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Normal models of curves

(K , vK ) discrete valued field, OK valuation ring with residue ring

k = OK /m, Spec(OK ) = {η, s}, η = [(0)], s = [m];

X algebraic curve (absolutely irreducible, smooth, projective) defined

over K .

Definition
A normal model of X over OK is a normal, flat and proper

two-dimensional OK -scheme X , equipped with an isomorphism Xg ∼= X

between its generic fiber and the curve X . As a set: X = Xg ∪ Xs .

Xs → Spec(k) special fiber (the reduction of X modulo m)

projective curve, but not necessarily irreducible or smooth
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Why normal models?

Xs = Γ1 ∪ Γ2 ∪ . . . Γn, Γi = {ξi} the irreducible components.

Every irreducible component of Xs induces a discrete valuation on K (X )

that extends vK :

ξ ∈ X point of codimension 1 ⇒ OX ,ξ local ring of dimension 1.

X normal Serre′s criterion=⇒ X regular in codimension 1;

OX ,ξ local and a PID ⇒ OX ,ξ discrete valuation ring.

Proposition
If (K , vK ) is a Henselian discrete valued field, then every normal model X

of X (isomorphism class) can be identified with a finite set V (X ) of

valuations on the function field K (X ) that extend vK , whose residue

fields have transcendence degree 1 over k.



Normal models of curves Mac Lane and Berkovich Diskoids: like disks, but (usually) more Adjacency: the applications

The projective line and the valuations of its models

(K , vK ) discrete valued field, X = P1
K , K (X ) = K (t)

V (X ) ⊂ V (K [t]) = {v : K [t] → R∞| v(t) ≥ 0, v |K = vK }

(pseudovaluations)

Definition
The Gauss valuation:

v0 : K [t] → R ∪ {∞}

f =
n∑

i=0
ai t i 7→ min

i=0,n
(vK (ai))

Order on V (K [t]):

v ≤ w def⇐⇒ v(f ) ≤ w(f ), ∀f ∈ K [t]

v0 is the least element in the poset

(V (K [t]), ≤)
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Who is V (K [t])?

augmentations: modify valuation v to w = [v ; w(φ) = r ], φ ∈ K [t],

r ∈ R ∪ {∞}, r > v(φ). w :
n∑

i=0
aiφ

i 7→ min
i=0,n

(
v(aiφ

i)
)

⇒ w ≥ v

this can be done repeatedly:

inductive (pseudo)valuation:

v = [v0, v1(φ1) = λ1, . . . , vn(φn) = λn] = [v0, φ1 7→ λ1, . . . , φn 7→ λn]

limit (pseudo)valuation: v = lim
n→∞

vn, vi = [vi−1; vi(φi) = λi ]

Theorem ([ML36])
Any pseudovaluation in V (K [t]) is either inductive, or limit.
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Berkovich?

(K , | · |K ) Banach field ≈ (K , vK ) complete valued field

D1
Berk,K = the Berkovich unit disk over K

points in D1
Berk,K = bounded multiplicative seminorms ≈

pseudovaluations in V (K [t])

P1
Berk,K , the Berkovich projective line

≈ V (K [t]) ∪ V (K [1/t])

[BR10]
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The Classification of Pseudovaluations/Points on V (K [t]):

For every v ∈ V (K [t]) we have the

following types of pseudovaluations

(corresponding to the types of

points in D1
Berk):

Ev := dimQ
(
(Γv /ΓK ) ⊗ Q

)
Fv := trdegk

(
κ(v)

)
Ev + Fv ≤ trdegK (K (t)) (Abhyankar)

Kern(v) = {f ∈ K [t]| v(f ) = ∞}

I, if Kern(v) ̸= {0};

II, if Kern(v) = {0}, Ev = 0, Fv = 1;

III, if Kern(v) = {0}, Ev = 1, Fv = 0;

IV , if Kern(v) = {0}, Ev = 0, Fv = 0;

II

II

III

II

IV

I II I

II

I

II

I I

II

I
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Diskoids

For every v ∈ V (K [t]) we will be interested in the set

Dv := {w ∈ V (K [t])| w ≥ v} and call it the diskoid with boundary v .

Theorem
Let (K , vK ) be a Henselian valued

field. If v = [v0, v1(φ1) =

λ1, . . . , vn(φn) = λn], then:

Dv = D[φn, λn] =

= {v ∈ V (K [t])| v(φn) ≥ λn}

v

Theorem
Let (K , vK ) be a Henselian discrete valued field. For any two diskoids

D1, D2 ⊆ V (K [t]) we have either D1 ∩ D2 = ∅, D1 ⊆ D2 or D2 ⊆ D1.
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Maximal elements and infima

Maximal elements
v ∈ V (K [t]) is a maximal element if

and only if v is of type I or IV .

II

II

III

II

IV

I II I

II

I

II

I I

II

I

The infimum
∀v , w ∈ V (K [t]), ∃!v ∧ w so that:

v ∧ w ≤ v , w ;

if u ≤ v , w , then u ≤ v ∧ w .

v ∧ w ∈ VII,III(K [t]) and if v
�
��<=

>
w ,

then v ∧ w ∈ VII(K [t]).

v1 ∧ v2 = v1 ∧ (v2 ∧ v3) = v2 ∧ v4

v2 ∧ v3
v1

v4v3

v2
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Adjacency

(K , vK ) Henselian discrete valued field, OK excellent, X model of P1
K .

Adjacency with respect to a model
v , w ∈ V (K [t]) are X -adjacent (v ∼X w) if

V (X ) ∩ ([v ∧ w , v) ∪ (v ∧ w , w ]) = ∅.

Example
w1

w2

w3

v1

w4

w6 v3

v2

w5

Let V (X ) = {v1, v2, v3}. Then:

w1 ̸∼X w4, w6 ̸∼X w5,

w5 ∼X w3, w5 ∼X w2.
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Adjacency and intersections of special fibers

(K , vK ) Henselian discrete valued field, OK excellent;

Theorem
∀v1, v2 ∈ V (X ):

|Γv1 ∩ Γv2 | ≤ 1;

Γv1 ∩ Γv2 ̸= ∅ ⇐⇒

v1 ∼X v2;

if v1 ≤ v2 or v2 ≤ v1

and v1 ∼X v2, then

Γv1 ∩ Γv2 belongs to no

other component.

Example
A model with V (X ) = {v1, v2, v3}

whose valuations are like this:

v3

v1

v2

will have the special fiber:

Γv1

Γv2

Γv3
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Adjacency and reduction

(K , vK ) Henselian discrete valued field, OK excelent, X normal model of

P1
K ≈ Spec(K [t]) ∪ {∞}.

The type I pseudovaluation induced by a polynomial
x = [(φ)] ∈ X 0 with φ ∈ OK [t] monic and irreducible

⇝ vx = vφ,∞ : f 7→ vK alg (f (θ))

where θ is a root of φ and vK alg is the unique extension of vK to K alg .

Theorem
Let x ∈ X be a closed point and denote by x̃ the reduction of x in X .

Then for every v ∈ V (X ) we have:

x̃ ∈ Γv ⇐⇒ vx ∼X v
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Reduction: an example

Let (K , vL) = (Q2, ν2) be the field of 2-adic numbers. We consider the

following valuations, along with their diskoids:

v1 = [v0; (t + 1) 7→ 1], Dv1 = D[t + 1, 1]

v2 = [v0; (t + 1) 7→ 1; (t2 + t + 1) 7→ 2], Dv2 = D[t2 + t + 1, 2]

v3 = [v0; (t + 1) 7→ 1; (t2 + 1) 7→ 1], Dv3 = D[t2 + 1, 1]

v2 and v3 are augmentations of v1, so v2, v3 ∈ Dv1 .

v3(t2 + t + 1) < 2, so v3 /∈ Dv2

v2(t2 + 1) < 1, so v2 /∈ Dv3

Let x = [(t2 + t + 1)]. Then vx = [v0; (t2 + t + 1) 7→ ∞] ∈ Dv2 .
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The diskoid/model image

vx ∈ Dv2

Dv2 ∩ Dv3 = ∅

Dv2 , Dv3 ⊂ Dv1

x̃ ∈ Γv2 , x̃ /∈ Γv1 , x̃ /∈ Γv3

∞̃ ∈ Γv1 , ∞̃ /∈ Γv2 , ∞̃ /∈ Γv3



Normal models of curves Mac Lane and Berkovich Diskoids: like disks, but (usually) more Adjacency: the applications

References

Matthew Baker and Robert Rumely, Potential Theory on the

Berkovich Projective Line, American Mathematical Society, 2010.

Tudor Micu, Pseudovaluations on polynomial rings, diskoids and

normal models of the projective line, Ph.D. thesis, 2020.

Saunders Mac Lane, A Construction for Absolute Values in

Polynomial Rings, Transactions of the American Mathematical

Society 40 (1936), no. 3, 363–395.

Julian Rüth, Models of Curves and Valuations, Ph.D. thesis, Ulm

University, 2015.



Additional material

What is a valuation?

R commutative ring,

v : R → R ∪ {∞} valuation

1 v(x+y) ≥ min
(
v(x), v(y)

)
;

2 v(x · y) = v(x) + v(y);

3 v(1) = 0;

4 v(x) = ∞ ⇐⇒ x = 0

→ can be extended to Frac(R)

Examples
1 R = Z, p prime in Z,

νp(n) = max{k ∈ Z|pk divides n}

p-adic valuation

2 R = H(U), U ⊂ C connected open,

P ∈ U

ordP(f ) = min{n ∈ N| f (n)(P) ̸= 0}

multiplicity in P

pseudovaluation: allows x ̸= 0 with v(x) = ∞

Kern(v) := {x ∈ R| v(x) = ∞} ideal in R
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Key polynomials

Definition
Let v ∈ V (K [t]) \ VI(K [t]) and f , g ∈ K [t]. We define the relations:

f ∼v g def⇐⇒ v(f − g) > v(f ) or f = g = 0;

g |v f if ∃q ∈ K [t] so that f ∼v qg .

For v ∈ V (K [t]), a polynomial φ ∈ K [t] is:

v-irreducible if ∀f , g ∈ K [t] : φ |v fg ⇒ φ |v f or φ |v g ;

v-minimal if ∀f ∈ K [t] \ {0} : φ |v f ⇒ deg(φ) ≤ deg(f );

key polynomial of v if φ is v-minimal and v-irreducible.

In particular, every key polynomial is irreducible over K and its

completion K̂ .
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Augmentations

Definition

Let v ∈ V (K [t]) be a Mac Lane valuation, φ ∈ K [t] a key polynomial

over v and λ ∈ R ∪ {∞} with λ > v(φ). We define the augmentation

corresponding to (φ, λ) as:

w : K [t] → R ∪ {∞}

f 7→ min
i=0,m

(
v(ai) + iλ

)
= min

i=0,m

(
v(aiφ

i)
)

,

where f =
m∑

i=0
aiφ

i is the φ-adic expansion of f , that is, we have

ai ∈ K [t] with deg(ai) < deg(φ) for every i .
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Disks

a ∈ K , f ∈ K [t], r ∈ R ∪ {∞}

DK [a, r ] := {v ∈ V (K [t])| v(t − a) ≥ r} non-archimedean disk

If a, b ∈ OK and r , s ∈ R>0 ∪ {∞}, then:

D[a, r ] ∩ D[b, s] = ∅ ⇐⇒ vK (a − b) < min(r , s)

D[a, r ] ⊂ D[b, s] ⇐⇒ vK (a − b) ≥ min(r , s) and r > s

D[a, r ] = D[b, s] ⇐⇒ vK (a − b) ≥ min(r , s) and r = s

D[a, r ] ⊃ D[b, s] ⇐⇒ vK (a − b) ≥ min(r , s) and r < s
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Seminorms

R commutative ring.

| · | : R → R+ seminorm on R if:

1 |f −g | ≤ |f |+|g |, ∀f , g ∈ R;

2 |fg | ≤ |f | · |g |, ∀f , g ∈ R;

3 |1| = 1;

4 |0| = 0.

| · | will be called

a norm, if

|f | = 0 ⇐⇒ f = 0, ∀f ∈ R;

non-archimedean, if

|f − g | ≤ max(|f |, |g |), ∀f , g ∈ R;

archimedean, if it is not

non-archimedean;

multiplicative, if

|fg | = |f | · |g |, ∀f , g ∈ R.
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The type classification

We have obtained the following classification theorem:

Theorem
(K , vK ) discrete valued field, v ∈ V (K [t]).

Then we have the following possibilities:

v inductive,

v = [v0, . . . , vn(φn) = λn]

and v is of type
I, if λn = ∞

II, if λn ∈ Q

III, if λn ∈ R \ Q

v limit,

v = lim
n→∞

vn

and v is of type:
I, if (deg(φn))n∈N constant for n ≥ m,

and ∃g ∈ K [t] : lim
n→∞

φn | g ∈ K̂ [t]

IV , otherwise
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The type classification (OK excellent)

We have obtained the following classification theorem:

Theorem
(K , vK ) discrete valued field, v ∈ V (K [t]), OK excellent.

Then we have the following possibilities:

v inductive,

v = [v0, . . . , vn(φn) = λn]

and v is of type
I, if λn = ∞

II, if λn ∈ Q

III, if λn ∈ R \ Q

v limit,

v = lim
n→∞

vn

and v is of type:
I, if (deg(φn))n∈N constant for n ≥ m,

and φ := lim
n→∞

φn ∈ K h[t]

IV , otherwise
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The type classification (K complete)

We have obtained the following classification theorem:

Theorem
(K , vK ) complete discrete valued field, v ∈ V (K [t]).

Then we have the following possibilities:

v inductive,

v = [v0, . . . , vn(φn) = λn]

and v is of type


I, if λn = ∞

II, if λn ∈ Q

III, if λn ∈ R \ Q

v limit,

v = lim
n→∞

vn,

(deg(φn))n∈N unbounded

and v is of type IV
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