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Abstract

In two-phase flows typically a change of topology arises. This hap-
pens when two drops merge or when one bubble splits into two. In such
a case the concept of classical solutions to two-phase flow problems,
which describe the interface as a smooth hypersurface, breaks down.

This contribution discusses two possible approaches to deal with
this problem. First of all weak formulations are discussed which allow
for topology changes during the evolution. Such weak formulations
involve either varifold solutions, so called renormalized solutions or
viscosity solutions.

A second approach replaces the sharp interface by a diffuse in-
terfacial layer which leads to a phase field type representation of the
interface. This approach leads typically to quite smooth solutions even
when the topology changes.

This contribution introduces the solution concepts, discusses mod-
elling aspects, gives an account of the analytical results known and
states how one can recover the sharp interface problem as an asymp-
totic limit of the diffuse interface problem.

1 Introduction

In the flow of immiscible fluids with interfaces in general topological transi-
tions like droplet break-up and coalescence occur. In such situations classical
formulations based on an explicit parameterization break down as singular-
ities will appear at points where the topology changes. This contribution
discusses two approaches to deal with this issue. First of all weak formula-
tions of the two-phase flow problem for incompressible fluids are introduced
which all allow for singularities in the geometry. The known results for the
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Figure 1: Sharp versus diffuse interface models

different approaches are stated and the advantages and disadvantages of the
different formulations are discussed. Secondly diffuse interface methods pro-
vide an alternative way to allow for topological transitions. In these models
quantities which in traditional sharp interface models are localized to the
interfacial surface are now distributed over a diffuse interfacial region. For
example, quantities like the density and the viscosity are suitably averaged
in the diffuse interface and the surface tension, which is supported on the
interface in a sharp interface model, is now a distributed stress within the
diffuse interfacial layer, cf. Figure 1.

In the classical sharp interface approach for incompressible, viscous flows
the Navier—Stokes equations have to hold in the two phases, described by
disjoint open sets Q. (t), which are separated by a hypersurface I'(t), which
evolves in time. In this contribution we do not allow for slip at the interface
which leads to the fact that the tangential part of the fluid velocity does not
jump at the interface and we also assume that no phase transitions occur
which implies that also the normal part of the velocity does not jump at the
interface and that the interface is transported with the fluid velocity. We
hence obtain

vt = o,
V = v-u,

where v is the fluid velocity, [.|* denotes the jump across the interface I'(t),
v is a unit normal at the interface I'(t), chosen as interior normal with
respect to Q4 (), and V is the normal velocity.

In addition a tangential stress balance has to hold at the interface. In
cases where the interface itself does not produce stresses at the interface the
normal stresses have to balance, i.e., on the interface it has to hold

Tv-Tv=0 < [T]'v=0

where T+ and T~ are the values of the stress tensor on both sides of the
interface. For a viscous, incompressible fluid the simplest choice for T is



T = 2nDv — pld, where Dv = %(Vv + VvT). In the following mainly the
case with surface tension will be discussed, i.e., surface energy effects are
taken into account and in this case the stress balance at the interface is
given as the

[T|*v+ocHv =0

where o is the surface tension and H is the mean curvature, which is chosen
to be the sum of the principal curvatures with respect to v.

For weak formulations it is often convenient to reformulate the fact that
the interface is transported with the fluid velocity. Defining x as the char-
acteristic function of one of the phases we can formally rewrite the equation
V=v-vas

ox+v-Vx=0

which for a velocity field that has zero divergence is formally equivalent to
Orx +div(vy) =0.

Of course the last two equations need to be interpreted in a suitable weak
sense and different formulations will be discussed in Section 2. All these
formulations will allow for singularities of the interface and in particular
allow for topological transitions. The weak formulations mentioned above
are

e approaches based on the theory of viscosity solutions, see [46, 76, 78],

e methods which use the concept of renormalized solutions of transport
equations, see [62, 63].

These approaches work for the case without surface tension. If surface
tension effects are present also the mean curvature has to be interpreted in
a weak sense and this can be done in the context of varifolds, see [2, 14, 16,
22, 64, 79] and Section 2.2.

In diffuse interface models (which are also called phase field models) the
sharp interface is replaced by an interfacial layer of finite width and a smooth
order parameter is used to distinguish between the two bulk fluids and the
diffuse interface. The order parameter takes distinct constant values in each
of the bulk fluids and varies smoothly across the thin interfacial layer. In
the sharp interface case with the total energy is given as

/ B‘V’2d$ +oHTHT)
Q2
where 2 is the domain occupied by the fluid, p is the mass density, I' is the

interface and H? ! is the (d—1)-dimensional surface measure. The first term
is the kinetic energy and the second term accounts for interfacial energy. It



is well-known based on work of van der Waals, Korteweg, Cahn and Hilliard
that interfacial energy and also related capillary forces can be modeled with
the help of density variables which vary continuously across the interface.
In these approaches the term oH%!(T') is replaced by a multiple of

Fie)i= [ (517 + 0t0)) do (1)

where € > 0 is a small parameter, ¢ is an order parameter taking the
values 1 in the two phases and 1 is a double well potential which simplest
form is 1(¢) = (1 — %)% One can now try to model the physics at the
interface with the help of ¢ and would obtain a new problem which should
approximate the above sharp interface problem.

As new energy one obtains

1
/ M]v\de + &/ <fyvcp12 + —w@)) dr, 6>0,
Q 2 Q 2 19

and the transport equation becomes
Op+v-Vo=mAp

with
L OF
w=aog E
where ‘;—f is the first variation of F.
One obtains the law ¥V = v - v from the free boundary problem in the
limit € — 0 by choosing m. ~ ¢, see Section 4. It will turn out, see Section
3, that the term

oHv dH%!

contributing to the stress balance at the interface will become a multiple of

Ve

which is a term which is distributed over the diffuse interfacial layer. In the
simplest case the momentum balance in the Navier—Stokes equation can be
written as

. . Vo  Vp
p(?v—l—pv-Vv—l—dlszaev-<V¢2<Id——®—>>
v Fplv- V) Vel (1901 © Wy

where the term Id —% ® \%s%l corresponds to Id —v ® v which is a multiple

of the classical inter%acial stress tensor which is just the projection onto the
tangent space, cf. weak formulation (2.16) below.



2 Weak Formulations

In this section we discuss different notions of weak/generalized solutions
of the two-phase flow of two incompressible, immiscible Newtonian fluids
inside a bounded domain Q C R%, d = 2,3. The fluids fill disjoint domains
Q4 (t) and Q_(t), t > 0, and the interface between both fluids is denoted by
I'(t) = 004(t). We assume that I'(¢) is compactly contained in €2, which
means that we exclude flows, where a contact angle problem occurs. Hence
Q=Q,()UQ_(t) UT(t). The flow is described using the velocity v: Q x
(0,00) — R? and the pressure p: Q x (0,00) — R in both fluids in Eulerian
coordinates. We consider the cases with and without surface tension at the
interface. Precise assumptions are made below. Under suitable smoothness
assumptions, the flow is obtained as solution of the system

PV + prv - Vv —niAv+Vp =0 in Q4(t),t >0, (2.1)
divv =0 in Qy(t),t>0, (2.2)

V]t =0 on I'(t),t >0, (2.3)

—2nDv]Tv + [p|fv =ocHv onT(t),t >0, (2.4)

V=v-v onl(t),t>0, (2.5)

v=20 on 90, t > 0, (2.6)

V|i—o = Vo in Q, (2.7)

together with 4(0) = Q. Here V and H denote the normal velocity and
mean curvature of I'(¢), resp., taken with respect to the interior normal v of
004 (t) =T'(t), o > 0 is the surface tension constant (¢ = 0 means that no
surface tension is present), px > 0 and 1y > 0 are the (constant) densities
and viscosities of the fluids, respectively. We note that (2.1)-(2.2) describe
the conservation of linear momentum and mass for both fluids. Furthermore,
(2.3) is a no-slip boundary condition at I'(¢), implying continuity of v across
I, (2.4) is the balance of forces at the boundary, (2.5) is the kinematic
condition that the interface is transported with the flow of the mass particles,
and (2.6) is the no-slip condition at the boundary of 2. Here exterior forces
are neglected for simplicity.

There are many results on well-posedness locally in time or global exis-
tence close to equilibrium states for quite regular solutions of this two-phase
flow and similar free boundary value problems for viscous incompressible
fluids. We refer to Solonnikov [73, 75], Beale [25, 26], Tani and Tanaka [77],
Shibata and Shimizu [70] or Shibata and Shimizu [71] and the references
given there. These approaches are a priori limited to flows, in which the
interface does not develop singularities and the domain filled by the fluid
does not change its topology.

In the following we discuss different notions of generalized solutions,
which allow for singularities of the interface and which exist globally in time



for general initial data. A similar and more detailed discussion can be found
in [2]. To this end, we first need a suitable weak formulation of the system
above. By multiplication of (2.1) with a divergence free vector field ¢ and
integration by parts using in particular the jump relation (2.5), one obtains

- / [ p0ov-apdadt = [ pxovo- el da
/ / (v-Vv) cpda:dt+/ /277 )Dv : Dy dx dt

= U/O (Hpuy, p(t)) dt (2.8)

for all ¢ € C(Q2 x [0,00))* with dive = 0, where Dv = 3(Vv + Vv7’),
X(@,t) = X, ¢ (v) forall z € Q, £ >0, xo = Xag» XA denotes the charac-

teristic function of a set A, p(1) = py, p(0) = p—, n(1) = ny, n(0) = n_,
and

(Hr o) = | H0vla) ol nai @, (29

Here H~! denotes the (d — 1)-dimensional Hausdorff measure. Now, if v
and I' are sufficiently smooth, one obtains by choosing ¢ = v the energy
inequality

/p(x(x @ D - g L(D(T)) (2.10)

/ /277 \Dvlzdmdt</ PXli=0)vol” 0)| ol* dx + oH(Ty)

for all T'> 0 (even with equality), where I'g = OQSF. Here we have used

%%d’l(l‘(t)) = —/Ft HY dH = —(Hpg, v(t)) (2.11)

due to (2.5), cf. [47, Equation 10.12]. More details for a more general model
can be found in [12, Section 5.
Since 1+, p+ > 0, (2.10) yields the a priori estimate

v e L®(0,00; L2(Q)) and Dv € L*(€ x (0, 00))%*¢ (2.12)

for any sufficiently smooth solution of (2.1)-(2.7). Here LP(M), 1 < p < o0,
denotes the usual Lebesgue space, L} (M) its local and LP(M; X) its vector-

valued analog for a given Banach space X. Moreover, if A C R, then
LP(M; A) consists of all f € LP(M ) with f(z) € A for a.e. x € M. Finally,

Q
LE(Q) = {p € C§°(Q)? dlvnp =0} N is the set of all weakly divergence
free vector fields f € LP(Q)%.




As will be shown below, if o > 0, then (2.10) yields an a priori bound of
X € L(0,00; BV(92)),

where BV (Q) = {f € L'(Q) : Vf € M(Q)} denotes the space of functions
with bounded variation, cf., e.g., [23, 43] and M () = Cy(R2)’ is the space of
finite Radon measures. In the case without surface tension, i.e., 0 = 0, we
only obtain that y € L*°(Q) is a priori bounded by one. This motivates to
look for weak solutions (v, x) lying in the function spaces above, satisfying
(2.10) with a suitable substitute of (2.9), such that (v, x) solve (2.8) as well
as the transport equation

Ox+v-Vx=0 in Q, (2.13)
Xli=0=x0 inQ (2.14)

for xo = Xagf in a suitable weak sense. Note that (2.13) is a weak formulation
of (2.5), cf. [62, Lemma 1.2].

2.1 Two-Phase Flow without Surface Tension

Throughout this subsection we assume that o = 0, i.e., no surface tension is
present. Then the two-phase flow consists of a coupled system of the Navier—
Stokes equation with variable viscosities and a transport equation for the
characteristic function x(t) = xq, ). Then this is a special case of the so-
called density-dependent Navier—-Stokes equation, cf., e.g., Desjardins [39]
and references given there. For given x it is not difficult to construct a
weak solution of the Navier-Stokes equation (2.8) with the aid of a suitable
approximation scheme (e.g., Galerkin approximation). New difficulties arise
due to the mean curvature term (Hp(t), .), which depends non-linearly on
the normal of I'(¢).

For the coupled system (2.8) together with (2.13)-(2.14) there are two
different approaches. The essential difference is in which sense the trans-
port equation is solved. One approach is due to Giga and Takahashi [46],
who solved (2.13)-(2.14) in the sense of , where the char-
acteristic functions (x(t), xo) are replaced by continuous level-set functions

(1(t), 1) such that
Oy = {z € Q:o(z) 2 0}.

For simplicity they consider periodic boundary conditions, i.e., Q = T¢.
Since v is in general not Lipschitz continuous, the existence of a viscosity
solution of (2.13)-(2.14) with (x, xo) replaced by continuous level-set func-
tions (1, 1)) is not known. There are only a least super-solution ™ (t) and
a largest sub-solution 1~ (¢) of the transport equation. Then one defines

Qi(t) ={zeQ: vE(x,t) = 0}.



With this definition 4 (¢) are disjoint open sets but the “boundary” I'(t) =
T\ (Q4(t) U Q_(¢)) might have interior points and might have positive
Lebesgue’s measure. Giga and Takahashi call this possible effect “boundary
fattening”. With this definition they construct weak solutions of a two-phase
Stokes flow, i.e., the convective term v - Vv is neglected in (2.8), assuming
that the viscosity difference |y — n—| is sufficiently small and p; = p_; cf.
[46] for details. This approach was adapted to the case of a Navier—Stokes
two-phase flow by Takahashi [76] under similar assumptions and to a one-
phase flow for an ideal, irrotational and incompressible fluid by Wagner [78].

The other approach was established by Nouri and Poupaud [62] and
Nouri et. al. [63] and is based on the results of DiPerna and Lions [42] on
renormalized solutions of the transport equation (2.13)-(2.14) for a velocity
field v with bounded divergence. Here x € L*>(Q) is called a of (2.13)-
(2.14) if for all 3 € CY(R) which vanish near 0 the function S8(x) solves
(2.13)-(2.14) with initial values B(xo), cf. [42] for details. In particular, this
implies that x(¢,z) € {xo(z): x € Q} for almost all £ > 0,z € . Due to
[42, Theorem I1.3], for every xo € L>°(R?) there is a unique renormalized
solution of (2.13)-(2.14) under general conditions on v, which are weaker
than the condition (2.12). Based on this notion the following result for the
two-phase flow without surface tension holds true:

Theorem 2.1. For every vo € L2(Q), xo € L¥(Q;{0,1}) there are v €
L>(0, 005 L2(2)) N L2(0, 00; HE (2)?) and x € L>=(Q;{0,1}) that are a weak
solution of the two-phase flow (2.1)-(2.7) without surface tension (o =0) in
the sense that (2.8) holds true for all ¢ € Cioy (€2 x [0,00))¢ with dive = 0,
X is the unique renormalized solution of the transport equation of (2.13)-
(2.14), and (2.10) holds for almost all t > 0 with o = 0.

The result was proved by Nouri and Poupaud [62] for the case of a
bounded domain  with Lipschitz boundary. The authors even considered
the case of a multi-phase flow with more then two components. The re-
sult was extended to generalized Newtonian fluids of power law type for an
power-law exponent g > % + 1 in [3].

In order to prove the latter theorem, a key step is to show strong
compactness of the sequence xi in LP(Qr), 1 < p < oo, where Qr =
Q x (0,7), T > 0, and (vg, xx) is a suitably constructed approximation

sequence. This is done by using the fact that

k) = [ xulti)de = [ ala) da

if xj are solutions of (2.13)-(2.14) with v replaced by vj and divvy = 0.
Using that

Xk —foso0 X in L¥(Q),
Vv = ee VV in L2(Q)



for a suitable subsequence one shows that y solves (2.13)-(2.14), cf. [3,
Lemma 5.1]. Here —* denotes the weak-* convergence. Therefore

IOl 0 = [ xta)de = [ xola)do = IOl

This implies strong convergence Xr —k—oo X in LP(Qr), 1 < p < oo, for
every T > 0. Based on this, one can pass to the limit in all terms in (2.8).

Remark 2.2. Using the solution of Theorem 2.1, we can define the sets
Qi) ={zeQ:x(t) =1} and Q_(t) ={z € Q: x(t) = 0}. Then we know
that |Q4 ()] = |QF| and Q\ (4 (£)UQ_(t)) has Lebesque measure zero. But,
since only x € L>®(Q) is known, it is not clear whether Q4 (t) have interior
points. In particular, it is not excluded that Q4 (t) = Q and int Q4 (t) = 0.
Therefore it is not immediately clear what the “interface” between both fluids
should be. If one naively defines the interface as I'(t) = 0Q4(t), then I'(t)
can have positive Lebesgue measure as in the result by Giga and Takahasi.

It seems that by neglecting surface tension in the two phase flow, one
looses a “good control” of the interface between both fluids. At least the
precise reqularity of the interface seems to be unknown in general. Some
results in this direction can be found in the contribution by Danchin and
Mucha [37], where ezistence and uniqueness of more reqular solutions for the
inhomogeneous Navier—Stokes equation with discontinuous initial density is
shown under several smallness assumptions

2.2 Case with Surface Tension:

As discussed in the previous section, a deficit of the two-phase flow without
surface tension is that there is no good information on the properties of the
interface. As mentioned in the introduction, if ¢ > 0, the energy equality
(2.10) for sufficiently smooth solutions provides an a priori estimate of the
interface: .
sup Hr(0) < (olwlE+# ). @19
0<t<oo g
This implies an a priori bound of x in the space BV (2) as follows: Note
that, if I'(¢) = 994 (t) is sufficiently smooth, Gauss’ theorem yields

—(Tx(t), ) = /Q , dvel)dr= - /F v e @)

for all ¢ € C$(Q)¢. Hence the distributional gradient Vx(t) is a finite
Radon measure and

VX)) = HHT(D))-



Thus, if o > 0, then x(t) € BV(R) for all ¢ > 0 and (2.15) gives an a priori
estimate of

X € L*(0,00; BV (Q)).
Conversely, if x(t) = xg € BV(Q) for some set E = E(t), then F is said
to be of finite perimeter and the following characterisation holds, cf. [43,
Section 5.7, Theorem 2]:

xt)0h = [ ve-pla)anta),

where 0* F is the reduced boundary of E, cf. [43, Definition 5.7], vp = %,
and 0*F is countably (d — 1)-rectifiable in the sense that

o0
OE=JK.UN,
k=1
where K}, are compact subsets of C'-hypersurfaces S, k € N, H~H(N) = 0,
and vg|g, is normal to S;. Moreover, by [43, Section 5.8, Lemma 1] 0, F C

O*E and H¥1(0*E \ 0,F), where 0,F is the measure theoretic boundary of

E consisting of all z € Q such that

LYB(z,r)NE)
rd

Ed(B(x,dr) \ E)

>0 and limsup
r—0

lim sup
r—0

> 0,

where £¢ is the Lebesgue measure on R%.
Based on these properties, one can define the mean curvature functional
of a set of finite perimeter F as

(Hop.9) = () == | (PR aHY o e G (210
where Pr = I — vg(z) ® vg(z). Note that tr(PrVe) corresponds to the
divergence of ¢ along the “surface” 9*F and that by integration by parts
(2.16) coincides with the usual definition if 0*E is a C%-surface, cf., e.g.,
Giusti [47, Chapter 10].

In the following we will assume that p, = p_ = 1 and Q = R?. Motivated
by the considerations above, we define weak solutions of the two-phase flow
in the case of surface tension as follows:

Definition 2.3. (Weak Solutions)

Let 0 > 0. Then
v € L>(0, 00; L2 (R?)) N L*(0, 00; Hy (RY)?),
X € L.(0,00; BV (R%{0,1})),

wx

are called a weak solution of the two-phase flow for initial data vy € L2(R?),
X0 = X for a bounded domain Qg cc RY of finite perimeter if the follow-
ing conditions are satisfied:

10



(1) (2.8) holds for all ¢ € Co (R% x [0,00))% with dive = 0, where Hp
is replaced by H, ) defined as in (2.16).

(1) x is a the renormalized solution of (2.13)-(2.14).

(13i) The energy inequality

1
SIVOIE + o[V X(#)l|r

1
+ [ I dte, ) < ol + ol Vol 217
t

holds for almost all t € (0,00).

Unfortunately, the existence of weak solutions as defined above is open.
The reason are possible oscillation and concentration effects related to the
interface, which cannot be excluded so far. This prevents us from passing to
the limit in the mean curvature functional (2.16) during an approximation
procedure used to construct weak solutions.

In order to demonstrate these effects, let E} be a sequence of sets of
finite perimeter such that x; = yg, is bounded in BV (f2) and let Q = R%.
Then after passing to a suitable subsequence, we can assume that

Xk —7k—oo X in Llloc(Rd)a
vXk 4lt:%oo VX in M(Rd)7
IVXE| =y b 0 M(RY).

But then the question arises how |Vx| and p are related and whether

lim (Hy., %) = {Hy. 1) (2.18)

k—o00

holds. The continuity result due Reshetnyak, cf. [23, Theorem 2.39], gives a
sufficient condition for (2.18): If

Jim [V (RY) = [Vx|(R), (2.19)

then (2.18) holds. But in general (2.19) will not hold for example because
of the following oscillation/concentration effects at the reduced boundary of

E:
(1) Several parts of the boundary 0* E), might meet.
(79) Oscillations of the boundary might reduce the area in the limit.

(747) There might be an “infinitesimal emulsion”.

11
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Figure 2: Some possible oscillation/concentration effect
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These effects are sketched in Figure 2.

It is an open problem how to exclude such kind of oscillation /concentration
effects. — This might even not be possible in general since the model might
not describe the behavior of both fluids appropriately when, e.g., a lot of
small scale drops are forming. — One way out of this problem is to define
so-called wvarifold solution of a two-phase flow, which was first done by Plot-
nikov [64] in the case of d = 2 for shear-thickening non-Newtonian fluids.
Here a general (oriented) varifold V on a domain €2 is simply a non-negative
measure in M(Q x S71), where S¥~! denotes the unit sphere in R%. By
disintegration, cf. [23, Theorem 2.28], a varifold V' can be decomposed in
a non-negative measure |V| € M(Q2) and a family of probability measures

Ve € M(S4Y), x € Q, such that

(V) = /Q [ W@ V() dVI@) o all v e Cp(@ x 5.

Morevoer, |V| corresponds to the measure of the “area of the interface” and
V, defines a probability for the “normal at the interface” for |V|-a.e. z.
The reduced boundary 0*E of a set of finite perimeter induces naturally
a varifold by setting |V| = |[Vxg| and V, = 6,,(,) for x € 9*F, where 4,
denotes the Dirac measure at v € S% 1. Hence the associated varifold Vg is

(Ve, ) = /Q¢($,1/E(CC))d|V|(CC) for all ¢ € Cp(Q x S471).

Now let Ej be a sequence of sets of finite perimeter as above. Then by the
weak-* compactness of M(Q x S¥71), there is a limit varifold V € M(Q x
S%1) such that

(V,9) = lim (Vi,,0) o all ¢ € Co(2 sé=1y

for a suitable subsequence. Hence using (s, z) = tr((I — s ® s)Ve(z)) for
@ € CH(Q)? we conclude that

k—o00

lim (Hy, ,v) = /std—l tr((I —s®@s)Ve(z))dV(s,z) =: —(6V, ) (2.20)

for all p € CL(Q)?4. Here §V € C}(2;RY)’ defined as above is called the first
variation of the generalized varifold V. Moreover,

—(Vxe,p) = - lim (Vxg,,¢)
—00
= lim [ vg(z)- @d|Vg|(z) = / s-p(x)dV(x,s).
k—oo Jq OxSd—1

Hence V' can be used to describe the limit of Hy, as well as the limit of
VX E-
Now we define a varifold solution of the two-phase flow as follows:

13



Definition 2.4. (Varifold solutions)
Let 0 > 0. Then

v € L(0,00; L2 (R")) N L*(0, o0; HY (R)?),
X € L®(0,00; BV (R N L®(R? x (0,00); {0,1})),
V e L2(0,00; M(Q x ST1))

are called o varifold solution of the two-phase flow for initial data vy €
L2(RY) and xo = Xoi for a bounded domain Qf CC R? of finite perimeter
if the following conditions are satisfied:

(i) (2.8) holds for all ¢ € CE’S)(Rd x [0,00))¢ with dive = 0, where
(Hrp), @) is replaced by
Ve = [ - ses)Tel)dVsa), ¢ e )
RdxSd—1
(19) The modified energy inequality
1
SV + allV @)l mxse-)
2
t
1
+ [ ] 2000IDvE dear < Sl + o1Vl (220

holds for almost all t € (0,00).
(7i1) The compatibility condition
—(Vx(t),p) = / s-p(x)dV(x,s), @eCy()?  (2.22)
Qxsd-t

holds for almost all t > 0.

Here L22(0,7T; X') denotes the space of weakly-+* measurable essentially
bounded functions f: (0,7) — X'.

Remark 2.5. (i) Let (V,(),|V(t)]), = € R%, denote the disintegration of
V(t) € M(R? x S¥1Y as described above. Then (2.22) implies that
IVx()|(A) < |V (¢)|(A) for all open sets A and almost all t € (0,00).
Hence |Vx(t)| is absolutely continuous with respect to |V (t)| and

[ 1@dvxl= [ r@advil. 1 ec®.
for a |V (t)|-measurable function oz: R? — [0,00) with |ay(x)] < 1
almost everywhere. In particular, this implies supp Vx; C supp V (¢)

and ||[Vx@®)|lm < V() |lm for almost all t € (0,00). Hence every
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varifold solution satisfies the energy inequality (2.17) for almost every
t>0.

Moreover, if E(t) = {x € R? : x(x,t) = 1}, t > 0, then (2.22) yields
the relation

/Sd—1 Sde(t)(s) _ {Oét(CC)VE(t)(:C) if v € 0*E,

0 else

for |V (t)|-almost every x € R? and almost every t > 0. — In other
words, the expectation of V,(t) is proportional to the normal v on the
interface described by Vx and zero away from it.

(#9) In general, it is an open problem whether V (t) is a so-called countably
(d — 1)-rectifiable varifold, which implies that up to orientation V,(t)
is a Dirac measure for |V (t)|-almost every x. Then V (t) can naturally
be identified with a countably (d — 1)-rectifiable set — a “surface” —
equipped with a density 0, > 0. So far only a sufficient condition for
the rectifiability of V (t) in terms of the first variation §V (t) is known,
cf. [2, Section 4.

(7i1) As noted above, the existence of weak solutions to the two-phase flow
with surface tension is open. But a gemeral property of varifold solu-
tions is that a varifold solution is a weak solution if the energy equality
holds, i.e., (2.17) holds with equality for almost every t > 0. See [3,
Proposition 1.5] for details.

Theorem 2.6. (Existence of Varifold Solutions)
Let 0 > 0, d = 2,3. Then for every vo € L2(R?) and xo = Xagf where

QE]F cC R is a bounded C'-domain there is a varifolds solution of the two-
phase flow with surface tension o > 0 in the sense of Definition 2.4.

We refer to [3, Theorem 1.6] for further properties, which can be shown
for the constructed varifold.

Further and related results: The result was extend by Yeressian [80],
where the existence of axisymmetric varifold solutions in the case of axisym-
metric initial values in R3 was shown. In the case d = 2 and p4 =y = 1
existence of varifold solutions was also obtained by Ambrose et al. [22].
Their definitions and statements are slightly different; but the result is es-
sentially the same. Moreover, they discuss possible defects in the surface
tension functional. Earlier generalized solutions for the two-phase flow with
surface tension were also constructed by Salvi [67]. But in the latter work
the meaning of the mean curvature functional is not specified and can be
chosen arbitrarily within in a certain function space. Moreover, we note
that a Bernoulli free boundary problem with surface tension was discussed
by Wagner [79]. Finally, we note that existence of varifold solutions were
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also obtained in [14] by a sharp interface limit of a diffuse interface model,
which will be discussed in the next section. But the definition of varifold
solution and their properties are slightly different. We note that the limit
system obtained in this sharp interface limit depends on the scaling of a
mobility coefficient in the diffuse interface model. In one case the classical
model (2.1)-(2.7) is obtained in another case the system studied in the next
section is obtained.

2.3 Existence of Weak Solutions for a

An alternative model to the classical two-phase flow model (2.1)-(2.7) is the
following Navier—Stokes/Mullins—Sekerka system:

POV + piv-Vv —niAv+Vp =0 in Q4 (1), (2.23)
divv=0 in Q4 (1), (2.24)

Ap=0 in Q4 (t), (2.25)

plre =oH on I'(¢), (2.26)

vt =0 on I'(t), (2.27)

—2nDv|tv + [p|t =cHv on I'(t), (2.28)
v-v—V=mlv -Vu]" onT(t), (2.29)

v=0 on 052, (2.30)

voq - Viaa =0 on 09, (2.31)

V=0 = vo in Q (2.32)

for t > 0 together with Q,(0) = QdF. The system arises naturally as a
sharp interface limit of the diffuse interface models discussed in Section 3.1
if the mobility coefficient m does not vanish in the limit. If m = 0 in the
system above, then the equations for p decouple from the rest of the system
and can be deleted from the system. Then the system coincides with the
classical model (2.1)-(2.7). Here u: Q x (0,00) — R is a new quantity in
the system and plays the role of a chemical potential associated to a free
energy, which is 0H? ! restricted to the interface I'(¢). Moreover, m > 0is a
mobility coefficient, which influences the strength of a (non-local) diffusion
in the system. We note that (2.25), (2.26), (2.29), and (2.31) for v = 0
is the so-called Mullins—Sekerka system (or two-phase Hele-Shaw system),
which arises as sharp interface limit of the Cahn-Hilliard equation, which
models phase separation in a two-component mixture. It is well-known that
solutions of this system show the so-called Ostwald ripening effect in the
long-time dynamics, which is the diffusion of mass from smaller droplets to
larger droplets until finally one large droplet remains. This effect is also
present in the full system (2.23)-(2.32).

16



In the following we will discuss a result on existence of weak solutions
for the Navier—Stokes/Mullins—Sekerka system above. To this end we note
that sufficiently smooth solutions of (2.1)-(2.7) satisfy the following energy
dissipation identity,

d1

dt2

= —/ 2n(x)|Dv|* da — m/ |V u|? d, (2.33)
Q Q

where 7(0) = n— and n(1) = ny as before. This identity can be verified
by multiplying (2.23) and (2.25) with v, u, resp., integrating and using
the boundary and interface conditions (2.25)-(2.31). This energy equality
motivates the choice of solution spaces in our weak formulation and shows
that the regularization introduced for m > 0 yields an additional dissipation
term. In particular, we expect u(-,t) € H'() for almost all + € R, and
formally, using Sobolev inequality and (2.6), that H(-,t) € L*(T(t)) for
d < 3. This gives some indication of extra regularity properties of the
interface in the model with m > 0 and is in big contrast to the classical
model (the case m = 0), where no control of the mean curvature of I'(t) can
be derived from the energy identity in a straight forward manner.

The following result on existence of weak solutions of (2.23)-(2.32) was
proved in [16].
Theorem 2.7. Let d = 2,3, T > 0, let Q C R? be a bounded domain with
smooth boundary or let Q = T?, let n(0) := n_, n(1) := ny and o,m > 0.
Then for any vo € L2(Q), xo € BV(Q;{0,1}) there are

v € L(0,T; L2(2)) N L*(0,T; Hy ()%),

x € Ly (0,T; BV(;:{0,1})),

pe L*(0,T; HY(),
that satisfy (2.1)-(2.7) in the following sense: For almost all t € (0,T)
the phase interface 0*{x(-,t) = 1} has a generalized mean curvature vector
H(t) € L*(d|Vx(t))? with s =4 ifd =3 and 1 < s < 0o arbitrary if d = 2,
such that

T
/0 /Q(—v “Op+ (v V)V +n(x)Dv: D) dudt

/Q VP de 4 0 A (D)

T
- [ elma-vode=o [ [ B e dvx@ld (230
Q 0 Q
holds for all ¢ € C>°([0,T}; C§%,(Q)) with @pli=7 = 0,

T
/ / X (0w + div(yv)) dx dt + / Xo(2)y(0, z) dx
0 Q Q

:m/OT/Qw-wdxdt (2.35)
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holds for all ¢ € C*°([0,T] x Q) with |7 = 0 and

VX('7t)
‘VX‘(Vt)

holds for almost all0 <t < T.

oH(t,.) = p(t,.) HI a.e. on 0" {x(t,.) =1} (2.36)

Here the concept of generalized mean curvature for non-smooth phase
interfaces is taken from [65] and can also be found in [16, Definition 4.4].

Remark 2.8. (2.34) is the weak formulation of (2.23), (2.28), and (2.32).
It is obtained from testing (2.23) with ¢ in Qi (t), integrating over Q4 (t) U
Q_(t) and using Gauss’ theorem, (2.28), and (2.32). Moreover, (2.35) is a
weak formulation of (2.25), (2.29), (2.31), and Q+(0) = Qd. The conditions
(2.24), (2.27) and (2.30) are included in the choice of the function spaces,
namely v(t) € H(Q) for almost every t € (0,T), and (2.26) is formulated
in (2.36).

The proof is essentially based on a compactness result of Schétzle [68]
for (d—1)-dimensional hypersurfaces with mean curvature given as the trace
of an ambient Sobolev function in Wpl(Rd) for p > %l. For the application of
this result the bound of Vi € L2(0,T; L?(Q))? obtained from (2.33) is used.
Such a control of the curvature of the interface is missing for the classical
model (2.1)-(2.7), which is one of the main reasons that existence of weak
solutions to the latter system is open in general if o > 0.

3

In diffuse interface models a partial mixing of the two incompressible fluids
in a thin interfacial region is assumed. In the following two fluids with mass
densities p_ and py are considered. The mass balance equation for the two
fluids in local form is given by

Orp+ + diVji =0

where ji are the mass fluxes of the fluids + and —. Introducing the velocities
vy = Ji/ps+ we can rewrite the mass balance as

Oep+ + diV(in:t) =0. (3.1)

The further modeling now crucially depends on the way how an averaged
velocity v is defined. Precise choices of v will be given below.
The mass flux of the two fluids relative to the velocity v is denoted by

Je=Jp—pav
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and the mass balances are rewritten as
Op+ + diV(p:tV) +divJy =0 (3.2)

where J4 are diffusive flow rates. Defining the total mass

p=pt++p-

one obtains

Op +div(pv) +div(J4 +J_) =0. (3.3)

One observes that the classical continuity equation does not hold if div(J4 +

J)40.

Considering a conservation of linear momentum with respect to the above
velocity we obtain

9y (pv) + div(pv ® v) = div T (3.4)

where T is the stress tensor which has to be specified by constitutive as-
sumptions. It turns out, see [20], that T in general is not an objective tensor.
Rewriting (3.4) with the help of the mass conservation (3.3) one gets with
J=J1+Js

p(Ov+(v-V)v) = divT+ (div])-v
= div(T+v®J)—(J-V)v.

The system now allows for an objective tensor

T=T+v®J (3.5)

and we obtain N
POV + ((pv +J)- V) v=divT (3.6)
which is the classical formulation if J = 0, which is equivalent to Jy = —J_.

The work [12] and [20] give more details concerning the objectivity of the
mass-momentum system with J # 0.

It remains to specify the averaged velocity v with the help of the indi-
vidual velocities v_ and v. Two choices are used in the literature.

The volume averaged velocity

V=U_V_ +Upvy

where u_ and u, are the volume fractions of the two fluids and the mass
averaged-velocity

In the following we discuss the two modeling variants which result from
different choices of the averaged velocity v.
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3.1 Models Based on the Volume Averaged Velocity

In the interfacial zone the total volume occupied by each fluid is no longer
conserved. Insisting on a conservation of volume during the mixing process
would lead to the necessity that when fluid 4+ flows out of a region an amount
of fluid — of the same volume would have to enter this region. Defining the
specific (constant) density of the unmixed fluid by g+ we introduce the
volume fraction

Uy = pi/px (3.7)
and the above discussion on the volume conservation leads to

uy +ug =1 (3.8)

which states that the excess volume is zero. Multiplying (3.1) with 1/p4,
using u1 + ug = 1 and the definition of v as the volume averaged velocity

gives
0 = & (’f—+ + ff_—> + div (’f—+v+ n ?—‘v> (3.9)
P+ P- P+ p—
= O(u_ +ug)+divv (3.10)
= divv. (3.11)

From (3.2) one derives
Orut + div(uiv) + div j:l: =0

where we set ji = Ji/p+. Taking the difference of these two equations
gives for ¢ = uy — u_ the equation

Orp + div(pv) +divJ, =0 (3.12)

where
Jo=Jd4/py —J-/p-.
We also note that (3.7) and (3.8) together with p = py + p_ gives

1+ o 1—9p
p=p(p) = pr—g— T P-—5

i.e., p is an affine linear function of . Using p'(¢) = (p+ — p—)/2 we obtain
from (3.12) N
Op + div(pv) +div =0 (3.13)

where the relation (py — p_)J, = 2J holds.
Motivated by the discussion in the introduction we introduce a total
energy density

e(v,p, Vi) = gMz + f(p, Vo)
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as the sum of a kinetic and a free energy. As an example one can take
fle, Vo) =6 (5|Vel* + %1#(@)), cf. (1.1). In an isothermal situation the
appropriate formulation of the second law of thermodynamics is given as
the following dissipation inequality, see, e.g., [49], as follows

d

— e(v,p, Vo)dx + / Jo vdH" 1 <0

AV (t)

where V() is a test volume which is transported with the flow, described
by v, and J. is a general energy flux which will be specified later. Using a
transport theorem and the fact that the test volume is arbitrary we obtain
the local form, see [13], [56],

—D := Oe + div(ve) + divJ. <0. (3.14)

One can now use the Lagrange multiplier method of Liu and Miiller [56,
61] to derive constitutive relations which guarantee that the second law is
fulfilled. Every fields (p,v) which fulfill the dissipation inequality (3.14),
(3.9) and (3.12) also fulfill

~D=0e+v -Vo—pu(p+v-Ve+divl,) <0 (3.15)

where p is a Lagrange multiplier which will be specified later.
Using (3.6), (3.13) we obtain

P2 s (P2 _ V2 o5 : 5
Oy §|v| + div §|V| v) = —levJ—l—(dlvT—(J-V)v)-v
1 o~
= div <—§|V|2J + TTV> —T:Vv.
Denoting by f, and f v, the partial derivatives with respect to ¢ and Vi
we obtain

Dif = foDip+ fve - DiVo

where
Diu=0wu+v —Vu

is the material derivative. Using
DV = VDo — (Vv)IVy (3.16)
yields that (3.15) gives after some computations

. 2
D = v.(JE_J%+TTV—MJ¢+JC,V¢DHP>

"’(f,tp I din,th)DtSD
—(T+Ve® fve) : Vv+Vpu-J,<0.
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Choosing the chemical potential as

H = f,go_diVﬁch
and )
~|v
i

we end up with the dissipation inequality

+ TV — pJy + fvoDip

(T+Ve® fvy):Vv—=Vu-J, >0.

Often it is convenient, see, e.g., [49], to introduce an extra stress S and the
pressure p such that

S=T+pld.

Due to the incompressible condition the pressure p is still indeterminate, see
also [49]. With the stress S we obtain

(S+Ve® fyy): Vv —Vu-J,>0

since divv = 0. The term S = S + Vi ® fv, is the viscous stress tensor
since it corresponds to irreversible changes of energy due to friction.

We now consider specific constitutive assumptions. For a classical New-
tonian fluid one choose

S=S+Vp® fve =2n(p)Dv

for some -dependent viscosity 7(¢) > 0. The simplest form of the flux J,
is of Fick’s type
J=-m(e)Vpu

where m(p) > 0 in order to guarantee that the dissipation inequality is
fulfilled. Choosing
. [ € 9 1
Flo, Vo) =6 ( 51Vl + Zv(y)

gives in conclusion the following diffuse interface model

pov + ((pv +J) - V)v — div(2n(@)Dv) + Vp = —sediv(Ve @ Vi) (3.17)
divv = 0, (3.18)
Op +v - Vo = div(m(e)Vu), (3.19)
& .
ZU(p) —oelp = . (3.20)

We remark that



which gives that the term involving J in the momentum equation vanishes
for equal densities, i.e., if p. = p_. In the case of equal densities one hence
recovers the famous “Model H” discussed in Hohenberg and Halperin [50].
The model (3.17)-(3.20) was first derived in [13]. However, other diffuse
interface models based on a volume averaged velocity were also studied in
[31, 41]. For both models neither global nor local energy inequalities seem
to be known. The model of Ding, Spelt and Shu [41] is given by (3.17)-
(3.20) with J being zero which hence drops a term which is important for
the dissipation inequality.

Using the fact that the pressure can be redefined there are a few refor-
mulations of (3.17) which are convenient. Due to the identity

Ve =V (f(p, Vo)) = div(Ve @ fv,)
it is possible to redefine the pressure as follows
p=p—f(,Vy)
and we obtain instead of (3.17)
pOv + ((pv + ) - V)v — div(2n(@)Dv) + Vp = V. (3.21)

For the following we assume that f(¢, V) =& <€‘V(’0| 4 e )> cf. (1.1).

In some situations it is more convenient to consider the formulatlon

pdrv + ((pv +J) - V)v = V- (n(¢)D(v)) + Vp
_ | e 2 . VSD VSD
=V ( Vel (Id |w|®|w>>

Vo Vi
e[ Vel <Id‘|v 1© |W|>

in some sense converges in the sharp interface limit € — 0 to a multiple of

It turns out that

(Id—v ® v)or

where dr is a surface Dirac distribution concentrated on the interface and
Id —v ® v is the projection onto the interface which is up to a factor the
relevant surface stress tensor, cf. (2.16) below.

Moreover, using (3.13) one obtains that (3.17) is equivalent to

B (pv)+div(va (pv+Jd)) —div(2n(¢)Dv)+Vp = —6e div(Vea V). (3.22)

Furthermore, in the same way as discussed above the rlght hand side of

can be replace if p is replace p+eF-+ and for
(3.22) can be replaced by uVe if laced by el 4 2e) ang
the new pressure we obtain

8 (pv) + div(v @ (pv + J)) — div(2n(¢)Dv) + Vp = uVe. (3.23)
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3.2 Model Based on the Mass Averaged Velocity

A model based on a mass averaged velocity was derived by Lowengrub and
Truskinovsky [58]. They define the averaged velocity v as

v PV eV
p

In this case the mass balance becomes
Op+div(pv) =0, (3.24)

which is obtained by adding both mass balances in (3.1). Defining the mass

concentrations
=

P
we now introduce the concentration difference

C+

c=cy—cC_,

as phase field variable. We want to model the mixing of two incompressible
fluids and in the following assume that the total density p depends only on
the concentration difference c. Hence we assume that there exists a function
p: [-1,1] — (0,00) such that p = p(c). Adapting a model of a simple
mixture, see [51], one obtains

Py P—
p+  p-

This condition is just the assumption of zero excess volume which was
discussed earlier. In this case the functional dependence between p and
¢ =cy —c_ is given as (one has to use ¢y +c_ =1)

-1
)= (5040 +50-o/p ) (3.25)

However, in what follows we allow for a more general relation p = p(c).
Taking the difference of the mass balances (3.2) now yields (using p1 =
plc)er and c=cy —c_)

O(pc) + div(pev) +divj =0 (3.26)
which is, using (3.24), equivalent to
p(Orc+v-Ve)+divj =0 (3.27)

where j = J; —J_. The equation (3.27) has to be supplemented with the
momentum equation (3.4) which, using (3.24), can be rewritten as

plc)(Ov+ (v-V)v)=divT.
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As in Section 3.1 we require a free energy inequality
—D = 0e +div(ev) + V- j. <0
where .
plc)

e(v,c,Ve) = T\VP + ple)f(e,Ve).

It turns out that for the mass averaged velocity it is more convenient to
work with a free energy density f per unit mass. For solutions of the mass
and momentum equations we obtain, using Lagrange multipliers A, and g,

Oretdiv(ve)+div je— A, (Dyp+p div v)—pu(pDic+div j) —v-(pDyv—div T) <0
which is equivalent to

pleDic+ pfye- (DiVe) +divie — AyDip — Appdivv

—ppDyc — div(pj) + Vi - j+ div(TTv) = T : Vv <0.
Using the identity

pfve- (DiVe) = div(pfveDic) — (div(pfve))Dic — p(Vv) : (Ve ® fve),

which follows using (3.16), we obtain

Dyic(pfe —div(pfve) = App'(c) — pp)
+Vv: (=Appld—pVe® fyv.—T)
+Vpi- j+ div(je + pf veDic — pj — TTv) <0.
This is true for all solutions of the mass and momentum balance equations
if
1 ) "

= ;(— div(pfve) + pfc+ Aop (€)),

je =i = fveDee+ T,
and

Vv:S—Vu-j>0,

where

S=T+M\pld+pVe® fye.
Interpreting A,p as the pressure, i.e., setting

A, =-L

p

and making the specific choices

S = 5e)(Vv+ Vv 4+ Ac)divvId
i = —m()Vu
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leads the model of Lowengrub and Truskinovsky [58]
pDyic+ div(m(c)Vu) =0 (3.28)
— div(pfove) + pfe+ %ﬁ’(C)p — pu (3.29)
Op+div(pv) =0 (3.30)
pDyv — div(2n(c)Dv) — V(A(c)divv) + Vp = -V - (pVe ® fve). (3.31)
(3.32)

One can now use D;p = p'(¢)Dyc to rewrite (3.30) as
divv = —(p) 20 div(m(c) V).

Choosing
f(c7 Ve) = 6(e|Ve|* + %1/1(0))

gives that (3.29) and (3.31) become

A~

and
pDyv — div(2n(c)Dv) — V(A(¢) divv) + Vp = —ge div(pVe ® Vo).

Sometimes also the following ansatz for f is chosen
A O 1
fle,Ve) = 55 ElVel + (),

and (3.31) are given as

~— >

see, e.g., [1, 4]. In this case (3.29
(3.33)

g N ~
pp=—'(c) — elc+ ;p'(C)p

and
pDyv —div(2n(c)Dv) — V(A(c)divv) + Vp = —dediv(Ve ® Vo).

In the case of a simple mixture, see (3.25), we have

R 1
p(C) - a + ,BC
with
1 1 1 1
f=———7,a=—7+—.
2p— 2py 204 2p-
We hence obtain 5
N — — A2
p'(c) ey Bp(c)



this then implies that (3.32) has the following simple divergence structure
div(v — Bm(c)Vu) =0.

In addition, (3.33) becomes

The major differences between the model studied in Section 3.1 which was
based on a volume averaged velocity and the model studied in this section
is that the model which is based on a mass balanced velocity leads to a
velocity which in general is not divergence free and to a pressure dependent
chemical potential. Both facts make the analysis of this model much more
involved, cf. Section 3.5 below. We point out that both models reduce to
“Model H” in the case that the two mass densities p_ and py are the same.

3.3 Analytic Result in the Case of Same Densities

In this subsection we will discuss the mathematical results concerning ex-
istence and uniqueness of weak and strong solutions and partly their qual-
itative behavior for large times in the case that p(c) = const. In this case
(3.17)-(3.20) as well as (3.28)-(3.31) reduce to the system

pov + pv - Vv — div(2n(c)Dv) + Vp = —div(Ve ® Ve), (3.34)
divv = 0, (3.35)
Orc+ v - Ve=div(m(c)Vpu), (3.36)
1
uw=—clAc+ 21//(0), (3.37)

where we have chosen f(c, Ve) = ¢|Ve|? + 14(c). The system is studied in
Qx (0,T), T € (0,00], where Q C R, d = 2,3, is a suitable domain, e.g., a
bounded sufficiently smooth domain. It has to be closed by suitable initial
and boundary conditions. The standard choice, which was done for most
mathematical results, consists of

vlon =0 on 092 x (0,7), (3.38)
vy - VC‘@Q =V - Vu’ag =0 on ) x (O,T), (3.39)
(v, )|t=0 = (vo, o) (3.40)

for suitable initial values (vg, cp). For all results mentioned in the following
it is assumed that 1: R — (0, 00) is sufficiently smooth, strictly positive and
bounded. For existence of weak solutions continuity of  is usually sufficient.
But more smoothness is needed for higher regularity and uniqueness. In the
following we will assume for simplicity that p = 1. However, the results will
also be true for general positive constant p.
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Before we discuss the analytic results let us note that every sufficiently
smooth solution of (3.34)-(3.40) on a suitable domain {2 (e.g., bounded with
Lipschitz boundary) satisfies

d

L B(e(t), V(1))

- - / 2n(c(e, )| Dv(a, ) da — / m()|\Vale, P de (3.41)
Q Q

for all t € (0,T), where E(c,v) = Efpee(c) + Egin(v) and
t
Bppeeett) = 5 [ (Veta, o a - [ XD g,
2 Ja 0 -

Erin(v(t)) = %/ﬂp\v(aﬁ,t)\Q dx. (3.42)

This is a consequence of the energy dissipation inequality (3.15) integrated
with respect to x € Q together with the boundary conditions (3.38)-(3.39).
Alternatively, it follows from testing (3.34) with v, (3.36) with p and (3.37)
with Oic as well as integration by parts. Moreover, it is often useful to
replace (3.34) by

poyv +v - Vv —div(2n(c)Dv) + Vg = uVe (3.43)

with the new pressure g = p + 5|Ve|? + £ 714(c), cf. (3.23).

The analytic results often differ by their assumptions on the mobility
m and the (homogeneous) free energy density . Therefore we give a brief
overview of these assumptions now. It is always assumed that m: R —
[0,00) is sufficiently smooth and bounded. Most of the time it is assumed
that the mobility coefficient m is non-degenerate, which means that m is
strictly positive. In the case of a degenerate mobility it is assumed that
m(c) = 0 if and only if ¢ € {a, b}, where a,b € R represent the pure phases,
which are a = —1,b = +1 in our derivation. Moreover, a suitable behavior
of m(c) as ¢ — +1 is assumed in the degenerate case. A canonical example
is m(c) = mo(1 — ¢?) with mg > 0. A mathematical advantage of the
degenerate case is that it prevents the concentration ¢ from leaving the
physical interval [—1,1]. But in most cases one even assumes that m is a
positive constant (e.g., m = 1). A standard choice for ¢ is that ): R — R
is a sufficiently smooth function satisfying suitable growth conditions for
¢ — £o0o. From the physical point of view it should be of double well
type, which in particular means that ¥ (c) > 0 with equality if and only if
c € {£1}. A canonical example is

Y(c) = (1 —c?)?, ceR.

But choosing such a smooth free energy density 1 has the mathematical
disadvantage that there is no mechanism known, which prevents ¢ from
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leaving the physical reasonable interval [—1,1] even if the initial value ¢y
attains only values in [—1,1]. One possibility to ensure that ¢ stays in

[—1,1] is to choose ) as a density, e.g., of the form
0 0.
P(c) = 3 (14+¢)ln(l14+¢)+(1—c¢)In(1l —¢)) — 502 (3.44)

if ¢ € [-1,1] and 9(c) = 400 else. Here 0 < § < 6, and 0In0 := 0 =
limg—0+ sln s. Essential properties of this choice of v are
Y (s) —(~1,1)35+1 100, inf  "(s) > —0. > —o0.
se(—1,1)

Using these properties it is possible to prove existence of weak (or strong)
solutions with ¢(x,t) € (—1,1) for almost every x € Q, ¢t € (0,7, in many
situations if the mobility is non-degenerate. Instead of ¥ more general free
energy densities with the latter properties can be considered. More details
will be given below.

Now we discuss the analytic results in the case of matched densities (i.e.,
p = const.) in more detail. A first result on existence of strong solutions, in
the case that Q = R? and ¢ is a suitably smooth double well potential, was
obtained by Starovoitov [74].

More complete results were presented by Boyer [29] in the case of a shear
flow in a periodic channel. More precisely, it is assumed that

Q= {z= (2,29 eR:zge (-1,1)},d = 2,3,

with periodic boundary conditions with respect to 2/ € R*! and v|,,—+1 =
+Ue; with U > 0. Moreover, either the mobility m is non-degenerate and
1 is a suitable smooth potential or m is degenerate and ¥ = 1 + 5, where
1: (—1,1) — R is convex such that m} has a continuous extension on
[~1,1] and ¥ € C%([~1,1]). We note that these assumptions are satis-
fied for ¢ as in (3.44) if ¢1(c) = § (1 +c)In(1 +¢) + (1 — ) In(1 — ¢)) and
m(c) = 1—c2. In the case of non-degenerate mobility the existence of global
weak solutions, which are strong and unique if either d = 2 or d = 3 and
t € (0,Tp) for a sufficiently small Ty > 0, was shown in [29]. Furthermore,
in the degenerate case the existence of weak solutions with ¢(t,z) € [—1,1]
almost everywhere is proved. The system (3.34)-(3.37) was also briefly dis-
cussed by Liu and Shen [57].

In the case of a singular free energy density and for constant positive
mobility existence of weak solutions, strong well-posedness and convergence
for large times was proven in [5]. We will describe these results now in more
detail.

Assumption 3.1. Let Q C R? be a bounded domain with C®-boundary and
let v € C([~1,1]) N C%((~1,1)) such that

lim 1/(s) = +o0, Y'(s) > —a forall s € (—1,1)
s—*£1
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for some a € R. Furthermore, we assume that n € C?([a,b]) is a positive
function. Finally, we extend 1(s) by +oo if s ¢ [—1,1].

Definition 3.2. (Weak Solution)
Let 0 < T < c0. A triple (v,c, ) such that

v € BO,([0,T]; L2(2)) N L2(0, T; HE (Q)4),
¢ € BO,(0,T); H'(Q)), v/(c) € L (10.T); L2(Q)), Vi € L2(Q x (0,T))"

is called a weak solution of (3.34)-(3.40) on (0,T) if

—/OT/Qv.atzpdmdt—/Qvo-zp\t0dx+/0T/Q((v-V)v)-¢dwdt

+/OT/Q277(c)Dv:D1,bd:cdt: /OT/ch-zpdxdt (3.45)

for all 4 € CE’&([O,T) x )% with divap =0,

T T
—/ /catgpd:vdt—/cog0|t:0dm—i—/ /V-chpd:vdt,
0 Q Q 0 Q

- _/OT/Qm(c)w-wdmdt (3.46)

T T T
/ //updxdt:/ /W(c)apdwdt—k/ /Vc-Vapdxdt (3.47)
o Ja 0o Jo o Ja

for all ¢ € C&%([O, T) x Q), and if the (strong) energy inequality

E(v(t),c(t)) —|—/t /9(277(6)|DV|2 +|Vul?) dadr
< E(v(to), c(to)) (3.48)

holds for almost all 0 <ty < T including to = 0 and all t € [ty,T).

2

Here LZ(Q) = {p € CF(Q)¢ : divey = O}L (Q), BC,([0,T]; X) is the
space of all weakly continuous and bounded functions f: [0,7] — X and
L% ([0,00); X) the space of all strongly measurable f: [0,00) — X such
that fljom € L?(0,T; X) for all T < oo, where X is a Banach space. Fur-
thermore, in the following BUC(I; X ) denotes the space of all bounded and
uniformly continuous f: I — X if I C R is an interval.

We note due to (3.41) sufficiently smooth solutions satisfy (3.48) with

equality for all 0 <ty <t < T. Moreover, this estimate motivates

v e L(0,T; L ($2)) N L*(0,T; Hy ()%,
c € L>®(0,T; H'(Q)), Vpe L*(Qx (0,T))%
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As usual weak solutions are constructed by solving a suitable system, which
approximates (3.34)-(3.40) and satisfies the same kind of energy inequality.
Then one passes to the limit using the bounds in the spaces above. To this
end one of the crucial points is to obtain a suitable bound on ’(¢). To this
end the assumptions on ¢ due to Assumption 3.1 play an essential role. If
one defines ¥y(s) = 9(s) —1—04%, then ¢y € C([—1,1])NC%((—1,1)) is convex
and satisfies
Yo(s) —>s—+1 £00.

If one replaces v by 1g in Efyee, one obtains a lower semi-continuous, convex
functional on

L7y (Q) = {f € L*(Q |Q|/f

with m = |—512‘ fQ co(z)dx. Tts subgradient plays an important role in the
analysis of (3.36)-(3.37) and can be characterized as follows:
Theorem 3.3. Let ¢y be as above. Moreover, we set ¢o(x) = 400 for

x & [—1,1] and let Ey: L%m)(Q) — (=00, +00] be defined as

Bale) = [ ('V;'2 () de

if c € HY(Q) with c(x) € [~1,1] almost everywhere and Fy(c) = +oo else.
Moreover, let OEq be its subgradient with respect to the L*-inner product.
Then

D(0E,) = {c € HA(Q) N L},)(Q) :
bole) € L(Q), 45 (c)|Vel* € LN (), van - Velaa = 0}

and

OEy(c) = —Ac+ Py (c), (3.49)
where Py: L*(Q)) — L%O)(Q) is the orthonormal projection onto L%O)(Q).
Moreover, there is some C > 0 independent of ¢ € D(0Ey) such that

’C”HQ(Q + [[¥0(c )HL2 Q)
/ bg(e(@)|Ve(z) P de < C (HaEO(C)H%Q(Q) + HCH%Q(Q) + 1) - (3:50)

The result was proven by Abels and Wilke [18, Theorem 4.3]. Formally,
one can obtain (3.50) by multiplying OEy(c) = —Ac+ Pyyy(c) by —Ac. This
yields

—/Qan(c)Acdx:/QyAcdex—/QPo(wg(c))Acdx

= / |Ac|? dz + —/ Vi(c) - Ve do > HACH%Q(Q)'
Q Q~>—
=4 ()| Vel*20
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Using regularity results for elliptic equations and Young’s inequality one
obtains (3.50) formally. These formal arguments are justified rigorously in
the proof of [18, Theorem 4.3]. Using (3.50) together with the a priori
estimates for ¢ and p from the energy inequality, one obtains a bound on
V2e¢, 9/ (c) € L2 ([0,00); L?(£2)). Based on this one obtains:

loc

Theorem 3.4. (Existence of Weak Solutions, [5, Theorem 1])

Let m > 0 be independent of c. Then for every vo € L2(Q), co € H(Q)
with co(z) € [—1,1] almost everywhere there is a weak solution (v,c,u) of
(8.84)-(3.40) on (0,00). Moreover, if d =2, then (3.48) holds with equality
for all 0 <ty <t < oo. Finally, every weak solution on (0,00) satisfies

Ve v/ (e) € Lul(0.50) L7 (2). - ft% ¢ € BUC([0,00): W)  (3.51)

where r = 6 if d =3 and 1 < r < oo is arbitrary if d = 2 and ¢ > 3 s
independent of the solution and initial data. If additionally co € H%(Q) :==
{u € H*(Q) : v - Vulsq = 0} and —Acy + ¥f(co) € HY(Y), then we have
c € BUC([0, 00); qu(Q))

We note that VZc,¢/(c) € L2 ([0,00); L"(2)) in (3.51) follows from a
generalization of (3.50), Theorem 3.3, resp., for L"(Q) instead of L2?(12),
cf. [5, Lemma 2]. For further regularity studies and uniqueness results, it is
important that Theorem 3.4 provides ¢ € BUC/(8, 00; W, (2)) for some ¢ > d
and for all § > 0 and § = 0 for suitable initial data. This makes it possible
to use a result on maximal regularity for an associated Stokes system with
variable viscosity, cf. [5, Proposition 4], to conclude higher regularity for the
velocity v in the case of small or large times and in the case d = 2, which is
enough to obtain a (locally) unique solution. Then one obtains:

Theorem 3.5. (Uniqueness, [5, Proposition 1])

Let m > 0 be independent of ¢, 0 < T < o0, ¢ = 3 ifd = 3 and let
qg > 2 if d = 2. Moreover, assume that vy € W¢1170(Q) N L2(Q) and let
co € HY(Q) N COY(Q) with co(z) € [~1,1] for all x € Q. If there is a weak
solution (v,c, ) of (3.34)-(8.40) on (0,T) with v € L>(0,T; W} (Q)) and
Vee L*®(Q x (0,T)), then any weak solution (v',c,1') of (3.34)-(3.40) on
(0, T) with the same initial values and V' € L>(Q x (0,T))? coincides with
(v, 1)

For the following we denote ‘/'21+j((2) = H(Q)4n HYH Q) N L2(Q),

j = 0,1. Moreover, for s € (0,1) we define V;5(Q) = (Vo (), VZ(Q))s.2,
where (.,.)s,4 denotes the real interpolation functor.

Theorem 3.6. (Regularity of Weak Solutions, [5, Theorem 2])
Let m > 0 be independent of ¢ and let ¢y € H]2V(Q) such that Efrec(co) < 00
and —Acy + ' (cp) € HY(Q).
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(i) Let d = 2 and let vo € V3T5(Q) with s € (0,1]. Then every weak
solution (v,c) of (3.34)-(3.40) on (0,00) satisfies

v € L*(0,00; H*F'(Q)) N H'(0, 00; H* (2)) N BUC([0, 00); H'*75(Q))

for all s € [0,3)N[0, 5] and alle > 0 as well as Ve, ' (c) € L>(0, 00; L™ (1))

for every 1 < r < oo. In particular, the weak solution is unique.

(i9) Let d =2,3. Then for every weak solution (v,c, ) of (3.34)-(3.40) on
(0,00) there is some T > 0 such that

v € LY(T,00; H**(Q)) N HY(T, 00; H*(Q)) N BUC([T, 0); H*¢(Q2))

forall s €[0,3) and alle > 0 as well as V2¢,¢'(c) € L>®(T, 00; L"(2))
withr =6 ifd=3 and 1 <r <ooifd=2.

(iii) If d =3 and vo € V5T (Q), s € (3,1], then there is some Ty > 0 such
that every weak solution (v,c) of (3.34)-(3.40) on (0,Tp) satisfies

v € L0, Ty; H¥'(Q)) N H(0, Ty: H* () N BUC([0, Tp); H'™75(2))

foralls' €[0,%) and alle > 0 as well as V2¢,¢'(c) € L>(0,Tp; L5()).
In particular, the weak solution is unique on (0,T).

The proof of the latter theorem is essentially based on the fact that ¢ €
BUC([0,00); W} (2)) for some g > d, which implies that ¢: Q x [0,00) — R
is uniformly continuous. This makes it possible to use regularity results for
the Stokes system with variable viscosity 7n(c), which is the linearization of
the right-hand side of (3.34), together with regularity results for the Cahn-
Hilliard equation with convection term (3.36)-(3.37).

We note that similar results on existence of weak solutions can also be
obtained for the so-called double obstacle potential for ¢, i.e.,

—fe? ifce[-1,1],
400 else.

b(e) =

But in this case (3.37) has to be replaced by the differential inclusion
p+ Ac+ bec € dl_y y(c),

where Ij_y ) is the indicator function of [~1,1], i.e., I|_y(c) = 0 if c €
[-1,1] and Ij_;1)(c) = +oo else. This double obstacle potential is the
pointwise limit of ¢ in (3.44), when 6 — 0, cf. Figure 3. It can also be
shown that the corresponding solutions of (3.34)-(3.40) converge as 6 — 0
to solutions of the system (3.34)-(3.40), cf. [1, Section 6.5] or [6].
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Figure 3: Logarithmic free energy in (3.44) for § — 0.

Finally, we note that, because of the regularity of any weak solution for
large times, it is possible to prove convergence to stationary solutions as
t — oo.

Theorem 3.7. (Convergence to Stationary Solution)

Assume that 1: (—1,1) — R is analytic and let (v, c, p) be a weak solution of
(8.34)-(3.40). Then (v(t),c(t)) =00 (0,c00) in H>=(Q)4 x H?(Q) for all
e > 0 and for some coo € H2(Q) with 1 (cso) € L?() solving the stationary
Cahn-Hilliard equation

—Acso + U (coo) = const. in Q, (3.52)
voQ - VCOO|3Q =0 on 89, (3.53)

/Q coo() da = /Q co(z) da. (3.54)

The proof is based on the so-called Lojasiewicz-Simon inequality, cf. [5]
for details. To prove this inequality it is important that ¢: (=1,1) — R is
analytic, which is the case for the canonical example (3.44).

Finally, we note that (3.34)-(3.37) was also considered in the case of
non-Newtonian fluids of power-law type. In this case 2n(c)Dv in (3.34) is
replaced by general viscous stress tensor S(c, Dv), which satisfies suitable
growth conditions with respect an exponent p > 1. First analytic results
in this case were obtained by Kim, Consiglieri, and Rodrigues [52]. They
proved existence of weak solutions in the case p > ?:161%22’ d = 2,3, using
monotone operator techniques. In [48] Grasselli and Prazak discussed the
longtime behavior of solutions of the system in the case p > %, d=2,3,
in the case of periodic boundary conditions and a regular free energy density.
For the same p existence of weak solutions with a singular free energy density
f was proved by Bosia [28] in the case of a bounded domain in R®. Moreover,
the longtime behavior was studied. Finally, existence of weak solutions was
shown by Abels, Diening, and Terasawa [11] in the case that p > % using
the parabolic Lipschitz truncation method for divergence free vector fields
developed by Breit, Diening, and Schwarzacher [32],
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3.4 Analysis for the Model with General Densities Based on
the Volume Averaged Velocity

)

pOv + ((pv + ) - V)v — div(2n(¢) Dv) + Vp = —e div(Ve @ V), (
divv =0, (3.56

Opp +v - Vo =divim(p)Vp),  (

(

1
p=—elp+ gw’«o)

in Q x (0,T), where Q C R%, d = 2,3, is a bounded domain with smooth
boundary and

1+ o 1—9p
p=p(p) = pr—g— TP

J— P+ — P- J, = P+ p_m(w)Vu.
2 2
We close the system with the boundary and initial conditions (3.38)-(3.40).
Here we have set & = 1 for simplicity.

Smooth solutions of (3.55)-(3.58) together with (3.38)-(3.40) satisfy the
same energy dissipation identity as in the case of same densities, i.e., (3.41),
where ¢ is replaced by ¢ and p = p(¢) in (3.42). In particular, this yields
a priori bounds for

(3.59)

v € L0, 00; L2 () N L*(0, 00; Hy (2)7) , o € L(0,00; H' (),
Vi € L0, 00; L2 ()4 if m(p) > mg > 0.

as in the case of same densities.

So far there are only few results on existence of solutions to the system
above. The system was discussed by Abels, Depner, and Garcke in [10] and
[9], where existence of weak solutions in the case of singular free energies
with non-degenerate and degenerate mobility, respectively, was shown. More
precisely, in the non-degenerate case the following result was shown:

Theorem 3.8. (Existence of Weak Solutions, [10, Theorem 3.4])

Let m € CY(R) be bounded such that infsegr m(s) > 0, let Assumption 3.1
hold true and assume that additionally limg_4q ﬁ/,/—((j)) = 4o00. Then for
every vo € L2(Q) and g9 € H' () with |po| < 1 almost everywhere and
ﬁ Jowodx € (=1,1) there exists a weak solution (v,¢,u) of (3.55)-(3.58)

together with (3.38)-(3.40) such that

v € BC,([0,00); L2(R)) N L(0, 00; H} ()%),
¢ € BCy([0,00); H' () N L, ([0,00); H*(2)), ¢'(¢) € L, ([0,00); L*(2)),
pe LE ([0,00); HY(Q)) with Vi € L*(0,00; L*(Q))%.
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Here the definition of weak solutions is similar to Definition 3.2. We
refer to [10, Definition 3.3] for the details.

The structure of the proof of Theorem 3.8 is as follows: System (3.55)-
(3.58) is first approximated with the aid of a semi-implicit time discretiza-
tion, which satisfies the same kind of energy identity as the continuous
system. Hence one obtains a priori bounds for

vV e L0, 00; L2(Q)) N L2(0, 00; HE (), o™ € L>(0,00; H(Q)),

Vil e L2(0,00; L2(Q)%) if m(p) > mo > 0,
where (vV, oV, uV) are suitable interpolations of the time discretized system
with discretization parameter h = % In order pass to the limit N — oo it
is essential to obtain a bound for

PN € Lie([0,00), H* (), ¢'(¢") € Life([0,00), L*(2)),

which follows from Theorem 3.3. The latter theorem is also used to obtain
existence of solutions for the time discrete system with the aid of the Leray-
Schauder principle and the theory of monotone operators.

In the case of degenerate mobility it is assumed that ¥ € C*(R),

1-s% ifse[-1,1],
m(s) =
0 else

and 7 and (2 are as in Assumption 3.1. In this case one does not obtain an
a priori bound for Vyu in L2((0,T) x §2). Instead one obtains an a priori
bound for J = vVm(p)Vu and J := m(¢)Vu. There one has to avoid Vi
in the weak formulation and has to formulate the equations in terms of J.
More precisely, weak solutions are defined as follows, cf. [9, Definition 3.3].

Definition 3.9. Let T € (0,00), vo € L2(Q) and po € HY(Q) with |po| < 1
almost everywhere in Q. Then we call the triple (v, p,J) with the properties

v € BO(0,T) 12(9)) 1 I2(0,T; HY(©)

¢ € BC,([0,T]; H(Q)) N L0, T; H*(Q)) with || <1 a.e. in Qr,
J e L*0,T; L2()%) and

(v,9) li=0 = (vo, ¥o)

a weak solution of (3.55)-(3.58) together with (3.38)-(3.40) if the following
conditions are satisfied:

T T
—/ /pv-@twdxdt—i—/ /div(pv@v)-zpdxdt
0 JO o Jo

T T
. _ p2—pP1 .
+/0 /§2277(<p)Dv.Dv,bdxdt /0 /Q(v®—2 J):Vapdrdt  (3.60)

T
:_/ /A@Vgp-'{/)dﬂ:dt
0 JQ
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for all ¢ € C$(Q x (0,T))¢ with divap = 0,

_/OT/QSDathg;dt+/OT/Q(v-Vgo)(d:cdt:/OT/QJ-VCdxdt (3.61)

for all ¢ € C§°((0,T;CY(2)) and

/T/J-ndxdt (3.62)
0 Q . -
- [ [ (Vale) (¥(ate) - AA(e)) ) divtmom) dodt
0 Q

for all ; € L2(0,T; HY(Q)?) N L®(Q x (0,T))* which fulfill vao - log = 0
on 092 x (0,T).

We note that (3.62) is a weak formulation of

3= —m(e) V (Valp) (V(A9) - 2A())) -

Theorem 3.10. (Existence of Weak Solutions, [9, Theorem 3.5])
Let the previous assumptions hold, vo € L2(Q) and ¢o € HY(Q) with
lpo| < 1 almost everywhere in Q2. Then there exists a weak solution (v, p,J)
of (3.55)-(3.58) together with (3.38)-(3.40) in the sense of Definition 3.9.
Moreover for some J € L2(Q2 x (0,T)) it holds that J = /m(p)J and

//277 ) | Dv|? d:r:dT—l—/ /|J|2dazd7' (3.63)

< Eiot(p(s), v(s))

forallt € [s,T) and almost all s € [0,T') including s = 0, where E(p(t),v(t))
is defined as in (3.41) with c(t) replaced by ©(t). In particular, J =0 a.e.
on the set {|p| = 1}.

The theorem is proved by approximating m by a sequence of strictly
positive mobilities m. and ¥ by

Ve(s) :=1(s)+e(l14+s)In(l+s)+e(l —s)In(l —s), se[-1,1],

where € > 0. Then existence of weak solutions (v, e, ) for € > 0 follows
from Theorem 3.8. In order to pass to the limit one uses the energy inequal-
ity (3.48). But this does not give a bound for ¢. € L?(0,T; H*(Q2)), which
is essential to pass to the limit in the weak formulation of (3.55). In order
to obtain this bound one tests the weak formulation of (3.57) with GL(¢¢),
where G”(s) = (S) for s € (—=1,1) and GL(0) = G(0) = 0. We refer to [9,
Proof of Lemma 3.7] for the details.
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Finally, we note that existence of weak solutions of (3.55)-(3.58) together
with (3.34)-(3.37) was proven in the case of power-law type fluids of exponent
p > s, d = 2,3, in [8]. More precise, 2n(p)Dv in (3.55) is replaced by
S(p, Dv), where S: R x R%Xd — RIXd gatisfies

sym sym
S(s,M)| < C(MP!+1),

S(s1,M) = S(s2, M)| < Cls1 — so|(IM[P~! + 1),
S(s,M): M > wMP—C;

A

for all M € Rg;fi, s,81,82 € R, and some C,Cq,w > 0. Furthermore,
the case of constant, positive mobility together with a suitable smooth free
energy density v is considered. Unfortunately, in this case there is no mech-
anism, which enables to show that ¢ € [—1,1]. Hence one has to modify p,
defined as in (3.59) for ¢ € [—1,1], outside of [—1, 1] suitably such that it

stays positive. But then (3.13) is no longer valid and one obtains instead

%

dp+div(pv +J) =R, where R = —Va
P

V. (3.64)

Here R is an additional source term, which vanishes in the interior of {¢ €
[—1,1]}. In order to obtain a local dissipation inequality and global energy
estimate the equation of linear momentum (3.55) has to be modified to

00V + (ov +3)) - Vv + R% —divS(p, Dv) + Vp = —ediv (Ve ® V).

Under these assumptions existence of weak solutions is shown with the aid
of the so-called L*°-truncation method, cf. [8] for the details.

3.5 Analysis for the Model with General Densities based on
the Mass Averaged Velocity

In the following we discuss the known result on existence of weak and strong
solutions for the model by Lowengrub and Tuskinovsky [58], i.e.,

pOv + pv - Vv — div S(¢, Dv) + Vp = —ediv(|Ve|T2Ve ® Ve),  (3.65)
Op + div(pv) =0, (3.66)
poic + pv - Ve = div(m(c) V), (3.67)

40 . _
pi=—p™' G = div(p(e) Vel Ve) + o0 (). (3.68)

cf. (3.28)-(3.31), in Q x (0,T"), where p = p(c) with
1 11-¢c 11+c
+ J—

ple) — p1 2 pa 2

S(c, Dv) = 2n(c)Dv + A(c)div v 1d,
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Q Cc RY d=2,3, is a bounded domain with C3-boundary and T € (0, 00].
Moreover, we have chosen
. Vel c
f(c7vc):€q—1’ ’ +¢()
q €
for some ¢ > 2. Usually one chooses ¢ = 2 for these kinds of diffuse interface
models. But for proving existence of weak solutions it is necessary so far to
choose ¢ > d. The reasons will be explained below.
We close the system by adding the boundary and initial conditions

vyQ * V|3Q =VyQ * S(C, DV)T + ’)/V7—|aQ =0 on 9N x (O,T), (3.69)
voa - Veloa = vea - Vilaa =0 on 9Q x (0,T), (3.70)
(v,¢)|t=0 = (vo,c0) in Q, (3.71)

where 0 < v < 00 is a friction coefficient and 7 denotes the tangential part of
a vector field. For the analysis it is important that we use Navier boundary
conditions for v (3.69) instead of no-slip boundary conditions v|gg = 0 as
before since this makes it possible to estimate the pressure suitably.

In the following it is assumed that p; # pso, that n,m, A,¢¥: R — R are
sufficiently smooth and that n, A\, m are strictly positive and bounded. We
refer to [4, 7] for the precise assumptions. Similar as for the other models
smooth solutions of (3.65)-(3.71) satisfy the energy dissipation identity

d

4 B(ett) v(1)

:—/ (2n(c)|Dv]* + A(c)| div v[?) dx—/m(c)|v,u|2 dx (3.72)
Q Q

for all t € (0,T"), where E(c,v) = Efpee(c) + Egin(v) and

Efree(c(t)) _ / cd— 1‘VC T, t ’q / ’[/} .%' t z,

Q
mmwmzlfwamﬁ%ﬁLm.

In order to get a priori estimates for the construction of weak solutions it is
essential that p = p(c) stays positive. We note that

1 1 1 1 1
plc)=———=, where f=-——-—,a=—+;—
a+ fe 2p1 2p2 2p2  2;m
and
p'(c) = =B%(c)?,
as seen in Section 3.2. Hence we need a mechanism, which guarantees that
¢ stays in [—1,1] or at least in [—1 — §,1 + 0] for some sufficiently small
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0 > 0. Unfortunately, so far it was not possible to work with a singular free
energy because of the pressure appearing in (3.67). But an alternative is to
choose ¢ > d, which yields an a priori bound for ¢ € L*®(0,T; W, () —
L*>(0,T; C’lf%(ﬁ)). In this case ¢ can be trapped in [—1 — §,1 + 4] if ¢ is
chosen “steep enough” outside of the physical interval [—1, 1]. More precisely
we have:

Lemma 3.11. ([4, Lemma 2.3]) Let R,6 > 0, ¢ > d, and let ¢ €
C?([-1,1]) with ¥(c) > 0, ¢ € [~1,1], be given. Then there is an exten-
sion ¢ € C*(R), ¥(c) > 0,¢"(c) > —M > —oo such that for all c € W ()

/ p(c)|[Vel? der/ pep(e)dr <R = c(x) e (—1—381+0). (3.73)
Q 4 0

In order to construct weak or strong solutions it is essential to reformu-
late (3.65)-(3.68) first. To this end we define

g=v(@+ L 2 g

)

and u = po + i1, p = ‘ﬁllfﬂ,udx. Moreover, we decompose g = gg + g,

g= ﬁ Jo gdz. Then (3.65)-(3.68) are equivalent to

poyv + pv - Vv — div S(c, Dv) + pVgo = puoVe, (3.74)
Op + div(pv) =0, (3.75)

porc+ pv - Ve = div(m(c) Vi), (3.76)

pio + p°g = Bp’go — div(p(c)|VeT 2 Ve) + ¢/ () (3.77)

together with

/ wo(t) de = / go(t)dz =0 forallt e (0,7), (3.78)
Q Q

cf. [4, Section 3] for the details. Here the specific form of p and the corre-
sponding relations above are essentially used.

For the mathematical analysis it is essential to use a suitable decompo-
sition of gg, namely:

g0 = g1 — OG(V), (3.79)

where
AG(v) =divv in €, (3.80)
voa - VG(V)|sn =0 on 01}, (3.81)
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and fﬂ v)dz = 0. This implies
VG(v) = (I — P,)v, (3.82)

where P,: L?(Q)? — L2(Q) is the Helmholtz projection. Hence (3.74) is
equivalent to

PO Pyv + pv - Vv — divS(c, Dv) + pVg1 = puoVe. (3.83)

Here the part g; has relatively good regularity, e.g., g1 € L?(0,00; LP(f2))
with 1 < p < ﬁ, cf. Theorem 3.13 below. It is the part 9;G(v), which
makes the analysis difficult and which does not allow to use a singular free
energy as in (3.44). — We also note that for the estimates of ¢, it is important
to consider Navier boundary conditions for v and not no-slip boundary
conditions.

Because of (3.83) one defines:

Definition 3.12. Let vo € L*(Q), co € WHQ), ¢ > d, and let ¢: R —
[0,00) be twice continuously differentiable. Then (v, g1, ¢, o, p) with

v € BCy([0,00); L*()%) N L*(0, 00; H (),
g1 € L2(0 003 L(O)(Q))’ ce BCw([O’OO); qu(Q))a
po € L?(0,00; H'(Q)), P € Li,([0,00)),

where HL(Q) = {v € HY(Q)? : vgq - vlsq = 0}, and such that 0 < p =
p(c) € L*(Q) is called a weak solution of (3.74)-(3.77), (3.69)-(3.71) if the

following conditions are satisfied:

(i) For every ¢ € C§°(0,00; HL(Q) N L>®(Q)%)

/ /Pv 8tcpdmdt+/ /v V)v - pdxdt
/ / S(e, Dv) Dcpdxdt—i—’y/ / p v, @, dodt
0

/ /gldlvcpdxdt—l—/ / uwoVe+ Vp~ 1-S(C,Dv)) ~pdzxdt.

(i1) For every ¢ € C§°(0,00; C1(12)))

/ /p6t¢dxdt+/ /,ov Vodrdt =
/ /pc@tgbdxdt—l—/ /pcv Vodrdt = /OOO/Qm(c)V,u-Vqu:cdt,

/ﬁt/ (oo + 92 — () da dt = ﬁ/il/ i P16 e di

— G a 72 dzd ~4|Ve|T2Ve - Vo da dt.
ﬁA A W) (p(e) %) xt+é Ap Veli>Ve . Voda dt
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(13i) (v,c)|t=0 = (vo, o).

(iv) (v,c, ) satisfy the energy inequality

E(c(t),v(t)) —i—/ /Q(S(c, Dv) : Dv +m(c)|Vu|?) dzdr

+ Vel 2 00x (s09) < E(e(5),v(5))
for allt € [s,00) and almost all 0 < s < oo including s = 0.

Theorem 3.13. (Existence of Weak Solution, [4, Theorem 2.4]) Let
q > d, 5,R > 0. Moreover, let p € C%(R), 1(c) > 0,¢"(c) > —M, be
given such that (3.73) holds. Then for every vo € L?*(Q)% ¢y € Wkh(Q)
with E(co,vo) < R there exists a weak solution (v,q1,c,uo,g) of (3.74)-
(3.77),(3.69)-(3.71) with the property that

c(t,x) € [-1—=06,1+08] forallzeQ,te(0,00),
g1 € 120,00, I7(Q)), P Lin([0,00))

loc

The proof of Theorem 3.13 is based on a two-level approximation. First
(3.74)-(3.77) is regularized by adding the terms —dgo3 and dgo to the left-
hand sides of (3.74) and (3.76), respectively. This gives an extra-term
—8 [ |90/* dz on the right-hand side of (3.72). Existence of weak solutions
for the regularized system is proved with the of a semi-implicit time dis-
cretization. Afterwards, one reformulates (3.74) as (3.83) together with the
extra-term —dgo3, derives suitable a priori estimate for go, g1 and g and
passes to the limit § — 0.

Finally, let us comment on short time existence of strong solutions. In
[7] the following result was shown:

Theorem 3.14 (Existence of Strong Solutions for Short Times, [7]). Let
vo € HL(Q),co € H?(Q) with |co(x)| < 1 for all x € Q and voa - Veglaa = 0,
d = 2,3, and let the assumption throughout this subsection hold. Then there
is some T > 0 such that there is a unique solution v € H(0,T;L2(2)) N
L2(0,T; H*(Q)%),c € H*(0,T; H(_O)l(Q)) N L2(0,T; H3(Y)) solving (3.74)-
(3.77),(3.69)-(3.71).

Here H(B)I(Q) is the dual of H(lo)(Q) =HY(Q)N L%O)(Q).
The prove is based on a fixed-point argument and the unique solvability

of the linearized system

dyv — div S(co, Dv) + ﬁ%v div(p™*Vd) = f; in Qx(0,7), (3.84)
o — 7l divv = fo in Q x (0,7),
(vaq - S(co, D(Pyv)))r +~(Pyv), . on 002 x (0,7),
Voa * V]gn = vaqa - Velag =0 on 09 x (0,7),

(v, )|t=0 = (vo, ) in Q,
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where ¢’ corresponds to pc. To solve the latter system one uses the Helmholtz
projection P, to decompose v = P,v + VG(divv), where (I — P,)v =
VG(divv). Moreover, P, and I — P, are applied to (3.84). Throughout the
analysis one has to solve a kind of damped plate equation of the form

92¢ — Ala(co)dd) + QLBQA div(pgive) = f

up to lower order terms for some a(cg) > 0. In order to solve this equation an
abstract result by Chen and Triggiani [36] is applied. We note that the same
kind of linearized system arises in the analysis of a Korteweg type model for
compressible fluids with capillary stresses, cf. Kotschote [53]. Furthermore
the linearized system differs very much from the linearized system of the
model with same densities and the model with volume averaged densities.

4

In this section it is shown in a formal way that the diffuse interface model
of Abels, Garcke, Griin [12] (3.17)-(3.20) and the diffuse interface model
(3.28)-(3.31) of Lowengrub and Truskinowsky both converge to the classical
sharp interface model (2.1)-(2.5) if the parameter ¢ tends to zero. It was
already noted in the introduction that the energy

o [ (51762 + 206 ) as

converges to a multiple of the surface energy
HHT)

where I' denotes the sharp interface, see [60, 59]. One would hence expect
that all terms involving & will converge to terms involving interfacial energy
and curvature, which is the first variation of interfacial energy. This will in
fact be the case as one will see in the following analysis.

The method of formally matched , which is used
in the following is based on the assumption that for small € the domain
Q) can at each time be separated into open subdomains Q*(¢,¢) which are
separated by a hypersurface I'(t,¢). In addition, it is assumed that the
solutions have an asymptotic expansion in € in the bulk regions away from
I'(t,e) and another suitable scaled expansion close to I'(t,e). The scaling
will be needed in the xz—variable as the values of the phase field ¢ will change
its value sharply but smoothly in a region of thickness . That leads to the
formation of internal layers.

These expansions then have to be matched in a region where both ex-
pansions overlap. A detailed description of the method can be found in
[44, 45, 9]. For some phase field models this approach can be justified rig-
orously, cf. [19, 38, 33, 10].
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4.1 Models Based on a Volume Averaged Velocity

In this section the system

au(p()v) + div(v @ (pv + J)) — div(2n(p) Dv) + Vp = uV, (4.1)
divv =0, (4.2)
Op+v-Vo = emoAp, (4.3)
o .
ZVU(p) =62l = p, (4.4)
with N . - ~
J— P+ . p_']so _ _ P+ . p_amOVu
and

p(p) :ﬁ+1;(p +ﬁ—1 2@
is studied. This is basically the model (3.17)-(3.20) with the reformulation
(3.23) and for simplicity m = emy is taken to be constant, see [9] for a more
general case. We always denote the solution of (4.1)-(4.4) by v, Je, Oe, fe-
In addition, we always assume that v is of double well form with two global

minima at +1.

4.1.1 Outer Expansions

We assume that v, Je, @c, pe have in Q(t, ) an expansion of the form
us(z,t) = up(x,t) + eur (z,t) + O(?).

Substituting these expansions into (4.1)-(4.4) leads to equations which have
to be solved order by order.

The equation (4.4) gives to leading order e~*

¥ (¢0) = 0.

The stable solutions of this equation are +1 and we denote QF to be the
sets where ¢y = and ¢y = —1 respectively.
The expansions to order £° of the fluid equations yield

p+0vo + p+vo - Vvg —ntAvg+Vpy = 0,

divvg =

with the scaling chosen the equation (4.3) is fulfilled to leading order .
However, we refer to [9] for the case when the mobility is scaled to be of
order one.
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4.1.2 Inner Expansions and Matching Conditions

It is now assumed that the zero level sets of ¢.(-,t) converge for ¢ — 0 to a
smooth hypersurface I'(t) which moves with a normal velocity V. As I'(t) is
smooth one can define the signed distance function d(z,t) of a point x € Q
to I'(¢) which is defined such that d(z,t) > 0 if 2 € Q4(¢) and negative if
x € Q_(t). Close to I' the function d is smooth and we write each function
u(z,t) close to I' in new coordinates U (s, z,t) where s is a tangential spatial
coordinate on I' and z(x,t) = d(z,t)/e. In the new coordinates the relevant
differential operators transform as follows

1
Ou = —EV@U%—h.O.t.
1
Veu = g@zUV + VU + h.o.t.
1 1
Ayu = 6—262,2U — gHazU — 2|S[20.U + ArU + h.o.t.,

where v = V,d is the unit normal pointing into Q4 (¢), Vr is the spatial
surface gradient on I', S| is the spectral norm of the Weingarten map S, Ap
is the Laplace—Beltrami operator on I'(¢), and h.o.t. denotes terms of higher
order in ¢ (see the Appendix of [9] for a proof).

Furthermore, it is assumed that the functions v, pe, ¢., i1 as functions
(Ve, pe, @e, M.) in the inner variables have an expansion of the form

ue(z,t) = Us(s, z,t) = Up(t, s,2) + eUr(t,s,2) + ... .

In an e—dependent overlapping domain the outer and inner expansions have
to coincide in a suitable sense when ¢ tends to zero. This leads to the
following matching conditions which are derived in [44] and [45]. At a point
x € I'(t) with coordinate s it holds

: _ +
ZgrinooUo(s, z,t) = ug(z,t),
le)rfooazUo(s, z,t) = 0,
: +
le)rfooazUl(s, z,t) = Vug(z,t)- v,

where u3" denotes the limit %ing)uo (x £ 6v) at a point x € T'.
ﬁ

4.1.3 Leading Order Equations
In the interfacial region the equation (4.4) gives to leading order %:
Y (®g) — 0., P9 =0 (4.5)

and matching with the outer solutions gives the following boundary condi-
tion at Foo:
lim ®g(z) ==£1. (4.6)

z—Foo

45



The problem (4.5), (4.6) has a unique solution with the property
®y(0) =0,

see, e.g., [69], Section 2.6. This solution we choose in what follows. The
equation divv = 0 gives to the order %

6ZV0-1/:62(V0-1/) =0

and together with the matching conditions we obtain that Vg - v needs to
be constant. We hence obtain
(vi -v)(x) = lim (Vo -v)(2) = lim (Vo v)(2) = (vo-v)(2)
Z—00 Z—r—00

and this gives
[vo-v]T =0.

At order % the diffusion type equation (4.3) leads to
-V, Pq + (V() . V)az‘l)() = mgd,, My . (47)

The matching conditions lead to 9,My — 0 and ®y(z) — 1 for z — +o0.
Hence (4.7) implies
V= VoV

and

MO = Mo(s, t) .
In addition we obtain [1]* = 0 and hence u* = = = My. We now consider
the momentum equation to leading order 5% Expressing V,v and D,v in

the new coordinates gives

1
Vv = g@ZV Qv+ Vrv+ h.ot.,
11 1 .
D,v = 5 g(an RU+VrR 8zv) + §(VFV + (VFV) ) + h.o.t..

With the notation £(A) = $(A + AT) we obtain

Qv (H)Dev) = 0 @IEQDV © ) + L0 B)EVEV)w
‘|’§V[‘ -(n(®)E(0.V@v))+Vr-(n(®)E(VrV))+ h.ot..
Using 0,V - v = 0 we obtain
(w®8. Vo) = (.Vo-v)v =0
and hence the momentum equation gives to leading order

0:(n(®0)0,Vy) =0.
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The matching conditions imply that Vg is bounded and hence the above
ODE only has constant solutions. The matching property linrEl vo(z) =
Z—rT00

vt (z) for 2 € " hence implies

[vo]© =0.

4.1.4 Next Order Equations

The equation (4.4) which defines the chemical potential gives to the order
0
€
5’¢//(‘1)0)‘1)1 — 5‘622(1)1 = M(] — 5'6Z‘1)0H (48)

As 0,9 is in the kernel of the differential operator u — ¢"(®g)u — 0,,u the
right hand side of (4.8) needs to be L?-orthogonal to 9, ®y, see [9] for details
on this Fredholm alternative type of argument. We hence obtain

0 = / 32(130(M0 — 6’83‘130H)d2

(o]

= 2M0—6H/ 10, ®0|?dz
—00

= 2up—0oH

where we set 0 = ¢y with
o
2
Co = / |8Z(I)O| .
—0o0

It remains to derive the force balance (2.4) at the interface. We first observe
that the term

divive J) = — (%) emo div(v ® V)

in the interfacial region gives no contribution to the order % Here one uses
the facts that 0,My = 0 and 0,vp = 0. One hence obtains that (4.1) to
order % gives the identity
—0:(p(P0) Vo)V + 0:(p(P0) (Vo ® Vo))v — 20 (n(P0)E(9: V1 @ v)v)
—28Z(77(<I>0)5(VFV0)V) + 0, Pyv = ,u(?ﬂ)ou . (49)

The matching conditions require lirin 9.V1(z) = Vv (z)v and hence
Z— 00

0. Vi ®v+VrVy— Vv for 2 — F00.

Integrating (4.9) with respect to z now gives

o0

—[povol IV +[povol Tvov—2[ne(Vavo)|fv = 6 (/

—00

(6z<1>0)2dz> HV—{—[po]iV .
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The identity V = vov hence gives
—2[nDvo]Tv + [po)]tv = cHv.
We hence obtained all equations which appeared in the sharp interface prob-

lem (2.1)-(2.5).

4.1.5 The Navier—Stokes/Mullins—Sekerka System as Sharp In-
terface Limit

It is also possible to obtain the Navier—Stokes/Mullins—Sekerka system (2.23)-
(2.29) as sharp interface limit. To achieve this, one has to use a different
scaling in (4.3). In fact (4.3) is replaced by

Orp+v-Vo=2mApu. (4.10)
Expansions in 2+ immediately give
Apg=0.
At order 1 one obtains from (4.10) that
(=V 4+ v v)0, Py = 2mad,, M .
Matching requires d, M7 — Vg - v and integration of the above equation

gives
(=V+vo-v)=m[Vu - v]L,

which is precisely equation (2.29).
4.2 Sharp Interface Expansions for the Lowengrub—Truskinovsky
Model

We now consider the sharp interface limit of the Lowengrub—Truskinovsky
model

Op(v) + div(pv @ v) — div S(¢, Dv) + Vp = 6ediv(Ve®@ Ve),  (4.11)
p(c)(Bsc+ Ve - v) = me’ A, (4.12)
divv = e’ Ap, (4.13)
o .
ZV(e) = 62le = Bp(e)p = plo)u, (4.14)

where S(c, Dv) = 2n(c)D(v) + A(c) div vId and we have set m = 21 and
assume that the functional relation between p and c¢ is of simple mixture
type, see (3.26).
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4.2.1 Outer Expansions

In the phases QF we obtain as in the preceding section

co==x1, po=px

and hence
div Vo = 0.

This then implies

p+0ivo + p+vo - Vvg —nrAvg + Vpy = 0.

4.2.2 Inner Expansion to Leading Order

The expansions in the interface are as in the case of the volume averaged
velocity with the two exceptions

ce: = Ce(s,z,t) =Co(t,s,2z) +eCi(t,s,z) + ...,
p: = Pus,z,t) = 1P (t,s,2) + Po(t,s,2) +....

In the interface the term eVe ® Ve will give a contribution to the order
e~ ! which has to be balanced by the pressure. This is due to the fact that
in contrast to the volume averaged case we do not work with Ve as a
capillarity term. Therefore, the inner expansion of the pressure has P_; as
the leading order term.

For the capillarity type term e div(Ve ® Ve) we obtain

1 1
ediv(Ve® Ve) = 8—262(\620\2u)+g((920vp0)

1
+EVF (|0.C1Pv @ v)+Vr - (0.C(v @ Vre+Vre ® v)),
+h.o.t. (4.15)
where we already notice the 5% contribution of this term in the momentum
balance. Similar as in the previous section we obtain from (4.13) that 9, V-
v = 0 which leads to
[vo] - v =0.

The equation (4.12) gives to leading order
p(Co)azCO(—V + VO . I/) =0.
Matching implies
lim Cp(z) = £1

z—Fo0

which implies 9,Cp # 0 and hence

V:VQ'V.
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The momentum balance (4.11) gives to leading order 2

_82:(77(00)82:\/0) + 0,P_1v = —5’83‘3200‘21/ . (4.16)
Since 0,V - v = 0 we obtain from the normal part of the above equation
P_i(t,s,z) = P(t,s) — 6|0.Co|?(t, s, 2) .

Matching requires Py — 0 and 0,Cy — 0 for z — +o00 and hence P=0
which gives

P = —6|0.Cy]%.
Hence (4.16) boils down to

9:(n(Co)0:Vg) =0
which implies after matching

[vo] =0.
The equation (4.14) gives to leading order 1
o' (Co) — 60,.Co — Bp(Co)P-1 = 0.

Using 8 = —p'/p? and P_; = —6]0.Co|? gives

g

5’1/1/(00) p(az(pazCQ)) =0.

This ODE has a unique solution fulfilling Cp(+o00) = £1 and Cy(0) = 0. In
particular Cp is independent of s and t.

4.2.3 Inner Expansions to Next Leading Order

Using (4.15) and VrCp = 0 we obtain from the momentum balance (4.11)

to order e !

—20,(n(Co)E(0: V1 ®@ v)v) — 20, (n(Co)E(VrVo)v)
+ 0. Pydv + VP + 60,(20,C00,Crv) + 6V - (10.C02v @ v) = 0

where as above we used V = vq-v which yields that the kinetic term gives no
contribution. Since Cj is independent of s and ¢, we obtain that VpP_1 = 0.
We also compute

Vr-(|0.ColPv @v) = 10.Col*Vr - (v @v) = —H|0.Co|*v.
Hence we obtain

—20,(n(Co)&(0: V1 @ v)v) —20,(n(Co)E(VrVo)v)
+ 0, Pyv + 60.(20,Co0.C1v) — 6 H|0.Col>v = 0.
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Integrating and using the matching conditions gives similar as in Section
4.14
—2[nDvo|tv + [P v =cHv,

where we used that ffooo 0,(0,Cp0,C4)dz = 0 which follows from matching.
We hence obtain that also the Lowengrub—Truskinovsky model yields the
sharp interface model (2.1)-(2.5) in the asymptotic limit € — 0.

4.3 Known Results on

First results on the sharp interface limits of

are for a simplified situation due to Lowengrub and Truskinovsky
[58]. They used the method of formally matched asymptotic expansions. In
the general case the sharp interface limit has been analyzed with formally
matched asymptotic expansions by Abels, Garcke and Griin [12] where also
different scalings have been analyzed which lead to quite different asymptotic
limits.

So far only very few rigorous results for the sharp interface limit exist.
Abels and Réger [16] and Abels and Lengeler [14] showed convergence in
the sense of varifold solutions, cf. Chen [35], for the case in which m is
constant. Abels and Roger [16] studied the case of matched densities and m
independent of €. Abels and Lengeler [14] considered the case of a volume
averaged velocity and m independent of £ as well as m = m(e) —.0 0
sublinearly, i.e., % —e—0 0. Moreover, it is shown that certain radially
symmetric solutions of (3.55)-(3.58) tend to functions which will not satisfy
the Young-Laplace law (2.5) in the limit ¢ — 0 if the mobility tends to zero
faster than 3. A result on a sharp interface limit to solutions which fulfill
the limit equations in a stronger sense is still open.

Finally, let us note that Abels and Schaubeck [17] showed that for mo-
bilities m tending to zero faster than &3 in the convective Cahn-Hilliard
equation, i.e., (3.58), (3.59) with a given velocity smooth and solenoidal
field v, the surface tension term —ediv(Ve. ® Vg.) in general does not
converge to a multiple of the mean curvature vector as ¢ tends to zero. For
a related Allen-Cahn/Stokes system Abels and Liu [15] are able to show
converge to solutions which fulfill the sharp interface problem in a strong
sense for small times.

5 Conclusions

Because of possible singularities in the interface, the mathematical descrip-
tion of a two-phase of macroscopically immiscible fluids remains a mathe-
matical challenge with many open problems and questions. We have dis-
cussed weak formulations of the classical sharp interface model for two vis-
cous, incompressible, immiscible Newtonian fluids. In the absense of surface
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tension, existence of weak solutions is known, but their is little control of
the regularity of the interface known. In particular, it cannot be excluded
that it is dense in the domain in general. In the case with surface tension,
the energy estimates provides a control of the total surface measure of the
interface. But existence of weak solutions is unknown since possible oscilla-
tion and concentration effects of the interface prevent from passing to the
limit in the weak formulation of the mean curvature vector, which arises
due to the Young-Laplace law. Moreover, we discussed a non-classical sharp
interface model, where the classical kinematic condition that the interface is
transported by the fluid velocity is replaced by a convective Mullins-Sekerka
equation. This model arises as the sharp interface limit of a diffuse interface
model if the mobility coefficient in the diffuse interface model does not tend
to zero. For this model existence of weak solutions can be shown with sim-
ilar techniques as for the Mullins-Sekerka system since an additional term
in the energy inequality gives rise to a suitable a priori bound of the mean
curvature of the interface.

In order to describe two-phase flows beyond the occurance of topological
singularities, diffuse interface models, where the macroscopically immiscible
fluids are considered as partly miscible, are an important alternative. In
these models the sharp interface and the charakteristic function of one phase
is replaced by an order parameter, which varies smoothly, but with a steep
gradient in a thin interfacial region. In the case of different densities, there
are different models in dependence of choice of the mean velocity for the fluid
mixture. The choice of a volume averaged velocity leads to a divergence free
velocity field and a system, which is very similar to the case of same densities.
We discussed results on existence of weak solutions for different choices of
the free energy and mobility. For a barycentric/mass averaged velocity the
velocity field is no longer divergence free and the pressue enters the equation
for the chemical potential. This leads to significant new difficulties in the
mathematical analysis of this model. Moreover, the linearized system is
rather different from the case of same densities. In this case existence of
weak solutions is only known in the case of a free energy, which is non-
quadratic in the gradient of the concentration.

Finally, we discussed the sharp interface limit of the diffuse interface
models to the classical sharp interface model. This convergence can be
discussed using the method of formally matched asymptotic expansions. But
there are only few mathematical rigorous convergence results. In particular
a proof of convergence to strong solutions of the limit equations remains an
open problem, even for small times.
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