempty for some µ ∈ (1/p, 1]. The main result
of this section reads as follows.

Theorem 5.1.1 ([14]). Let p ∈ (1,∞), u0 ∈ Vµ be given and suppose that (A,F ) satisfy (5.2) for
some µ ∈ (1/p, 1]. Assume in addition that A(u0) ∈ MRp(X0). Then there exist T = T (u0) > 0

and ε = ε(u0) > 0, such that B̄Xγ,µε (u0) ⊂ Vµ and such that the problem

u̇(t) +A(u(t))u(t) = F (u(t)), t > 0, u(0) = u1,

has a unique solution

u(·, u1) ∈W 1
p,µ((0, T );X0) ∩ Lp,µ((0, T );X1) ∩ C([0, T ];Vµ),

on [0, T ], for any initial value u1 ∈ B̄
Xγ,µ
ε (u0). Furthermore there exists a constant c = c(u0) > 0

such that for all u1, u2 ∈ B̄
Xγ,µ
ε (u0) the estimate

||u(·, u1)− u(·, u2)||E1,µ(0,T ) ≤ c‖u1 − u2‖Xγ,µ

is valid.

Remark 5.1.2. A benefit of Theorem 5.1.1 is that the local existence time T = T (u0) is locally
uniform. Moreover, Theorem 5.1.1 shows that the space Xγ,µ = (X0, X1)µ−1/p,p is the natural
phase space for the semi-flow [u0 7→ u(t, u0)] generated by (5.1).

Example. Let X0 = Lq(Rn), X1 = W 4
q (Rn) and hence

Xγ,µ = (X0, X1)µ−1/p,p = B4µ−4/p
qp (Rn).

In the sequel, we assume
4

p
+
n

q
< 1,

so that Xγ,µ ↪→ BC3(Rn) provided

4µ > 3 +
4

p
+
n

q
.

21
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We consider the surface diffusion flow (1.1) in the graph setting, rewritten as

ḣ(t) +A(h(t))h(t) = F (h(t)), t > 0, h(0) = h0, (5.3)

where A : Xγ → B(X1, X0) is given by

A(h)u :=

n∑
i,j,k,l=1

(δkl − β2∂kh∂lh)(δij − β2∂ih∂jh)∂i∂j∂k∂lu,

for h ∈ Xγ,µ, u ∈ X1 and F : Xγ,µ → X0 is given by F (h) = G(∇h,∇2h,∇3h). Under the
above conditions on p, q, µ, it follows that (A,F ) satisfy (5.2) by the theory of Nemytskii operators.
Moreover, A(0)u = ∆2u is the bi-Laplacian in X0 = Lq(Rn) which is normally elliptic by Section
3.1, hence ω +A(0) ∈MRp(X0) for any ω > 0. Replacing F (h) by F̃ (h) := F (h) + ωh, Theorem
5.1.1 yields a local-in-time solution

h(·, h0) ∈W 1
p,µ((0, T );Lq(Rn)) ∩ Lp,µ((0, T );W 4

q (Rn)) ∩ C([0, T ];B4µ−4/p
qp (Rn))

of (5.3) for any initial value h0 ∈ B4µ−4/p
qp (Rn) with ‖h0‖Xγ,µ ≤ ε.

The next result provides information about the continuation of local solutions.

Corollary 5.1.3. Let the assumptions of Theorem 5.1.1 be satisfied and assume that A(v) ∈
MRp(X0) for all v ∈ Vµ. Then the solution u(t) of (5.1) with initial value u0 ∈ Vµ has a maximal
interval of existence J(u0) = [0, t+(u0)).

The mapping [u0 7→ t+(u0)] : Vµ → (0,∞) is lower-semicontinuous.

5.2 Relative compactness and global existence

Let u0 ∈ Vµ be given. Suppose that (A,F ) satisfy (5.2) and A(v) ∈ MRp(X0) for all v ∈ Vµ and
for some µ ∈ (1/p, 1), where J = [0, T ] or J = R+. In the sequel we assume that the unique
solution of (5.1) satisfies u ∈ BC([τ, t+(u0));Vµ ∩Xγ) for some τ ∈ (0, t+(u0)) and

dist(u(t), ∂Vµ) ≥ η > 0 (5.4)

for all t ∈ J(u0). Suppose furthermore that

Xγ ↪−↪→ Xγ,µ, µ ∈ (1/p, 1). (5.5)

It follows from the boundedness of u(t) in Xγ that the set {u(t)}t∈J(u0) ⊂ Vµ is relatively compact
in Xγ,µ, provided µ ∈ (1/p, 1). By (5.4) it holds that V := {u(t)}t∈J(u0) is a proper subset of
Vµ. Applying Theorem 5.1.1 we find for each v ∈ V numbers ε(v) > 0 and δ(v) > 0 such that
B
Xγ,µ
ε(v) (v) ⊂ Vµ and all solutions of (5.1) which start in B

Xγ,µ
ε(v) (v) have the common interval of

existence [0, δ(v)]. Therefore the set ⋃
v∈V

B
Xγ,µ
ε(v) (v)

is an open covering of V and by compactness of V there exist N ∈ N and vk ∈ V, k = 1, . . . , N ,
such that

U :=

N⋃
k=1

BXγ,µεk
(vk) ⊃ V = {u(t)}t∈J(u0) ⊃ {u(t)}t∈J(u0),

where εk := ε(vk), k = 1, . . . , N . To each of these balls corresponds an interval of existence
[0, δk], δk > 0, k = 1, . . . , N . Consider the problem

v̇ +A(v)v = F (v), s > 0, v(0) = u(t), (5.6)

where t ∈ J(u0) is fixed and let δ := min{δk, k = 1, . . . , N}. Since u(t) ⊂ U , t ∈ J(u0), the
solution of (5.6) exists at least on the interval [0, δ]. By uniqueness it holds that v(s) = u(t + s) if
t+ s ∈ J(u0), t ∈ J(u0), s ∈ [0, δ], hence sup J(u0) = +∞, i.e. the solution exists globally.
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By continuous dependence on the initial data, the solution operator G1 : U → E1,µ(0, δ),
which assigns to each initial value u1 ∈ U a unique solution v(·, u1) ∈ E1,µ(0, δ), is continuous.
Furthermore

(δ/2)1−µ‖v‖E1(δ/2,δ) ≤ ‖v‖E1,µ(δ/2,δ) ≤ ‖v‖E1,µ(0,δ), µ ∈ (1/p, 1),

wherefore the mapping G2 : E1,µ(0, δ)→ E1(δ/2, δ) with v 7→ v is continuous. Finally

‖v(δ)‖Xγ ≤ ‖v‖BUC((δ/2,δ);Xγ) ≤ C(δ)‖v‖E1(δ/2,δ),

hence the mapping G3 : E1(δ/2, δ) → Xγ with v 7→ v(δ) is continuous. This yields the continuity
of the composition G = G3 ◦G2 ◦G1 : U → Xγ , whence G({u(t)}t≥0) = {u(t+ δ)}t≥0 is relatively
compact in Xγ , since the continuous image of a relatively compact set is relatively compact. Since
the solution has relatively compact range in Xγ , it is an easy consequence that the ω-limit set

ω(u0) := {v ∈ Vµ ∩Xγ : ∃ tn ↗∞ s.t. u(tn;u0)→ v in Xγ}

is nonempty, connected and compact. We summarize the preceding considerations in the follow-
ing

Theorem 5.2.1 ([14]). Let p ∈ (1,∞) and suppose that A(v) ∈ MRp(X0) for all v ∈ Vµ and let
(5.2) as well as (5.5) hold for some µ ∈ (1/p, 1). Assume furthermore that the solution u(t) of
(5.1) satisfies

u ∈ BC([τ, t+(u0));Vµ ∩Xγ)

for some τ ∈ (0, t+(u0)) and
dist(u(t), ∂Vµ) ≥ η > 0

for all t ∈ J(u0). Then the solution exists globally and for each δ > 0, the orbit {u(t)}t≥δ is
relatively compact in Xγ . If in addition u0 ∈ Vµ ∩Xγ , then {u(t)}t≥0 is relatively compact in Xγ .
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