(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

The Structure of Special Fibers through Valuations

Tudor Micu

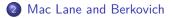
Faculty of Mathematics and Computer Science Babeş-Bolyai University

Young Researchers' Conference on Non-Archimedean and Tropical

Geometry, Regensburg, August 2022

Normal models of curves	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more	Adjacency: the applications
ດດດ	ດດດ	ດດ	

Outline



3 Diskoids: like disks, but (usually) more

Normal models of curves ●○○	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more රට	Adjacency: the applications
Normal model	s of curves		

• (K, v_K) discrete valued field, \mathcal{O}_K •valuation ring with residue ring

 $k = \mathcal{O}_K/\mathfrak{m}$, Spec $(\mathcal{O}_K) = \{\eta, s\}$, $\eta = [(0)]$, $s = [\mathfrak{m}]$;

• X algebraic curve (absolutely irreducible, smooth, projective) defined over K.

Definition

A *normal model* of X over \mathcal{O}_K is a normal, flat and proper

two-dimensional $\mathcal{O}_{\mathcal{K}}$ -scheme \mathcal{X} , equipped with an isomorphism $\mathcal{X}_g \cong X$

between its generic fiber and the curve X. As a set: $\mathcal{X} = \mathcal{X}_g \cup \mathcal{X}_s$.

- $\mathcal{X}_s \to \operatorname{Spec}(k)$ special fiber (the reduction of X modulo \mathfrak{m})
 - projective curve, but not necessarily irreducible or smooth

Normal models of curves	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more	Adjacency: the applications
∩●∩	ດດດ	ດດ	

Why normal models?

 $\mathcal{X}_s = \Gamma_1 \cup \Gamma_2 \cup \ldots \Gamma_n, \ \Gamma_i = \overline{\{\xi_i\}}$ the *irreducible components*.

Every irreducible component of \mathcal{X}_s induces a discrete valuation on $\mathcal{K}(X)$ that extends $v_{\mathcal{K}}$:

- $\xi \in \mathcal{X}$ point of codimension $1 \Rightarrow \mathcal{O}_{\mathcal{X},\xi}$ local ring of dimension 1.
- \mathcal{X} normal $\stackrel{Serre's \ criterion}{\Longrightarrow} \mathcal{X}$ regular in codimension 1;
- $\mathcal{O}_{\mathcal{X},\xi}$ local and a PID $\Rightarrow \mathcal{O}_{\mathcal{X},\xi}$ discrete valuation ring.

Proposition

If (K, v_K) is a <u>Henselian</u> discrete valued field, then every normal model \mathcal{X} of X (isomorphism class) can be identified with a finite set $V(\mathcal{X})$ of valuations on the function field K(X) that extend v_K , whose residue fields have transcendence degree 1 over k.

The projective line and the valuations of its models

$$(K, v_K)$$
 discrete valued field, $X = \mathbb{P}^1_K$, $K(X) = K(t)$
 $V(\mathcal{X}) \subset V(K[t]) = \{v : K[t] \to \mathbb{R}_{\infty} | v(t) \ge 0, v|_K = v_K\}$
(pseudovaluations)

Definition

The Gauss valuation:

$$v_0: \mathcal{K}[t] \to \mathbb{R} \cup \{\infty\}$$

 $f = \sum_{i=0}^n a_i t^i \mapsto \min_{i=\overline{0,n}}(v_{\mathcal{K}}(a_i))$

Order on V(K[t]): $v \le w \stackrel{def}{\iff} v(f) \le w(f), \ \forall f \in K[t]$

 $m{v}_0$ is the least element in the poset $(V(\mathcal{K}[t]),\leq)$

Normal models of curves	Mac Lane and Berkovich ●೧೧	Diskoids: like disks, but (usually) more ෆෆ	Adjacency: the applications

Who is V(K[t])?

augmentations: modify valuation v to $w = [v; w(\varphi) = r], \varphi \in K[t],$ $r \in \mathbb{R} \cup \{\infty\}, r > v(\varphi).$ $w : \sum_{i=0}^{n} a_i \varphi^i \mapsto \min_{i=0,n} \left(v(a_i \varphi^i) \right) \Rightarrow w \ge v$

this can be done repeatedly:

inductive (pseudo)valuation:

$$\mathbf{v} = [\mathbf{v}_0, \mathbf{v}_1(\varphi_1) = \lambda_1, \dots, \mathbf{v}_n(\varphi_n) = \lambda_n] = [\mathbf{v}_0, \varphi_1 \mapsto \lambda_1, \dots, \varphi_n \mapsto \lambda_n]$$

limit (pseudo)valuation:
$$v = \lim_{n \to \infty} v_n$$
, $v_i = [v_{i-1}; v_i(\varphi_i) = \lambda_i]$

Theorem ([ML36])

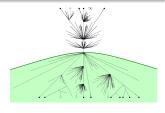
Any pseudovaluation in V(K[t]) is either inductive, or limit.

Normal models of curves Mac		Adjacency: the applications ດດດດດດ
Berkovich?		

 $(\mathcal{K}, |\cdot|_{\mathcal{K}})$ <u>Banach</u> field $\approx (\mathcal{K}, v_{\mathcal{K}})$ complete valued field $\mathbb{D}^{1}_{\text{Berk},\mathcal{K}} = \text{the Berkovich unit disk over } \mathcal{K}$

points in $\mathbb{D}^1_{\operatorname{Berk},K}$ = bounded multiplicative seminorms \sim pseudovaluations in V(K[t])

 $\mathbb{P}^1_{ ext{Berk},\mathcal{K}}$, the Berkovich projective line $pprox V(\mathcal{K}[t]) \cup V(\mathcal{K}[1/t])$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[BR10]

The Classification of Pseudovaluations/Points on V(K[t]):

For every $v \in V(K[t])$ we have the following types of pseudovaluations (corresponding to the types of

points in \mathbb{D}^1_{Berk}):

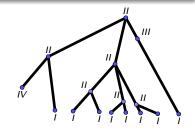
$$\begin{split} E_{v} &:= \dim_{\mathbb{Q}} \left(\left(\Gamma_{v} / \Gamma_{K} \right) \otimes \mathbb{Q} \right) \\ F_{v} &:= \operatorname{trdeg}_{k} \left(\kappa(v) \right) \\ E_{v} + F_{v} &\leq \operatorname{trdeg}_{K}(K(t)) \ (Abhyankar) \\ \operatorname{Kern}(v) &= \{ f \in K[t] | \ v(f) = \infty \} \end{split}$$

• *I*, if Kern $(v) \neq \{0\}$;

• *II*, if Kern(
$$v$$
) = {0}, $E_v = 0$, $F_v = 1$;

• *III*, if Kern(v) = {0}, $E_v = 1$, $F_v = 0$;

•
$$IV$$
, if Kern $(v) = \{0\}$, $E_v = 0$, $F_v = 0$;



▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

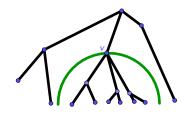
Normal models of curves	Mac Lane and Berkovich ດດດ	Diskoids: like disks, but (usually) more ●O	Adjacency: the applications
Diskoids			

For every $v \in V(K[t])$ we will be interested in the set

 $D_{v} := \{w \in V(K[t]) | w \ge v\}$ and call it the diskoid with boundary v.

Theorem

Let (K, v_K) be a Henselian valued field. If $v = [v_0, v_1(\varphi_1) = \lambda_1, \dots, v_n(\varphi_n) = \lambda_n]$, then: $D_v = D[\varphi_n, \lambda_n] = = \{v \in V(K[t]) | v(\varphi_n) \ge \lambda_n\}$



◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ◆○

Theorem

Let (K, v_K) be a Henselian discrete valued field. For any two diskoids $D_1, D_2 \subseteq V(K[t])$ we have either $D_1 \cap D_2 = \emptyset$, $D_1 \subseteq D_2$ or $D_2 \subseteq D_1$.

Maximal elements and infima

Maximal elements

 $v \in V(K[t])$ is a maximal element if and only if v is of type I or IV.

The infimum

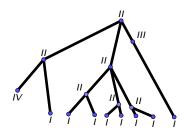
$$\forall v, w \in V(K[t]), \exists ! v \land w \text{ so that:}$$

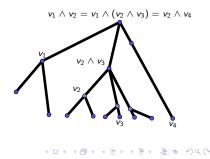
•
$$v \wedge w \leq v, w;$$

• if
$$u \leq v, w$$
, then $u \leq v \wedge w$.

$$v \wedge w \in V_{II,III}(K[t]) \text{ and if } v \notin W,$$

then $v \wedge w \in V_{II}(K[t]).$





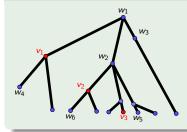
Normal models of curves	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more රට	Adjacency: the applications ●00000
Adiacency			

 (K, v_K) Henselian discrete valued field, \mathcal{O}_K excellent, \mathcal{X} model of \mathbb{P}^1_K .

Adjacency with respect to a model

$$v, w \in V(K[t])$$
 are \mathcal{X} -adjacent $(v \sim_{\mathcal{X}} w)$ if
 $V(\mathcal{X}) \cap ([v \land w, v) \cup (v \land w, w]) = \emptyset.$

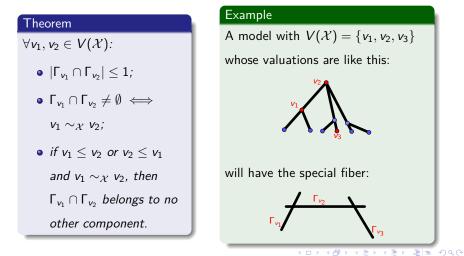
Example



Let
$$V(\mathcal{X}) = \{v_1, v_2, v_3\}$$
. Then:
 $w_1 \not\sim_{\mathcal{X}} w_4, w_6 \not\sim_{\mathcal{X}} w_5,$
 $w_5 \sim_{\mathcal{X}} w_3, w_5 \sim_{\mathcal{X}} w_2.$

Adjacency and intersections of special fibers

 (K, v_K) Henselian discrete valued field, \mathcal{O}_K excellent;



Normal models of curves	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more	Adjacency: the applications
	ດດດ	රෆ	00●000

Adjacency and reduction

 $(\mathcal{K}, v_{\mathcal{K}})$ Henselian discrete valued field, $\mathcal{O}_{\mathcal{K}}$ excelent, \mathcal{X} normal model of $\mathbb{P}^{1}_{\mathcal{K}} \approx \operatorname{Spec}(\mathcal{K}[t]) \cup \{\infty\}.$

The type I pseudovaluation induced by a polynomial

 $x = [(\varphi)] \in X^0$ with $\varphi \in \mathcal{O}_K[t]$ monic and irreducible

$$\rightsquigarrow \mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\varphi,\infty} : f \mapsto \mathbf{v}_{K^{alg}}(f(\theta))$$

where θ is a root of φ and $v_{K^{alg}}$ is the unique extension of v_K to K^{alg} .

Theorem

Let $x \in X$ be a closed point and denote by \tilde{x} the reduction of x in \mathcal{X} .

Then for every $v \in V(\mathcal{X})$ we have:

 $\widetilde{x} \in \Gamma_{v} \iff \mathbf{v}_{\mathbf{X}} \sim_{\mathcal{X}} \mathbf{v}$

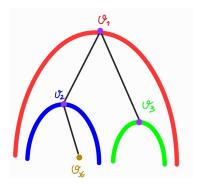
Normal models of curves ດດດ	Mac Lane and Berkovich	Diskoids: like disks, but (usually) more ດດ	Adjacency: the applications
Reduction:	an example		

Let $(K, v_L) = (\mathbb{Q}_2, \nu_2)$ be the field of 2-adic numbers. We consider the following valuations, along with their diskoids:

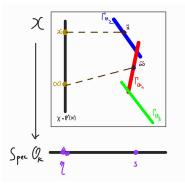
$$\begin{split} \mathbf{v_1} &= [v_0; (t+1) \mapsto 1], \ D_{v_1} = D[t+1,1] \\ v_2 &= [v_0; (t+1) \mapsto 1; (t^2+t+1) \mapsto 2], \ D_{v_2} = D[t^2+t+1,2] \\ v_3 &= [v_0; (t+1) \mapsto 1; (t^2+1) \mapsto 1], \ D_{v_3} = D[t^2+1,1] \\ v_2 \text{ and } v_3 \text{ are augmentations of } v_1, \text{ so } v_2, v_3 \in D_{v_1}. \\ v_3(t^2+t+1) < 2, \text{ so } v_3 \notin D_{v_2} \\ v_2(t^2+1) < 1, \text{ so } v_2 \notin D_{v_3} \\ \text{Let } x = [(t^2+t+1)]. \text{ Then } \mathbf{v_x} = [v_0; (t^2+t+1) \mapsto \infty] \in D_{v_2}. \end{split}$$

・ロト・4回ト・4回ト・4回ト・4回ト

The diskoid/model image



 $\begin{aligned} v_{x} \in D_{v_{2}} \\ D_{v_{2}} \cap D_{v_{3}} = \emptyset \\ D_{v_{2}}, D_{v_{3}} \subset D_{v_{1}} \end{aligned}$



$$\begin{split} \widetilde{x} \in \Gamma_{\nu_2}, \, \widetilde{x} \notin \Gamma_{\nu_1}, \, \widetilde{x} \notin \Gamma_{\nu_3} \\ \widetilde{\infty} \in \Gamma_{\nu_1}, \, \widetilde{\infty} \notin \Gamma_{\nu_2}, \, \widetilde{\infty} \notin \Gamma_{\nu_3} \end{split}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Normal models of curves ດດດ	Mac Lane and Berkovich ດດດ	Diskoids: like disks, but (usually) more ෆෆ	Adjacency: the applications
References			

 Matthew Baker and Robert Rumely, Potential Theory on the Berkovich Projective Line, American Mathematical Society, 2010.
 Tudor Micu, Pseudovaluations on polynomial rings, diskoids and normal models of the projective line, Ph.D. thesis, 2020.
 Saunders Mac Lane, A Construction for Absolute Values in

Polynomial Rings, Transactions of the American Mathematical Society **40** (1936), no. 3, 363–395.

Julian Rüth, *Models of Curves and Valuations*, Ph.D. thesis, Ulm University, 2015.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

What is a valuation?

R commutative ring,

- $v: R
 ightarrow \mathbb{R} \cup \{\infty\}$ valuation
 - $v(x+y) \geq \min(v(x), v(y));$
 - $v(x \cdot y) = v(x) + v(y);$
 - **3** v(1) = 0;

•
$$v(x) = \infty \iff x = 0$$

 \rightarrow can be extended to $\operatorname{Frac}(R)$

Examples

R = Z, p prime in Z, ν_p(n) = max{k ∈ Z|p^k divides n} p-adic valuation
R = H(U), U ⊂ C connected open, P ∈ U

$$\operatorname{ord}_P(f) = \min\{n \in \mathbb{N} | f^{(n)}(P) \neq 0\}$$

multiplicity in P

pseudovaluation: allows $x \neq 0$ with $v(x) = \infty$ $\operatorname{Kern}(v) := \{x \in R | v(x) = \infty\}$ ideal in R

Key polynomials

Definition

Let $v \in V(K[t]) \setminus V_l(K[t])$ and $f, g \in K[t]$. We define the relations:

•
$$f \sim_v g \iff v(f-g) > v(f)$$
 or $f = g = 0$;

•
$$g \mid_{v} f$$
 if $\exists q \in K[t]$ so that $f \sim_{v} qg$.

For $v \in V(K[t])$, a polynomial $\varphi \in K[t]$ is:

- v-irreducible if $\forall f, g \in K[t]$: $\varphi \mid_v fg \Rightarrow \varphi \mid_v f$ or $\varphi \mid_v g$;
- v-minimal if $\forall f \in K[t] \setminus \{0\}$: $\varphi \mid_{v} f \Rightarrow \deg(\varphi) \leq \deg(f)$;
- key polynomial of v if φ is <u>v-minimal</u> and <u>v-irreducible</u>.

In particular, every key polynomial is irreducible over K and its completion \widehat{K} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Augmentations

Definition

Let $v \in V(K[t])$ be a Mac Lane valuation, $\varphi \in K[t]$ a key polynomial over v and $\lambda \in \mathbb{R} \cup \{\infty\}$ with $\lambda > v(\varphi)$. We define the *augmentation corresponding to* (φ, λ) as:

$$w: \mathcal{K}[t] \to \mathbb{R} \cup \{\infty\}$$
$$f \mapsto \min_{i=0,m} \left(v(a_i) + i\lambda \right) = \min_{i=0,m} \left(v(a_i \varphi^i) \right),$$

where $f = \sum_{i=0}^{m} a_i \varphi^i$ is the φ -adic expansion of f, that is, we have $a_i \in K[t]$ with $\deg(a_i) < \deg(\varphi)$ for every i.

 $a \in K, f \in K[t], r \in \mathbb{R} \cup \{\infty\}$ $D_K[a, r] := \{v \in V(K[t]) | v(t - a) \ge r\}$ non-archimedean disk

If $a, b \in \mathcal{O}_K$ and $r, s \in \mathbb{R}_{>0} \cup \{\infty\}$, then:

$$D[a, r] \cap D[b, s] = \emptyset \iff v_{\mathcal{K}}(a - b) < \min(r, s)$$
$$D[a, r] \subset D[b, s] \iff v_{\mathcal{K}}(a - b) \ge \min(r, s) \text{ and } r > s$$
$$D[a, r] = D[b, s] \iff v_{\mathcal{K}}(a - b) \ge \min(r, s) \text{ and } r = s$$
$$D[a, r] \supset D[b, s] \iff v_{\mathcal{K}}(a - b) \ge \min(r, s) \text{ and } r < s$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Seminorms

- R commutative ring.
- $|\cdot|: R \to \mathbb{R}_+$ seminorm on *R* if:
 - $|f-g| \le |f|+|g|, \ \forall f,g \in R;$
 - $|fg| \leq |f| \cdot |g|, \ \forall f, g \in R;$
 - **3** |1| = 1;
 - (1) |0| = 0.

- $|\cdot|$ will be called
 - a norm, if

$$|f|=0\iff f=0,\ \forall f\in R;$$

- non-archimedean, if $|f - g| \le \max(|f|, |g|), \ \forall f, g \in R;$
- archimedean, if it is not non-archimedean;
- multiplicative, if
 - $|fg| = |f| \cdot |g|, \ \forall f, g \in R.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The type classification

We have obtained the following classification theorem:

Theorem

 (K, v_K) discrete valued field, $v \in V(K[t])$.

Then we have the following possibilities:

$$\begin{array}{ll} v \ \underline{inductive}, & v \ \underline{limit}, \\ v = [v_0, \dots, v_n(\varphi_n) = \lambda_n] & v = \lim_{n \to \infty} v_n \\ and \ v \ is \ of \ type & and \ v \ is \ of \ type: \\ \begin{cases} I, \ if \ \lambda_n = \infty & \\ II, \ if \ \lambda_n \in \mathbb{Q} & \\ III, \ if \ \lambda_n \in \mathbb{R} \setminus \mathbb{Q} & \\ \end{cases} & \begin{cases} I, \ if \ (\deg(\varphi_n))_{n \in \mathbb{N}} \ constant \ for \ n \ge m, \\ and \ \exists g \in K[t] : \lim_{n \to \infty} \varphi_n \ | \ g \in \hat{K}[t] \\ IV, \ otherwise \end{cases}$$

The type classification ($\mathcal{O}_{\mathcal{K}}$ excellent)

We have obtained the following classification theorem:

Theorem

 (K, v_K) discrete valued field, $v \in V(K[t])$, \mathcal{O}_K excellent.

Then we have the following possibilities:

$$\begin{array}{ll} v \; \underline{inductive}, & v \; \underline{limit}, \\ v = [v_0, \dots, v_n(\varphi_n) = \lambda_n] & v = \lim_{n \to \infty} v_n \\ and \; v \; is \; of \; type & and \; v \; is \; of \; type: \\ \begin{cases} I, \; if \; \lambda_n = \infty \\ II, \; if \; \lambda_n \in \mathbb{Q} \\ III, \; if \; \lambda_n \in \mathbb{R} \setminus \mathbb{Q} \end{cases} & \begin{cases} I, \; if \; (\deg(\varphi_n))_{n \in \mathbb{N}} \; constant \; for \; n \geq m, \\ and \; \varphi := \lim_{n \to \infty} \varphi_n \in K^h[t] \\ IV, \; otherwise \end{cases}$$

The type classification (K complete)

We have obtained the following classification theorem:

Theorem

 (K, v_K) complete discrete valued field, $v \in V(K[t])$.

Then we have the following possibilities:

v <u>inductive</u>,

$$\begin{aligned} \mathbf{v} &= [\mathbf{v}_0, \dots, \mathbf{v}_n(\varphi_n) = \lambda_n] \\ \text{and } \mathbf{v} \text{ is of type} \begin{cases} I, & \text{if } \lambda_n = \infty \\ II, & \text{if } \lambda_n \in \mathbb{Q} \\ III, & \text{if } \lambda_n \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \end{aligned}$$

v <u>limit</u>,

$$v = \lim_{n \to \infty} v_n,$$

$$(\deg(\varphi_n))_{n \in \mathbb{N}} \text{ unbounded}$$

and v is of type IV