Refined tropical invariants in positive genus

Uriel Sinichkin (TAU)
Work in progress, joint with Eugenii Shustin

August 2nd, 2022
Non-Archemidian and Tropical Geometry, Regensburg

Outline

Tropical curve counting

Refined invariants

Refined elliptic broccoli invariants

Tropical curve counting

Tropical curve counting

Theorem [Mikhalkin, '03].
For $3 d+g-1$ points \bar{p} in general position we have

$$
N_{g, d}=\sum_{\bar{p} \subseteq \Gamma} w(\Gamma)
$$

where $w(\Gamma)=\prod_{V \in \Gamma^{0}} \mu(V)$ and $\mu(V)$ is the Mikhalkin multiplicity of $V=$ the lattice area of the cell corresponding to V in the dual subdivision.

Tropical curve counting

Theorem [Mikhalkin, '03].
For $3 d+g-1$ points \bar{p} in general position we have

$$
N_{g, d}=\sum_{\bar{p} \subseteq \Gamma} w(\Gamma)
$$

where $w(\Gamma)=\prod_{V \in \Gamma^{0}} \mu(V)$ and $\mu(V)$ is the Mikhalkin multiplicity of $V=$ the lattice area of the cell corresponding to V in the dual subdivision.

In particular, this sum is

1. independent of the points (as long as they are generic),
2. and the weight of Γ is a product of terms that are computed locally.

Refined invariants

Block-Gottsche refined invariants

Block-Gottsche refined invariants

Definition.
Block-Gottsche weight of a tropical curve Γ is

$$
B G_{y}(\Gamma)=\prod_{V \in \Gamma^{0}}[\mu(V)]^{-} \in \mathbb{Z}\left[y^{ \pm 1 / 2}\right]
$$

where

$$
[\mathrm{a}]_{y}^{-}:=\frac{y^{\mathrm{a} / 2}-y^{-a / 2}}{y^{1 / 2}-y^{-1 / 2}}
$$

and $\mu(V)$ is the Mikhalkin multiplicity of a vertex V.

Block-Gottsche refined invariants

Definition.
Block-Gottsche weight of a tropical curve Γ is

$$
B G_{y}(\Gamma)=\prod_{V \in \Gamma^{0}}[\mu(V)]^{-} \in \mathbb{Z}\left[y^{ \pm 1 / 2}\right]
$$

where

$$
[a]_{y}^{-}:=\frac{y^{\mathrm{a} / 2}-y^{-a / 2}}{y^{1 / 2}-y^{-1 / 2}}
$$

and $\mu(V)$ is the Mikhalkin multiplicity of a vertex V.
Theorem [Block, Gottsche '14].
Given $3 d+g-1$ points $\overline{\boldsymbol{p}}$ in general position,

$$
B G_{y}(d, g):=\sum_{\Gamma \supset \bar{p}, g(\Gamma)=g} B G_{y}(\Gamma)
$$

does not depend on the choice of points.

Why a refined count matters?

Why a refined count matters?

- If we substitute $y=1$, we obtain $N_{g, d}$

$$
B G_{1}(d, g)=N_{g, d} .
$$

Why a refined count matters?

- If we substitute $y=1$, we obtain $N_{g, d}$

$$
B G_{1}(d, g)=N_{g, d} .
$$

- If we substitute $y=-1$, we obtain totally real Welschinger numbers near the tropical limit

$$
B G_{-1}(d, g)=W_{g}^{\operatorname{tr}}\left(\mathbb{R} P^{2}\right) .
$$

Why a refined count matters?

- If we substitute $y=1$, we obtain $N_{g, d}$

$$
B G_{1}(d, g)=N_{g, d} .
$$

- If we substitute $y=-1$, we obtain totally real Welschinger numbers near the tropical limit

$$
B G_{-1}(d, g)=W_{g}^{\mathrm{tr}}\left(\mathbb{R} P^{2}\right) .
$$

- This works for (some) other toric surfaces, not only \mathbb{P}^{2}.

Why a refined count matters?

- If we substitute $y=1$, we obtain $N_{g, d}$

$$
B G_{1}(d, g)=N_{g, d} .
$$

- If we substitute $y=-1$, we obtain totally real Welschinger numbers near the tropical limit

$$
B G_{-1}(d, g)=W_{g}^{\mathrm{tr}}\left(\mathbb{R} P^{2}\right)
$$

- This works for (some) other toric surfaces, not only \mathbb{P}^{2}.
- Gottsche-Shende conjecture.
- Mikhalkin interpertaition as quantum index.
- Generating series of log-GW invariants due to Bousseau.

Refined rational broccoli invariant

Definition.

Let $n_{e}, n_{v} \in \mathbb{N}$ with $n_{e}+2 n_{v}=3 d-1$ and let
$p_{1}, \ldots, p_{n_{e}+n_{v}} \in \mathbb{R}^{2}$. For a rational tropical curve Γ, of degree d, that passes through $p_{1}, \ldots, p_{n_{e}+n_{v}}$ and with $p_{1}, \ldots, p_{n_{v}}$ on its vertices,

$$
R B_{y}(\Gamma):=\prod_{V \in \Gamma^{0} \cap \bar{p}}[\mu(V)]_{y}^{+} \cdot \prod_{V \in \Gamma^{0} \backslash \overline{\boldsymbol{p}}}[\mu(V)]_{y}^{-}
$$

where

$$
[a]_{y}^{+}:=\frac{y^{a / 2}+y^{-a / 2}}{y^{1 / 2}+y^{-1 / 2}} .
$$

Refined rational broccoli invariant

Definition.

Let $n_{e}, n_{v} \in \mathbb{N}$ with $n_{e}+2 n_{v}=3 d-1$ and let
$p_{1}, \ldots, p_{n_{e}+n_{v}} \in \mathbb{R}^{2}$. For a rational tropical curve Γ, of degree d, that passes through $p_{1}, \ldots, p_{n_{e}+n_{v}}$ and with $p_{1}, \ldots, p_{n_{v}}$ on its vertices,

$$
R B_{y}(\Gamma):=\prod_{V \in \Gamma^{0} \cap \overline{\boldsymbol{p}}}[\mu(V)]_{y}^{+} \cdot \prod_{V \in \Gamma^{0} \backslash \overline{\boldsymbol{p}}}[\mu(V)]_{y}^{-}
$$

where

$$
[a]_{y}^{+}:=\frac{y^{a / 2}+y^{-a / 2}}{y^{1 / 2}+y^{-1 / 2}}
$$

Refined rational broccoli invariant

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$
R B_{y}\left(d, 0,\left(n_{e}, n_{v}\right), \overline{\boldsymbol{p}}\right):=\sum_{\Gamma} R B_{y}(\Gamma)
$$

is independent of the choice of points.

Refined rational broccoli invariant

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$
R B_{y}\left(d, 0,\left(n_{e}, n_{v}\right), \overline{\boldsymbol{p}}\right):=\sum_{\Gamma} R B_{y}(\Gamma)
$$

is independent of the choice of points.
2. For $y=1$ we get

$$
R B_{1}\left(d, 0,\left(n_{e}, n_{v}\right)\right)=\left\langle\tau_{0}(2)^{n_{e}} \tau_{1}\left(n_{v}\right)^{n_{v}}\right\rangle_{\Delta}^{0}
$$

is the descendant GW invariant.

Refined rational broccoli invariant

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$
R B_{y}\left(d, 0,\left(n_{e}, n_{v}\right), \overline{\boldsymbol{p}}\right):=\sum_{\Gamma} R B_{y}(\Gamma)
$$

is independent of the choice of points.
2. For $y=1$ we get

$$
R B_{1}\left(d, 0,\left(n_{e}, n_{v}\right)\right)=\left\langle\tau_{0}(2)^{n_{e}} \tau_{1}\left(n_{v}\right)^{n_{v}}\right\rangle_{\Delta}^{0}
$$

is the descendant GW invariant.
3. The value $R B_{-1}\left(d, 0,\left(n_{e}, n_{v}\right)\right)$ equals to the Welschinger invariant with n_{v} pairs of conjugate points.

Refined elliptic broccoli invariants

Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles

Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles

and to assign the pair of curves with the 2 different directions of the collinear cycle the weight [Schroeter, Shustin '16]

$$
\begin{aligned}
& \Psi_{y}^{(2)}\left(w, \mu\left(V_{1}\right), \mu\left(V_{2}\right)\right) \cdot \prod_{V \in \Gamma^{0} \backslash \overline{\boldsymbol{p}}}[\mu(V)]_{y}^{-} \cdot \prod_{V}[\mu(V)]_{y}^{+} . \\
& V \notin\left\{\Gamma_{1}^{0} \cap \overline{\boldsymbol{p}}, V_{2}\right\}
\end{aligned}
$$

Questions

- Is there a local description of this weight where each individual curve gets its own weight?
- What is the meaning of the values of the refined elliptic broccoli weight for $y=1,-1$?

Local description

Additional allowed fragment:

Local description

Additional allowed fragment:

Theorem [Shustin, S. '22+].

There exist a refined weight of elliptic tropical curves which satisfies:

1. The weight of a curve is a product of multiplicities on its local fragments.
2. The sum of weights of curves passing through $p_{1}, \ldots, p_{n_{e}+n_{v}}$ is equal to the refined elliptic broccoli invariant $R B_{y}\left(d, 1,\left(n_{e}, n_{v}\right)\right)$.

Local description

Additional allowed fragment:

$\left[\mu\left(V_{2}\right)\right]^{-} \varphi^{(1)}\left(\mu\left(V_{1}\right), w_{1}, w_{2}\right)$

$\left[\mu\left(V_{1}\right)\right]^{-} \varphi^{(1)}\left(\mu\left(V_{2}\right), w_{1}, w_{2}\right)$

Theorem [Shustin, S. '22+].
There exist a refined weight of elliptic tropical curves which satisfies:

1. The weight of a curve is a product of multiplicities on its local fragments.
2. The sum of weights of curves passing through $p_{1}, \ldots, p_{n_{e}+n_{v}}$ is equal to the refined elliptic broccoli invariant $R B_{y}\left(d, 1,\left(n_{e}, n_{v}\right)\right)$.

Local description

Additional allowed fragment:

$\left.\begin{array}{c}{\left[\mu\left(V_{2}\right)\right]^{-} \varphi^{(1)}\left(\mu\left(V_{1}\right), w_{1}, w_{2}\right)} \\ {\left[\mu\left(V_{1}\right)\right]^{-}\left[\mu\left(V_{2}\right)\right]^{-} \varphi^{(0)}\left(w_{1}, w_{2}\right)}\end{array}\right]{ }^{\left[\mu\left(V_{1}\right)\right]^{-} \varphi^{(1)}\left(\mu\left(V_{2}\right), w_{1}, w_{2}\right)}$
Theorem [Shustin, S. '22+].
There exist a refined weight of elliptic tropical curves which satisfies:

1. The weight of a curve is a product of multiplicities on its local fragments.
2. The sum of weights of curves passing through $p_{1}, \ldots, p_{n_{e}+n_{v}}$ is equal to the refined elliptic broccoli invariant $R B_{y}\left(d, 1,\left(n_{e}, n_{v}\right)\right)$.

Refined elliptic broccoli invariants at $y=1$

Theorem [Shustin, S. '22+].
The value $R B_{1}\left(d, 1,\left(n_{e}, n_{v}\right)\right)$ is equal to the number of elliptic curves of degree d that pass through $n_{e}+n_{v}$ points and have prescribed tangent directions in n_{v} of those points.

Example

Example

Higher genera

- In higher genera we need to include the fragment

for which we can not assign a weight that will give an invariant count.
- This fragment does not appear if $n_{v}=1$ or if the points are in Mikhalkin position, in those situations we get a refined invariant.

Psi classes

- The calculation of characteristic numbers is related to descendant GW invariants through the work of Graber, Kock, Pandharipande on modified GW invariants.
- We are working on relating those invariants to tropical psi classes as studied by Cavalieri, Gross, Kerber, Markwig, Rau and others.

Questions?

$$
\begin{aligned}
& \Psi_{z}^{(2)}\left(m, \nu_{1}, \nu_{2}\right)=\frac{1}{\left(z-z^{-1}\right)^{3}\left(z+z^{-1}\right)} \times \\
& \times\left[\frac{2\left(z^{\nu_{2} m}-z^{-\nu_{2} m}\right)\left(z^{\nu_{1} m-1}-z^{1-\nu_{1} m}\right)}{z-z^{-1}}-\right. \\
& -\frac{2 m\left(z^{\nu_{2} m}-z^{-\nu_{2} m}\right)\left(z^{\nu_{1} m-m}-z^{m-\nu_{1} m}\right)}{z^{m}-z^{-m}}+ \\
& +(m-1)\left(z^{\nu_{1} m}-z^{-\nu_{1} m}\right)\left(z^{\nu_{2} m}+z^{-\nu_{2} m}\right)- \\
& -\frac{2\left(z^{\nu_{2} m}-z^{-\nu_{2} m}\right)\left(z^{\nu_{1} m-\nu_{1}}-z^{\nu_{1}-\nu_{1} m}\right)}{z^{\nu_{1}}-z^{-\nu_{1}}}- \\
& \left.-\frac{2\left(z^{\nu_{1} m}-z^{-\nu_{1} m}\right)\left(z^{\nu_{2} m-\nu_{2}}-z^{\nu_{2}-\nu_{2} m}\right)}{z^{\nu_{2}}-z^{-\nu_{2}}}\right] .
\end{aligned}
$$

where $\mu\left(V_{1}\right)=m \nu_{1}$ and $\mu\left(V_{2}\right)=m \nu_{2}$.

$$
\begin{gathered}
\varphi_{z}^{(0)}\left(k_{1}, k_{2}\right)=\frac{2}{z+z^{-1}} \cdot \frac{\left[k_{1}\right]_{z}^{-}\left[k_{2}\right]_{z}^{-}}{\left[k_{1}+k_{2}\right]_{z}^{-}}, \\
\varphi_{z}^{(1)}\left(k_{1}, k_{2}, \nu\right)=\left[k_{1} \nu\right]_{z}^{-}\left[k_{2} \nu\right]_{z}^{-}-\frac{\left[k_{1}\right]_{z}^{-}\left[k_{2}\right]_{z}^{-}}{\left[k_{1}+k_{2}\right]_{z}^{-}}\left[\left(k_{1}+k_{2}\right) \nu\right]_{z}^{-}
\end{gathered}
$$

