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Chapter 1

Motivation and informal discussion

Consider a family of hypersurfaces {I'(¢t)}:>0 C R""! given as a graph of a height function » over
R™. To be precise we have

I'(t) ={(z, zns1) ER" x R:anyy = h(t, 2)}.
Assume furthermore that the evolution of I'(¢) is governed by the surface diffusion law
Vi) = —Arw Hrpy, t >0, (1.1)

where Vr(, is the normal velocity of I'(t), Hr,) = —divpvr() is the mean curvature of I'(t) and
the operators divr(;) and Ar(, denote the surface divergence and the Laplace-Beltrami operator,
respectively, acting on I'(¢). Let us make the convention that the unit normal field v,y on I'(t)
points from

{(z,2p41) ER" XR:zpp1 < h(t,2)}

to
{(z,2p11) ER* X R: xyy1 > h(t,x)}.

It is convenient to rewrite (1.1) in terms of the height function h. To thisend let 5 :=1/4/1 + |Vh/|?
and denote by §% the Kronecker delta. Then we obtain from Priiss & Simonett [22] that

Argp = (8" — B20khduh) (0xdup — B°010th Omh D),
for functions ¢ which are smooth enough and
Hp = (69 — 8%8,h0;h) 30;0;h,
where we employed sum convention. Furthermore we have
vr = B(=Vh,1)T and Vi = 0;h(eni1|vr) = BO;h.

Inserting the above expressions into (1.1) yields the equation

Oth+ Y (8" — BPOxhOh)(67 — B20;h0;h)0;0;060,h = G(Vh, V?h, V3h), (1.2)

i,j,k,1=1
G(Vh,V°h,V?h) = Y ber(VR)D'RD™h+ Y cory(Vh)DhD"hDXh,
lo|=3,|7[=2 lo|=Ir]=]x|=2
where D := (—i)l*l9f ... 92~ and o € Ny is a multiindex.
We note that (1.2) can be written as an abstract quasilinear evolution equation
h(t) + A(h(t)h(t) = F(h(t)), t>0, h(0)= he, (1.3)

in some Banach space X, where A : X — B(X;, X)) is defined by

A(hyu:= Y (6" — B0xhOyh)(67 — B*0;hd;h)0;0;00yu,

4,5,k 1=1
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with X; C X, being the domain of A(h) in X, and X is some appropriate space such that
X1 = X — X,
reflecting the fact that the coefficients of the operator A(h) as well as of F': X — X, given by
F(h) := G(Vh,V?h,V>h)

are of lower order.
For solving (1.3), the following strategy may be applied.

1. We write _ _
h(t) + A(0)h(t) = F(h(t)) + [A(0) — A(h(t))]A(t) =: F(h(t))

and define Ag : X; — X, by Ag := A(0).
2. We prove that the linear problem
h(t) + Aoh(t) = f, t>0, h(0)= ho, (1.4)

has for a suitable space F and for each (f, ko) € F x X a unique solution u € E such that
E — F.

Hence, the operator L : E — F x X, defined by
Lh := (h+ Agh, h(0))
is an isomorphism (maximal regularity comes into play).

3. We prove that the mapping 3
E>he LY (F(h),ho) €E

has a unique fixed point (e.g. by the contraction mapping principle).
Evidently, this fixed point is the unique solution of (1.3).

There are several functional analytic settings for solving (1.4), e.g.
e maximal Holder regularity (in singular H6lder spaces);
e maximal continuous regularity;
e maximal Sobolev regularity.

We refer to the book of Amann [2] for a detailed exposition of these functional analytic settings.
In these lectures, we will only consider maximal Sobolev regularity, also called maximal L,-
regularity and we follow Kunstmann & Weis [15] as well as Priiss & Simonett [22].

For the surface diffusion flow, we have Agh = A2h, hence Ay is the bi-Laplacian, an operator
of order 4. One could e.g. choose Xy = L,(R"), 1 < ¢ < oo, s0 that the domain of 4y in Xy is
X, = W/ (R"). We are thus looking for solutions

h € Wy (Ry; Lg(R™) N Ly(Ry; W, (R™)) =: E,

of the linear equation (1.4), where f € L,(Ry; L,(R™)) =: F. The intermediate space X will be
derived in Section



Chapter 2

Maximal Regularity

2.1 Definitions

Let Xy, X; be Banach spaces such that X; — X, and X; is dense in X,. Suppose that A :
X1 — Xy is alinear and closed operator (X; = D(A) is the domain of A in X,). We consider the
abstract evolution equation

u(t) + Au(t) = f(t), t>0, wu(0)=0. (2.1)
and have the following

Definition 2.1.1. Let1 <p < oo andJ = (0,T),T € (0,00]. The operator A has the property of
maximal L,-regularity in X, if for each f € L,(J; X,) there exists a unique solution

u € Wy (J; Xo) N Ly(J; X1) =: Eq(J)
of (2.1). If this is the case, we write for short A € MR, (J, Xo) and MR, (R4, Xo) =: MR,(Xo).

Corollary 2.1.2. Let A € MR,(J, Xy) for some p € (1,00). Then there exists a constant C > 0
such that the unique solution u of (2.1) satisfies the estimate

HU’HIEl(J) < CHf”Lp(J;XO)a

where
lulle, 7y = lllz,(7:x0) + AUl L, (7:x0) + 10|z, (75x0)-

Proposition 2.1.3 ([10, 22]). Let A € MR, (J, Xy) for some p € (1, 0).
1. If|J| < o0, then 3w > 0, M > 1 such that

{Red > w} C p(—A) and [[AA+ A) px,) <M, ReA > w.
In particular, w + A is sectoriaE] with spectral angle < = /2.
2. IfJ =Ry, then3 M > 1 such that
{ReA >0} C p(—A) and ||(1+ M)A+ A) " sxo) < M, ReX > 0.
In particular A is sectorial with spectral angle < w/2 and

s(—A) :=sup{ReX | A € a(—A)} <O0.

Note that by a Theorem of Hille, Proposition [2.1.3|states that if A € MR, (J, X), then —A is
the generator of an analytic semigroup in X, and in case J = R, the semigroup is in addition
exponentially stable.

TA: D(A) — X is called sectorial, if (i) A is injective & densely defined with dense range and (i) (0, 00) C p(—A) &
IM > 0VA>0: [[AA+ A) " Higx) < M.
Taylor expansion yields that 3¢ € (0,7), Cy > 0: Z,_g C p(—A)and VA € Ty : [AA+ A) " Higxy) < Cop-
The angle ¢4 :=inf{¢ € (0,7) : VA € Tr_g : IA(A+ A) 7! p(x,y) < Cg} is called spectral angle of A.

7
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Remark 2.1.4.
1. IfAe MR,(Xo), then A € MR,(J, Xy) for any interval J = (0,T).
2. If|J| < oo, then

VweR:w+Ae MR,(J, Xo) <= A e MR,(J, Xo).

()

. IfA e MR,(J, Xo) and s(—A) < 0, then A € MR, (Xo) (Dore [10]).

N

AfA e MR,(J, Xo), then 3wy > 0Vw > wp : w+ A € MR, (Xo).

O

. MfA e MR, (J, Xo) for some p € (1,00), then A € MRy(J, Xo) for all ¢ € (1, 00) (Sobolevskii
[25])).

2.2 Conditions for maximal regularity

By Proposition[2.1.3] A € MR, (X,) implies that A is a sectorial operator in X, with spectral angle
less than n/2 and s(—A) < 0. Unfortunately, the converse of Proposition [2.1.3|is in general not
true as a result of Kalton & Lancien [13] from 2000 shows. For the particular case X, = L,(R"),
this result reads as follows.

If each generator of an analytic semigroup in L,(R™) has the maximal L,-regularity property,
then ¢ = 2.

To prove A € MR,(X,) for a given operator A is in general a formidable task. To see the
difficulties, let A be sectorial with spectral angle < 7/2 and e~“* the exponentially stable analytic
semigroup generated by — A. Define

u(t) ::/O e~ A=) £(s)ds

Then, A € MR,(X,) provided

t
fs A [ e A9 f(s)ds
0
is bounded from L, (R4 ; Xo) to L,(Ry; Xo). This however is in general nontrivial, since by analyt-
icity of e=4*,

e—wt

l4e=allx, < M

2 xo

and so there is a non-integrable singularity at ¢ = 0.
A first positive result concerning maximal L,-regularity we want to mention, is

Theorem 2.2.1 (Da Prato & Grisvard [7]). Let X, be a Banach space and A a sectorial invertible
operator in X with spectral angle < ©/2 and domain X,. Then A ¢ MR,((Xo, X1)a,p), Where
(Xo,X1)a,p is a real interpolation space with o € (0,1) and p € (1, c0).

Example. Let Xy = Ly(R"), 1 < ¢ < o0 and A = —A, the Laplacian in X, with domain X, :=
WqQ(R"). Then A : X1 — Xy is closed, densely defined and sectorial in X with spectral angle 0
(see e.g. Abels [1] or Lunardi [18]). Moreover, for any w > 0, the operator w + A : X1 — Xg is
invertible. It follows from Theorem[2.2.1|thatw + A € MR,((Xo, X1)a,p) for eachw > 0, where

(X0, X1)ap = (Lg(R™), WZ(R™))a,p = By (R")
is a Besov space (see e.g. [3,126,127]). Hence, for any f € L,(Ry; Bﬁg(R")) there exists a unique
solution
u € W, (Ry; By (R™) N Ly(Ry; B H2(R™))
of the PDE

Owu(t,z) + (w — Apult,z) = f(t,x), t>0, x€R", wu(0,z)=0.
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We note that not every Banach space can be written as a real interpolation space, e.g. L, (),
Q c R™. To exploit the general strategy, let us write u(t) from above as

Au(?) :/Rk(t—s)f(s)ds:k*f(t), teR,

where f(s) := X(0,00)(8) f(5) @and k(s) 1= X(0,00)(s)Ae~"*. Applying the Fourier Transformation F
w.r.t. ¢ yields

F(Au) = FEFf,
with
(FR)(r) = A /0 " eireeAsds = Air + A),

and hence

Au = F Y A(it + A)~LFf.
Therefore, Au € L,(Ry; Xo) follows if

7 A(iT + A~ € B(Xp)
is a Fourier multiplier in L, (R; X,). Let us collect some classical facts:

e If Xy = C, then the classical multiplier theorem of Mikhlin (in the 1D-case) states that

m € C'(R\ {0};C)

Imllar == max sup [€]*m(®) ()] < oo

= F'mF € B(L,(R; C)),
ac{0,1} ¢er\{0}

and
|F = 'mF| sz, ®cy < Climlla,

see e.g. Abels [1].
e If Xo = H is a Hilbert space, then a result due to Schwartz [24] (1961) says that

m € C'(R\ {0}; B(H))

max = sup }|g|a||m<a>(§)||B(H) <0

= F'mF € B(L,(R; H)). (2.2)
a€{0,1} ceRr\{0

The multiplier result (2.2) yields the following

Theorem 2.2.2 (de Simon [8, 22]). Let1 < p < oo, H be a Hilbert space and A be a sectorial
invertible operator in H with spectral angle < w/2. Then A ¢ MR, (H).

Example. Let H = Ly(R"), 1 < ¢ < o0 and A = —A, the Laplacian in X, with domain D 4 :=
W3(R") =: H?(R"). Then A : Dy — H is closed, densely defined and sectorial in H with
spectral angle 0. Moreover, for any w > 0, the operator w + A : D4 — H is invertible. It follows
from Theorem[2.2.3 thatw + A € MR, (H) for eachw > 0. Hence, for any f € L,(Ry; L2(R™))
there exists a unique solution

u € Wy (Ry; Ly(R™)) N Ly (Ry; H*(R™))
of the PDE
Su(t,z) + (w — Au(t,z) = f(t,z), t>0, z€R™, wu(0,z)=0.
By a result of Lancien, Lancien & Le Merdy [16] (1998), it follows that is only true if H is
a Hilbert space and therefore the boundedness of max,c (0,1} supecr (o 1£]% M) (€| 5(x,) is for

non-Hilbert spaces X, not sufficient.
At this point, the concept of R-boundedness comes into play (Bourgain [5]).
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Definition 2.2.3. Let X andY be Banach spaces. A family of operators T C B(X,Y) is called
R-bounded, if there is a constant C > 0 and p € [1,00), such that foreach N ¢ N, T; € T,
xz; € X and for all independent, symmetric, {—1,1}-valued random variables <; on a probability
space (2, M, i) the inequality

N N

[ Z eiTjzjl L, vy < C| Z €551 L, (:x) 5
j=1 j=1

is valid. The smallest of such constants C > 0 is called R-bound of T, which is denoted by R(T).
Remark 2.2.4.

o If T C B(X,Y) is R-bounded, then T C B(X,Y) is uniformly bounded (set N = 1 in

Definition[2.2.3).

e If X andY are Hilbert spaces, then T C B(X,Y) is R-bounded if and only if T C B(X,Y)
is uniformly bounded. Indeed, let T C B(X,Y) be uniformly bounded by a constant C > 0.
Then

N N
1> el = D
k=

i=1 J

[ eienida] (@0 Ty
| ] 11
< c?i [ [ = du} e 1%

>du} o0y = C1S o552 s

= j=1

1

||
TM
\

e Definition|2.2.3 does not depend on p € (1,00). This follows from Kahanes inequality (see
e.g. Priss & Simonett [22]).

Based on the concept of R-boundedness, the following multiplier theorem holds.
Theorem 2.2.5 (Weis [28]). Let X andY be Banach spaces of class HT and p € (1,00). Then
m e CHR\ {0}~B(X Y))
max R ({£m((¢) | ¢ € R\ {0})

) } = F'mF € B(L,(R; X),L,(R;Y)).  (2.3)
ae{0,1}

We note that, by definition, a Banach space X is of class HT if the Hilbert transform is bounded
in L,(R; X) for some p € (1, 00). We list some facts of 1T spaces (see e.g. [2]).

e Every Hilbert space is of class HT.
e Closed subspaces and the dual of #7 spaces are of class H7T.
e If X is of class #T, then L,(R™; X) is of class HT for p € (1, 00).

e Ifp,g e (1,00), s €R and X = R, then the scalar versions of the Bessel potential spaces

H,, the Besov spaces B, , the Triebel-Lizorkin spaces F,,, are of class HT.

e Every HT space is reflexive, hence e.g. Ly and L, are not of class HT.

The multiplier theorem [2.2.5] yields the following characterization of operators in Banach spaces
of class H7 having maX|maI L,-regularity.
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Theorem 2.2.6 ([15] 22]). Let X, be an Banach space of class HT,1 < p < oo, and let A be a
sectorial operator in X, with spectral angle < /2. Then the following assertions are equivalent.

1. Forevery f € L,(R;;Xy), there exists a unique function u solving (2.1) for a.e. t > 0 with
U, Au € L,(R4; Xo).

2. RUA(r + A |7 € R\ {01}) < 00;
3 R{AN+ A1 | A€ y}) < oo for some ¢ > /2.

If one of these conditions is satisfied, then w + A € MR,(X,) for each w > 0, since the analytic
semigroup generated by —(w + A) in X, is exponentially stable, as s(—(w + A)) < 0. In particular,
if in addition 0 € p(A), then A € MR, (Xo).
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Chapter 3

Application to Partial Differential
Equations

3.1 Full space problems

We consider the problem
ou+ A(z,D)u=f in R",
0

u(0) in R",

with the differential operator

A(z,D) = Z aq(z)D®,

|| <2m

where a, : R" — CN*N and D = (—i)!*1gg2 --- 957, The symbol Ay (2,€) = 3, _gm Ga(®)E
of the principal part
Ag(x, D)= > an(z)D,

|a|=2m

of the operator A(x, D) should satisfy the following condition:
(E) (E/lipticit}ﬂ of the principal part) For all z € R™ U {co}, Ax(z,€) is normally elliptic, i.e.
o(Ag(z,§)) C Xy, (3.2)
forall ¢ € R™, || = 1, where
¢4 = 1inf{p € [0,7) | holds} < /2.
In Xo := Ly(R™; CY) we define operators Ay, Ag 4 : X1 — X with X; := W2(R";C") by
Aqu:= A(z,D)u  Agpu:= Ay(x,D)u,

so that A, and A, » are densely defined .
We consider first the case of constant coefficients a,(z) = a, € CV*N. By the classical
Mikhlin multiplier theorem (in the nD-case), there exists a constant C' > 0 such that

ID"ullx, < CllAggullxy, 18] =2m
for any u € X;. Therefore, A, and A, 4 are closed in X,.

Theorem 3.1.1. Let a,(z) = a, € CN*N and let assumption (E) be satisfied. Then C, \ {0} C
p(~Ay 4) and o
REAA+ Ag )™ [ A€ CL\{0}}) < oo

In particular, w + A, € MR,(Xo) for any w > 0, since the analytic semigroup generated by
—(w+ Ag ) in Xy is exponentially stable, as s(—(w + Aq.2)) < 0.

For a journey through the elliptic jungle, we refer to [22, Chapter 6].

13
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Example. We consider the negative Laplacian resp. the bi-Laplacian A, (D) = (—A)*, k € {1,2},
with symbol
Ap(€) =€,

It follows that
o(Ax(§)) = {1},

for all ¢ € R™ with |¢| = 1 and therefore A4 (&) is normally elliptic. By Theorem and for any
w > 0, it holds that
w + Aq’# € MRP(X()),

since the analytic semigroup generated by —(w + A, 4) in X, is exponentially stable, as s(—(w +
Aq,#)) < 0.

Since R-bounds behave well under perturbations, Theorem can be extended to small

perturbations
> ba@)D®, > ballpo@e <€

o] =2m la|=2m
of the constant coefficients case. A localization procedure finally yields the following
Theorem 3.1.2 ([22]). Let assumption (E) be satisfied and assume that
ta € Co(R™CVN) (o] = 2m)
o € Loo(R™;CV*NY  (|a] < 2m).
Then 3wy > 0 such that 4 C p(—(wo + Ayq)) and
RAAN+wo+Ay) 7 A ey} < oo

for some ¢ > m/2. In particular, w + wo + A, € MR, (Xo) for any w > 0 since the analytic
semigroup generated by —(w + wo + A,) in X, is exponentially stable, as s(—(w + wo + 44)) < 0

3.2 General domains

In case that Q c R" is open and bounded with boundary 9Q € C?™, we consider the problem
ou+ Az, D)u=f in Q

Bj(z,D)u=g; on 0%, je{l,...,m} (3.3)
w(0)=0 in Q.

with the differential operators

A(z,D) = Z aq(x)DY, x€Q

lal<2m

and
Bi(x,D)= Y bjsg(x)D?, m;<2m, zedQ, je{l,...,m}

|B|<m;

with coefficients -
Ay € C(Q;CNXN) (la] = 2m)

o € Loo(Q;CV*NY (o] < 2m)
and
bjp € C2m7M (90 CVY) - (|B] < my).

By a localization procedure, change of coordinates and perturbation arguments, one obtains full-
space problems for the charts which do not intersect the boundary 052 and problems in the half-
space

RY :={z=(a/,y) e R" ' xR |y >0}
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induced by the charts which intersect the boundary 9Q2. The corresponding problem for the case
of constant coefficients for the principle parts reads
Ou+Ag(D)u=f in R},
Bjx(D)u=g; on OR}, je{l,...,m} (3.4)
w(0)=0 in RY.
Note that w.l.o.g. one may always assume f = 0 in (3.4), by extending f to f on R" by zero
and solving a full space problem. Taking Laplace transform w.r.t ¢ and Fourier-Transform w.r.t.
x' € R"! we obtain
M(y) + Ag (', Dyo(y) =0, y>0,
Bjyg(',Dy)v(0) =g; , y=0,j€{l,...,m}.

This is a boundary value problem for an ordinary differential equation on R, of order 2m in the
variable y with parameters \ € C and ¢’ € R"~1. The unique solvability of is ensured by

(3.5)

(LS) (Lopatinskii-Shapiro condition) For all ¢ € R"~1, X € £, (for some ¢ > 7/2), the problem
(3:5) has a unique solution v € Co(R4;CN) for any given g; € CV.

The philosophy of the Lopatinskii-Shapiro condition is to check whether the boundary condi-
tions B, (z, D) fit to the operator A(z, D).

Based on a solution formula for the solution v(y) of and some very technical kernel
estimates, one obtains an analogous result to Theorem [3.1.1] for the case of the half space with
constant coefficients. This in turn can be extended to coefficients having a small perturbation in
the principal parts. The localization procedure for the domain €2 then yields the following result.

Theorem 3.2.1 ([22]). Let Q@ C R™ open and bounded with boundary oQ € C*™ and let
p,q € (1,00). Assume that the ellipticity condition (E) for each x € Q and the Lopatinskii-Shapiro
condition (LS) for each x € 92 are satisfied.

Then there exists wy > 0 such that for each w > w, the problem

ou+wu+ A(z,Dyu=f in Q,
Bj(z,D)u=0 on 0%, je{l,...,m} (3.6)
u(0)=0 in Q,

has a unique solution
u € Wy (Ry; Ly(Q,CN)) N Ly(Ry; W™ (Q;CV))

if and only if f € L,(R4;L,(;CN)). In other words, for the operator A,u == A(z, D)u in Xq :=
Ly (Q; CN) with domain

X1 :={ue Wqu(Q;(CN) | Bj(z,D)u=0, z €09, je{l,...,m}}
there holds w + A; € MR, (Xo) for each w > wy.

Example. We consider the negative Laplacian A(x,D) = —A with either one of the boundary
conditions

e B(z, D) = ulaq (Dirichlet BC) or;
e B(z,D) = Vu|sq - vaq (Neumann BC);

where Q C R” is a bounded domain with 9 € C? and vaq is the outer unit normal field on 0.
We already know that A(D) is normally elliptic. Thus, it remains to verify the Lopatinskii-
Shapiro condition. To this end, we have to consider the parameter-dependend ODE

Xo(y) + (I€'77 = 0p)u(y) =0, (X&) € Xy xR, ¢ > 7/2,

with v(0) = g in case of Dirichlet BCs or 0,v(0) = —g in case of Neumann BCs. We note that the
general solution of the ODE is given by

v(y) = creWVITIEP eV AHEE >0 ¢ e C
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Since v(y) — 0 as y — oo, we necessarily have c; = 0 hence
v(y) = c1e VAT and 9u(y) = —ci /A + € 2eTIVATIEE,

The initial conditions imply ¢; = ¢ in case of a Dirichlet BC, or c; = g/+/A+|¢'| in case of a
Neumann BC and therefore, (LS) is fulfilled.



Chapter 4

Trace spaces and time-weights

4.1 Time-weighted spaces

As a generalization of the classical L,-spaces in Chapter [2, we consider now L,-spaces with
certain time-weights. For an arbitrary Banach space X and for 1 < p < oo, we define the weighted
L,-space L, ,(R4+; X) by

Lpu(Ry; X) i= {f € L1 joc(Ry; X) : [t 17 f(1)] € Lp(Ry; X))},

where p € (1/p,1]. Note that L, (R ; X) is the classical Bochner-Lebesgue space and evidently,
it holds that L,, 1 (R4 ; X) = L,(R4; X).
The weighted Sobolev-space WZ}’ «(Ry; X) is accordingly defined by

Wz},,u(R+; X) = {U € LP’H(R+;X) n Wll,loc(R+; X) SOAS LP7H(R+; X)}
The spaces L, ,(R; X) and W, ,(R,; X) are equipped with the norms

) . 1/p
e @ = ( [ “f<t>||§dt>

and /
P g P
Il ey = (Nl o) 190, y0)
respectively, which turn them into Banach spaces. Moreover, it can be shown that
WI}’M(R‘H X) — Wll,loc(E; X)u

for any 1 € (1/p,1], hence any function u € W, (R, ; X) has a well-defined trace u(0) in X.
In accordance with Definition we have the following

Definition 4.1.1. Let1 < p < oo and i € (1/p,1]. The operator A has the property of maximal
L, ,-regularity in X, if for each f € L, ,(Ry; Xo) there exists a unique solution
u € VVP1 "

of (2.1). If this is the case, we write for short A € MR, ,.(Xo) and
MRPJ(X()) =: MRP(X())

(Ry; Xo0) N Ly u(Ry; X)

ifu=1.
Corollary 4.1.2. Let A € MR, ,,(X,) for some p € (1,00). Then there exists a constant C' > 0
such that the unique solution u of (2.1) satisfies the estimate

||UH]ELH(R+) < CHf||Lp~u(R+%X0)’

where
lulle, @) = L, &y x0) + 1 AullL, &y x0) + lullz, &y X0)-

The following important theorem draws a connection between the classes MR,(X,) and
MR, 1(Xo).

17
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Theorem 4.1.3 (Priss & Simonett [21]). Forall1 < p < co and p € (1/p, 1] the following asser-
tions are equivalent:

1. Ae MR, . (X,);
2. Ae MR,(X,).

In particular, Theorem [4.1.3) asserts that the case of classical (unweighted) maximal L,-
regularity extrapolates to the weighted maximal L, ,-regularity setting without any additional as-
sumptions, as long as p € (1/p, 1].

4.2 Trace spaces

So far, we have only considered trivial initial values «(0) = 0. Let us consider the question, under
which assumptions on ug, there exists a unique solution

uc WI},M(R-*-; Xo) N Lp (R X1)

of the problem
u(t) + Au(t) = f(t), t>0, u(0)=wuo, (4.1)

provided A € MR,(Xo) and f € L, ,(R;+;Xo). Recall that A : X; — X, is a closed and
densely defined operator in X,. By Proposition —A generates an exponentially stable
analytic semigroup e~“* in X,. Suppose [t — Ae~4'x] € L, ,(R;; Xo). Then, by definition of the
weighted L,-spaces, there holds

o0
/ Htl_“Ae_Atng(Odt < 00.
0

This motivates the definition of intermediate spaces.

Definition 4.2.1 (Lunardi [18])). Let A be a sectorial and invertible operator with spectral angle
<7/2,a €(0,1)andp € [1,00). We define

< At de\ "
Da(o,p) :i=qz € Xo | [2]ap = (/ |t7 = Ae™ x||§(0t) <00 .
0

If D (e, p) is equipped with the norm ||z||a.p = ||z||x, + [Z]a,p, then D s(c, p) is @ Banach space.

There is a connection between the intermediate spaces D 4 («, p) and real interpolation spaces
(X(), Xl)gyp, = (0, 1)

Proposition 4.2.2 (Lunardi [18]). Let A be a sectorial invertible operator in X0 with spectral angle
< 7/2. Suppose that« € (0,1) andp € [1,00). Then

Da(e,p) = (X0, X1)ap
up to equivalent norms, where X, is the domain of A in Xy. Furthermore,
X1 = Da(B,p) = Da(a,p) = Xo, O<a<f<Ll
Fora=pu—1/p, n € (1/p,1], it follows that
z € (X0, X1)p1/pp <= 7 € Da(p—1/p,p) <= ||[t = ' *Ae™a]|| L, &, :x,) < 00
Hence, we have the following result

Theorem 4.2.3. Letl < p < oo, pp € (1/p,1] and A € MR,(Xy). Then there exists a unique
solution
ueW, ,(Ry; Xo) N Ly (Ry; X1) =: By (Ry)

of
u(t) + Au(t) = f(t), ¢>0, u(0)=uo, (4.2)

if and only if
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1. f € Lpu(Ry; Xo);
2. ug € (XO7X1);L—1/P7P'

Furthermore, there exists a constant C > 0 such that

lulles ) < € (110400 + 1000, 500,170 ) -

Remark 4.2.4. Theorem[4.2.3 asserts in particular, that the regularity of the initial value can be
reduced by decreasing the exponent . € (1/p, 1] of the time-weight. This in turn implies that the
number of compatibility conditions in the context of initial-boundary value problems for parabolic
partial differential equations may be reduced to a minimum.

Example. We consider the negative Laplacian Ayu := —Awu in Xo := L,(Q; CN) with domain
Xy o= {ue W22 CN) | ulogg =0 0on 00}

Then we already know that 3w > 0 : w + A, € MR,(X,), see Section The trace space

Xyu = (X0, X1)u—1/p,p is then computed to the result

~ J{ue BETPOQ;CN) [ulon =0 0n0Q}, if > 1/p+1/(2q),
R V7 Al (o i< 1/p+1/(29).
Therefore, for each (f,uo) € L, ,.(Ry; Ly(Q;CN)) x X, ,, there exists a unique solution
w€ Wy (R Ly(Q;,CV)) N Ly (Ry; WE(Q;CV))

of the parabolic initial-boundary-value problem

Outwu—Au=f in Q,
U|aQ =0 on 06,
w(0)=wuy in Q.

In particular, if 1/p < p < 1/p+1/(2q), there is NO compatibility condition for uy on 0S2.
One can even prove a more general result for the trace at ¢ = 0.

Lemma 4.2.5 ([22]). Let1 < p < oo and i € (1/p,1]. Then the trace operator
tr: By, (Ry) — (Xo, X1)p—1/pp  tru:=u(0)
is linear, surjective and bounded, hence
30> 0Vu € Eq (R )« [[trull(xo,x,),_1,,, < Cllullg, , &)

Moreover,
Ey ,(Ry) = BUC(Ry; (Xo, Xl)ufl/p,p)'

Let us point out another advantage of working in the setting of weighted L,-spaces. To see
the benefit, observe that for all 7 > 0, the estimate

T gy s ooy < Nulle, ,(roo) < Nlulle, )
for the solution « of (4.2) holds, hence
u € Wpl,loc((ov OO); XO) N Ll)»loc((ov OO)’ Xl) — C((07 OO); X"/J)v

This shows that the solution u(t) of (4.2) with initial value uo € X, , = (Xo, X1),—1/p,, regularizes
instantaneously for ¢t > 0 provided p < 1.
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Chapter 5

Quasilinear parabolic evolution
equations

5.1 Local well-posedness

Consider the quasilinear evolution equation
w(t) + A(u(t))u(t) = F(u(t)), t >0, u(0) = up, (5.1)

under the assumption that there exist two Banach spaces X, X, with dense embedding X; —
X, such that the nonlinear mappings (A4, F') satisfy

(A4, F) € C'7 (Vs B(X1, Xo) x Xo), (5.2)

where V,, C (Xo, X1)u—1/pp = X5, is Open and nonempty for some . € (1/p, 1]. The main result
of this section reads as follows.

Theorem 5.1.1 ([14]). Letp € (1,00), ug € V,, be given and suppose that (A, F') satisfy (5.2) for
some p € (1/p, 1]. Assume in addition that A(ug) € MR,(Xo). Then there existT = T(ug) > 0

and e = (ug) > 0, such that ng”’“(uo) C V., and such that the problem
a(t) + A(u(t))u(t) = F(u(t)), t >0, u(0)=uq,
has a unique solution

u(-yur) € WE,((0.7); X0) 0 Ly (0,7): X1) N C([0.T]: V),

on [0, T), for any initial value u, € Bsx”’“(uo). Furthermore there exists a constant ¢ = ¢(ug) > 0
such that for all uy, us € BX" (up) the estimate

Ju(,ur) = u(, u2)llg, ,0,1) < ellur —uz2lx,,
is valid.

Remark 5.1.2. A benefit of Theorem is that the local existence time T = T (uy) is locally
uniform. Moreover, Theorem shows that the space X, = (Xo,X1) is the natural
phase space for the semi-flow [ug — u(t, ug)] generated by (5.9).

Example. Let X, = L,(R"), X; = W (R") and hence

u—1/p,p

Xy = (X07X1)u*1/p»z> = 335_4/11(1@")'
In the sequel, we assume
4 n
-+ - <1,
p q
so that X, ,, — BC3(R™) provided
4
4p >3+ -+ o
P q

21



22 CHAPTER 5. QUASILINEAR PARABOLIC EVOLUTION EQUATIONS

We consider the surface diffusion flow (1.1) in the graph setting, rewritten as
h(t) + A(h(t)h(t) = F(h(t)), t>0, h(0)= he, (5.3)

where A : X, — B(X1, Xy) is given by

A(hyu:= Y (6" — B0xhOyh)(67 — B*0;h;h)0;0;00yu,

4,5,k 1=1

forh € X,,, ue X, and F : X,, — X is given by F(h) = G(Vh,V?h,V3h). Under the
above conditions on p, q, 1, it follows that (A, F') satisfy by the theory of Nemytskii operators.
Moreover, A(0)u = A%u is the bi-Laplacian in X, = L,(R™) which is normally elliptic by Section
El, hence w + A(0) € MR, (X,) for any w > 0. Replacing F(h) by F(h) := F(h) + wh, Theorem
5.1.1| yields a local-in-time solution

h(- ho) € Wy, ((0,T); Ly(R™)) N Ly, (0, T); Wi (R™)) 0 C([0, T; B~ */P(R™))
of (5.3) for any initial value hy € Byt~ */?(R™) with lhollx, . <e.
The next result provides information about the continuation of local solutions.
Corollary 5.1.3. Let the assumptions of Theorem be satisfied and assume that A(v) €
MR, (Xo) forall v € V,,. Then the solution u(t) of with initial value uo € V,, has a maximal

interval of existence J(ug) = [0, ¢ (ug)).
The mapping [up — t(uo)] : V,, — (0, ) is lower-semicontinuous.

5.2 Relative compactness and global existence

Let up € V), be given. Suppose that (A, F)) satisfy (5.2) and A(v) € MR,(X,) for all v € V,, and
for some u € (1/p,1), where J = [0,T] or J = R,. In the sequel we assume that the unique
solution of (5.1) satisfies v € BC([,t" (ug)); V,, N X,,) for some 7 € (0, ¢ (up)) and

dist(u(t),0V,) >n >0 (5.4)
for all t € J(ug). Suppose furthermore that
Xy =X, ,, pel/pl). (5.5)

It follows from the boundedness of u(t) in X, that the set {u(t)}1c(uy) C V). is relatively compact
in X, ,,, provided p € (1/p,1). By it holds that V := {u(t)}c s, is @ proper subset of
V... Applying Theorem we find for each v € V numbers g(v) > 0 and 6(v) > 0 such that
B (v) C V, and all solutions of (5.1) which start in B X, "( ) have the common interval of

e(v) e(v)
existence [0, §(v)]. Therefore the set

U Ba(v
%

is an open covering of V and by compactness of V there exist N e Nand v, € V, k=1,..., N,
such that

Cz

Sore(og) DV = {u(t)} Vieaue) 2 {ut) e (uo),

k=
where ¢, := e(vg), K = 1,..., N. To each of these balls corresponds an interval of existence
[0,0k], 0k, >0, k=1,.. N ConS|der the problem

v+ Ay = F(v), s >0, v(0)=u(t), (5.6)
where ¢ € J(uyp) is fixed and let § := min{dx, & = 1,...,N}. Since u(t) C U, t € J(up), the

solution of (5.6) exists at least on the interval [0, §]. By uniqueness it holds that v(s) = u(t + s) if
t+s € J(ug), t € J(up), s € [0, 4], hence sup J(up) = +0o0, i.€. the solution exists globally.
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By continuous dependence on the initial data, the solution operator G; : U — E ,(0,6),
which assigns to each initial value u; € U a unique solution v(-,u;) € E; ,(0,0), is continuous.
Furthermore

(8/2) vllg, 6/2.8) < lVllEs . (8/2,8) < IIVEs . 0,8), 1 € (1/p,1),

wherefore the mapping G, : E, ,,(0,9) — E1(6/2,9) with v — v is continuous. Finally

[v(0)llx, < IvllBuc(s/2.6):x,) < CO)IvE, 5/2.6),

hence the mapping G5 : E1(§/2,6) — X, with v — v(6) is continuous. This yields the continuity
of the composition G = G3 0 G20 G : U — X, whence G({u(t)}i>0) = {u(t + 9)}+>0 is relatively
compact in X, since the continuous image of a relatively compact set is relatively compact. Since
the solution has relatively compact range in X, it is an easy consequence that the w-limit set

w(ug) :={veV,NX,: It, Soost u(ty;ug) = vin X}

is nonempty, connected and compact. We summarize the preceding considerations in the follow-
ing

Theorem 5.2.1 ([14]). Lefp € (1,00) and suppose that A(v) € MR,(Xo) for allv € V,, and let
(5.2) as well as (6.5) hold for some 1 € (1/p,1). Assume furthermore that the solution u(t) of

(5.1) satisfies
u € BO([r,t" (up)); V., N X))

for some 7 € (0,t* (up)) and
dist(u(t),0V,) >n >0

for allt € J(up). Then the solution exists globally and for each 6 > 0, the orbit {u(t)}:>s is
relatively compact in X.,. If in addition vy € V,, N X, then {u(t)}:>0 is relatively compact in X, .
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