Berkovich spaces over \mathbb{Z} : étale morphisms

Dorian Berger

Dorian Berger Berkovich spaces over \mathbb{Z} : étale morphisms

Let *n* be a non-negative integer and $(\mathcal{A}, \|.\|_{\mathcal{A}})$ a Banach ring.

< E

э

Let *n* be a non-negative integer and $(\mathcal{A}, \|.\|_{\mathcal{A}})$ a Banach ring.

Definition

A map $|.|: \mathcal{A}[T_1, \ldots, T_n] \to \mathbb{R}_+$ is a multiplicative semi-norm on $\mathcal{A}[T_1, \ldots, T_n]$ whose restriction to \mathcal{A} is bounded if, for all $P, Q \in \mathcal{A}[T_1, \ldots, T_n]$ and $a \in \mathcal{A}$: • |0| = 0, • |1| = 1, • $|P + Q| \le |P| + |Q|$, • |PQ| = |P||Q|, • $|a| \le ||a||_{\mathcal{A}}$. *n*-dimensional A-analytic affine space Aⁿ_A: set of multiplicative semi-norms on A[T₁,...,T_n] + topology of pointwise convergence.

F 4 3 F 4

- *n*-dimensional *A*-analytic affine space Aⁿ_A: set of multiplicative semi-norms on *A*[*T*₁,...,*T*_n] + topology of pointwise convergence.
- Analytic spectrum of \mathcal{A} : $\mathcal{M}(\mathcal{A}) = \mathbb{A}^0_{\mathcal{A}}$.

周 ト イ ヨ ト イ ヨ ト

- *n*-dimensional *A*-analytic affine space Aⁿ_A: set of multiplicative semi-norms on *A*[*T*₁,...,*T*_n] + topology of pointwise convergence.
- Analytic spectrum of \mathcal{A} : $\mathcal{M}(\mathcal{A}) = \mathbb{A}^0_{\mathcal{A}}$.

• $\mathbb{A}^n_{\mathbb{C}} \cong \mathbb{C}^n$

▲ □ ▶ ▲ □ ▶ ▲

- *n*-dimensional *A*-analytic affine space Aⁿ_A: set of multiplicative semi-norms on *A*[*T*₁,...,*T_n*] + topology of pointwise convergence.
- Analytic spectrum of \mathcal{A} : $\mathcal{M}(\mathcal{A}) = \mathbb{A}^{0}_{\mathcal{A}}$.

Examples • $\mathbb{A}^n_{\mathbb{C}} \cong \mathbb{C}^n$ • Spectrum of \mathbb{Z} : ∞ 3 5

Let $x \in \mathbb{A}^n_{\mathcal{A}}$. Then:

- ker($|.|_x$) $\subset \mathcal{A}[\mathcal{T}_1, \ldots, \mathcal{T}_n]$ is a prime ideal,
- $|.|_{x}$ induces an absolute value on

$$\operatorname{Frac}\left(\frac{\mathcal{A}[T_1,\ldots,T_n]}{\operatorname{ker}(|.|_x)}\right)$$

→ < Ξ → <</p>

Let $x \in \mathbb{A}^n_{\mathcal{A}}$. Then:

- ker $(|.|_x) \subset \mathcal{A}[\mathcal{T}_1, \dots, \mathcal{T}_n]$ is a prime ideal,
- $|.|_{x}$ induces an absolute value on

$$\operatorname{Frac}\left(\frac{\mathcal{A}[T_1,\ldots,T_n]}{\operatorname{ker}(|.|_x)}\right)$$

Definition

The completion of this field is called *complete residue field at* x and is denoted by $\mathcal{H}(x)$.

Let $x \in \mathbb{A}^n_{\mathcal{A}}$. Then:

- ker $(|.|_x) \subset \mathcal{A}[\mathcal{T}_1, \dots, \mathcal{T}_n]$ is a prime ideal,
- $|.|_{x}$ induces an absolute value on

$$\operatorname{Frac}\left(\frac{\mathcal{A}[T_1,\ldots,T_n]}{\operatorname{ker}(|.|_x)}\right)$$

Definition

The completion of this field is called *complete residue field at* x and is denoted by $\mathcal{H}(x)$.

The image of $f \in \mathcal{A}[T_1, \ldots, T_n]$ in $\mathcal{H}(x)$ is denoted by f(x).

• Functions on an open set $U \subset \mathbb{A}^n_{\mathcal{A}}$ are maps $U \longrightarrow \coprod_{x \in U} \mathcal{H}(x)$.

æ

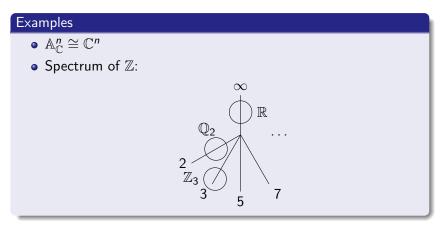
< 同 > < 三 > < 三 > -

- Functions on an open set $U \subset \mathbb{A}^n_{\mathcal{A}}$ are maps $U \longrightarrow \coprod_{x \in U} \mathcal{H}(x)$.
- Structure sheaf on Aⁿ_A: O_{Aⁿ_A}(U) is the set of functions on U that are locally uniform limits of rational functions without poles.

- Functions on an open set $U \subset \mathbb{A}^n_{\mathcal{A}}$ are maps $U \longrightarrow \coprod_{x \in U} \mathcal{H}(x)$.
- Structure sheaf on Aⁿ_A: O_{Aⁿ_A}(U) is the set of functions on U that are locally uniform limits of rational functions without poles.

Examples		
Examples • $\mathbb{A}^n_{\mathbb{C}} \cong \mathbb{C}^n$		

- Functions on an open set $U \subset \mathbb{A}^n_{\mathcal{A}}$ are maps $U \longrightarrow \coprod_{x \in U} \mathcal{H}(x)$.
- Structure sheaf on Aⁿ_A: O_{Aⁿ_A}(U) is the set of functions on U that are locally uniform limits of rational functions without poles.



< □ > <

 More generally, we can define A-analytic spaces as spaces locally of the form Supp (O_U/I) with U ⊂ Aⁿ_A open and I ⊂ O_U a coherent ideal sheaf.

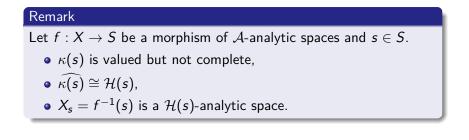
- More generally, we can define A-analytic spaces as spaces locally of the form Supp (O_U/I) with U ⊂ Aⁿ_A open and I ⊂ O_U a coherent ideal sheaf.
- In general, a closed disc is *not* an *A*-analytic space.

- More generally, we can define \mathcal{A} -analytic spaces as spaces locally of the form $\operatorname{Supp}(\mathcal{O}_U/\mathcal{I})$ with $U \subset \mathbb{A}^n_{\mathcal{A}}$ open and $\mathcal{I} \subset \mathcal{O}_U$ a coherent ideal sheaf.
- In general, a closed disc is *not* an \mathcal{A} -analytic space.
- \mathcal{A} -analytic spaces come with a notion of morphisms.

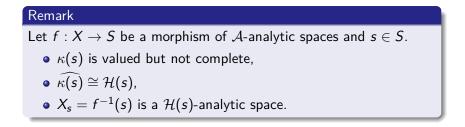
For x in an A-analytic space, we denote by \mathcal{O}_x the local ring at x and by $\kappa(x)$ the residue field at x.

• = • •

For x in an A-analytic space, we denote by \mathcal{O}_x the local ring at x and by $\kappa(x)$ the residue field at x.



For x in an A-analytic space, we denote by \mathcal{O}_x the local ring at x and by $\kappa(x)$ the residue field at x.



Note that κ is always henselian (Poineau, 2013).

From now on, ${\mathcal A}$ will be in one of the following classes:

э

From now on, $\ensuremath{\mathcal{A}}$ will be in one of the following classes:

• complete valued fields,

From now on, \mathcal{A} will be in one of the following classes:

- complete valued fields,
- rings of integers of a number field, endowed with the absolute value $\max_{\sigma:\operatorname{Frac}(\mathcal{A})\hookrightarrow\mathbb{C}}\mid\sigma(.)\mid_{\infty},$

From now on, \mathcal{A} will be in one of the following classes:

- complete valued fields,
- rings of integers of a number field, endowed with the absolute value $\max_{\sigma:\operatorname{Frac}(\mathcal{A})\hookrightarrow\mathbb{C}}\mid\sigma(.)\mid_{\infty},$
- discrete valuation rings,

From now on, \mathcal{A} will be in one of the following classes:

- complete valued fields,
- rings of integers of a number field, endowed with the absolute value $\max_{\sigma:\operatorname{Frac}(\mathcal{A})\hookrightarrow\mathbb{C}}\mid\sigma(.)\mid_{\infty},$
- discrete valuation rings,
- trivially valued Dedekind rings,
- etc . . .

In those cases, Lemanissier and Poineau proved:

- existence of finite fiber products,
- existence of analytification functor,
- Oka coherence theorem,
- finite mapping theorem,
- Rückert Nullstellensatz,
- etc . . .

Definition

Let $f : X \longrightarrow S$ be a morphism of A-analytic spaces, $x \in X$ and s = f(x). We call f flat (resp. unramified, resp. étale) at x if the induced morphism $f_x^{\sharp} : \mathcal{O}_s \longrightarrow \mathcal{O}_x$ is flat (resp. unramified, resp. étale).

Recall that:

- $\mathcal{O}_s \longrightarrow \mathcal{O}_x$ is flat if $_ \otimes_{\mathcal{O}_s} \mathcal{O}_x$ is exact,
- O_s → O_x is unramified if m_x = m_sO_x and κ(x) is a finite separable extension field of κ(s),
- $\mathcal{O}_s \longrightarrow \mathcal{O}_x$ is étale if it is flat and unramified.

The natural morphism $\mathcal{M}(\mathbb{Z}[i]) \longrightarrow \mathcal{M}(\mathbb{Z})$ is:

- flat at any point,
- étale at any point except the extreme point of the (1 + i)-adic branch.

• • = • • = •

The natural morphism $\mathcal{M}(\mathbb{Z}[i]) \longrightarrow \mathcal{M}(\mathbb{Z})$ is:

- flat at any point,
- étale at any point except the extreme point of the (1 + i)-adic branch.

Let \mathscr{S} and \mathscr{X} be \mathcal{A} -schemes locally of finite presentation and $\rho: \mathscr{X}^{\mathrm{an}} \longrightarrow \mathscr{X}$ the natural morphism.

Theorem (B., 2021)

Let $f : \mathscr{X} \longrightarrow \mathscr{S}$ be a morphism and $x \in \mathscr{X}^{\mathrm{an}}$. Then f is unramified (resp. étale) at $\rho(x)$ if and only if f^{an} is unramified (resp. étale) at x.

< 回 > < 回 > < 回 >

Main goal: fiber criteria for flat, unramified and étale morphisms.

★ Ξ →

Main goal: fiber criteria for flat, unramified and étale morphisms. Let $f : X \longrightarrow S$ be a morphism, $x \in X$ and s = f(x).

Theorem (B., 2021)

$$\mathcal{O}_{x} / \mathfrak{m}_{s} \mathcal{O}_{x} \longrightarrow \mathcal{O}_{X_{s,x}}$$
 is flat.

- 4 同 6 4 日 6 4 日 6

Main goal: fiber criteria for flat, unramified and étale morphisms. Let $f : X \longrightarrow S$ be a morphism, $x \in X$ and s = f(x).

Theorem (B., 2021)

$$\mathcal{O}_{x} / \mathfrak{m}_{s} \mathcal{O}_{x} \longrightarrow \mathcal{O}_{X_{s},x}$$
 is flat.

Definition

We call f:

- thick rigid at x if κ(x) is a finite extension field of κ(s),
- purely locally transcendental at x if $\mathfrak{m}_x = \mathfrak{m}_s \mathcal{O}_x$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main goal: fiber criteria for flat, unramified and étale morphisms. Let $f : X \longrightarrow S$ be a morphism, $x \in X$ and s = f(x).

Theorem (B., 2021)

$$\mathcal{O}_{x} / \mathfrak{m}_{s} \mathcal{O}_{x} \longrightarrow \mathcal{O}_{X_{s},x}$$
 is flat.

Definition

We call f:

- thick rigid at x if $\kappa(x)$ is a finite extension field of $\kappa(s)$,
- purely locally transcendental at x if $\mathfrak{m}_x = \mathfrak{m}_s \mathcal{O}_x$.

Remark: unramified morphisms are thick rigid and purely locally transcendental.

・ 同 ト ・ ヨ ト ・ ヨ ト

The natural projection $\pi : \mathbb{A}^n_S \longrightarrow S$ is:

thick rigid at x if and only if T₁(x),..., T_n(x) are algebraic over κ(s),

伺 ト イヨト イヨト

The natural projection $\pi : \mathbb{A}^n_S \longrightarrow S$ is:

- thick rigid at x if and only if T₁(x),..., T_n(x) are algebraic over κ(s),
- purely locally transcendental at x if and only if
 1, T₁(x),..., T_n(x) are algebraically independent over κ(s).

伺下 イヨト イヨト

The natural projection $\pi : \mathbb{A}^n_S \longrightarrow S$ is:

- thick rigid at x if and only if T₁(x),..., T_n(x) are algebraic over κ(s),
- purely locally transcendental at x if and only if
 1, T₁(x),..., T_n(x) are algebraically independent over κ(s).

If f is thick rigid and purely locally transcendental at x then $\dim_x f = 0$.

Up to shrinking X and S, it exists Y such that:

with $X \longrightarrow Y$ thick rigid at x and $Y \rightarrow S$ purely locally transcendental at y.

Then
$$\mathcal{O}_{y}/\mathfrak{m}_{s}\mathcal{O}_{y}$$
 is a field and $\mathcal{O}_{y}/\mathfrak{m}_{s}\mathcal{O}_{y} \longrightarrow \mathcal{O}_{Y_{s},y}$ is flat.

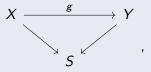
Dorian Berger Berkovich spaces over \mathbb{Z} : étale morphisms

Then
$$\mathcal{O}_{y}/\mathfrak{m}_{s}\mathcal{O}_{y}$$
 is a field and $\mathcal{O}_{y}/\mathfrak{m}_{s}\mathcal{O}_{y} \longrightarrow \mathcal{O}_{Y_{s},y}$ is flat.

As $X \longrightarrow Y$ is thick rigid at x, up to composing with an endomorphism of X, we may assume \mathcal{O}_x is a quotient of a subring of $\mathcal{O}_y[\![T_1, \ldots, T_n]\!]$. We can then conclude using the local criterion for flatness with $(T_1, \ldots, T_n) \subset \mathcal{O}_x$.

Corollary: fiber criterion for flatness

In the following situation:



 $\begin{array}{l} \text{if } X \longrightarrow S \text{ and } g_s : X_s \longrightarrow Y_s \text{ are flat at } x \text{ then } g \text{ is flat at } x \text{ and} \\ Y \longrightarrow S \text{ is flat at } y. \end{array}$

What about the fiber criterion for ramification?

Goal:

$$\begin{cases} \kappa(x) \text{ finite sep. over } \kappa(s) \\ \mathfrak{m}_{x} = \mathfrak{m}_{s} \mathcal{O}_{x} \end{cases} \iff \begin{cases} \mathcal{H}(x) \text{ finite sep. over } \mathcal{H}(s) \\ \mathfrak{m}_{X_{s},x} = 0 \end{cases}$$

э

э

What about the fiber criterion for ramification?

Goal:

$$\begin{cases} \kappa(x) \text{ finite sep. over } \kappa(s) \\ \mathfrak{m}_{x} = \mathfrak{m}_{s} \mathcal{O}_{x} \end{cases} \iff \begin{cases} \mathcal{H}(x) \text{ finite sep. over } \mathcal{H}(s) \\ \mathfrak{m}_{X_{s},x} = 0 \end{cases}$$

As $\kappa(s)$ is henselian, $\kappa(x)$ is finite separable over $\kappa(s)$ if and only if $\mathcal{H}(x)$ is finite separable over $\mathcal{H}(s)$. But $\mathfrak{m}_x = \mathfrak{m}_s \mathcal{O}_x$ does not implie $\mathfrak{m}_{X_{s,x}} = 0$.

What about the fiber criterion for ramification?

Goal:

$$\begin{cases} \kappa(x) \text{ finite sep. over } \kappa(s) \\ \mathfrak{m}_{x} = \mathfrak{m}_{s} \mathcal{O}_{x} \end{cases} \iff \begin{cases} \mathcal{H}(x) \text{ finite sep. over } \mathcal{H}(s) \\ \mathfrak{m}_{X_{s},x} = 0 \end{cases}$$

As $\kappa(s)$ is henselian, $\kappa(x)$ is finite separable over $\kappa(s)$ if and only if $\mathcal{H}(x)$ is finite separable over $\mathcal{H}(s)$. But $\mathfrak{m}_x = \mathfrak{m}_s \mathcal{O}_x$ does *not* implie $\mathfrak{m}_{X_s,x} = 0$.

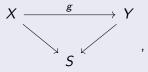
However, it is true if f is thick rigid at x, according to the following:

Proposition (B.,2021)

If f is thick rigid at x then $\mathfrak{m}_{X_{s,X}} = \sqrt{\mathfrak{m}_{x}\mathcal{O}_{X_{s,X}}}$.

Corollary: fiber criterion for étaleness

In the following situation:



if $X \longrightarrow S$ is flat at x and $g_s : X_s \longrightarrow Y_s$ is étale at x then g is étale at x (and $Y \longrightarrow S$ is flat at y).