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Tropical curve counting




Tropical curve counting

Theorem [Mikhalkin, '03].

For 3d 4+ g — 1 points p in general position we have

Ng.d = Z w(T)

pcr

where w(I") = [Tyero u(V) and p(V) is the Mikhalkin
multiplicity of V' = the lattice area of the cell corresponding to V
in the dual subdivision.
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Tropical curve counting

Theorem [Mikhalkin, '03].

For 3d 4+ g — 1 points p in general position we have

Nga=>_ w(l)

pcr

where w(I") = [Tyero u(V) and p(V) is the Mikhalkin
multiplicity of V' = the lattice area of the cell corresponding to V
in the dual subdivision.

In particular, this sum is

1. independent of the points (as long as they are generic),

2. and the weight of I is a product of terms that are computed
locally.
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Block-Gottsche refined invariants
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Block-Gottsche refined invariants

Definition.

Block-Gottsche weight of a tropical curve I is

BG, (N = [] [W(W)]” € Zly*/?],
Vero

where

a/2 _ ,—a/2

[a];::ylz y12
V=Y

and p(V) is the Mikhalkin multiplicity of a vertex V.
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Block-Gottsche refined invariants

Definition.

Block-Gottsche weight of a tropical curve I is
BGy (M) = I [w(V)]~ € ZIy**7],
vero

where
ya/2 _ y—a/2

aly =L
YT I 1
and p(V) is the Mikhalkin multiplicity of a vertex V.

Theorem [Block, Gottsche '14].
Given 3d + g — 1 points p in general position,

BG,(d,g):= > BG(I)

rop, g(MN=g

does not depend on the choice of points. AS



Why a refined count matters?
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Why a refined count matters?

= If we substitute y = 1, we obtain N, 4

BGi(d, g) = Ng q-
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Why a refined count matters?
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= If we substitute y = —1, we obtain totally real Welschinger
numbers near the tropical limit

BG_1(d,g) = WE(RP?).
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Why a refined count matters?

= If we substitute y = 1, we obtain N, 4
BGi(d,g) = Ng.d-

= If we substitute y = —1, we obtain totally real Welschinger
numbers near the tropical limit

BG_1(d,g) = WE(RP?).

= This works for (some) other toric surfaces, not only P?2.
= Gottsche-Shende conjecture.
= Mikhalkin interpertaition as quantum index.

= Generating series of log-GW invariants due to Bousseau.
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Refined rational broccoli invariant
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Refined rational broccoli invariant

Definition.

Let n., n, € N with ne +2n, = 3d — 1 and let

PL,- - Pn.tn, € R2. For a rational tropical curve I', of degree d,
that passes through p1, ..., pn.+n, and with p1,..., p,, on its
vertices,

RB,(M):= ]I W)y II (W)

Vel’np Vero\p

where P P
a —a

[3]; = y1 2+y 12"
y2+y=t
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Refined rational broccoli invariant

Definition.

Let n., n, € N with ne +2n, = 3d — 1 and let

PL,- - Pn.tn, € R2. For a rational tropical curve I', of degree d,
that passes through p1, ..., pn.+n, and with p1,..., p,, on its
vertices,

RB,(M):= ]I W)y II (W)

Vel’np Vero\p

where P P
a —a

[3]; = y1 2+y 12"
y2+y=t

)

[(VO]y [(V2)]y
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Refined rational broccoli invariant

Theorem [Gottsche, Schroeter ’16].

1. The refined rational broccoli invariant

RBy(d,0, (ne,ny),P) :=Y_ RBy(T)
r

is independent of the choice of points.

7/15



Refined rational broccoli invariant

Theorem [Gottsche, Schroeter ’16].

1. The refined rational broccoli invariant

RBy(d,0, (ne,ny),P) :=Y_ RBy(T)
r

is independent of the choice of points.

2. Fory =1 we get
RB1(d,0, (e, n,)) = (70(2)"71(nv)™)a

is the descendant GW invariant.
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Refined rational broccoli invariant

Theorem [Gottsche, Schroeter ’16].

1. The refined rational broccoli invariant

RBy(d,0, (ne,ny),P) :=Y_ RBy(T)
r

is independent of the choice of points.

2. Fory =1 we get
RB1(d,0, (e, n,)) = (70(2)"71(nv)™)a

is the descendant GW invariant.

3. The value RB_1(d,0, (ne, n,)) equals to the Welschinger
invariant with n, pairs of conjugate points.
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Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles
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Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles

and to assign the pair of curves with the 2 different directions of
the collinear cycle the weight [Schroeter, Shustin '16]

VA(w, u(V1), (Vo)) I (V)] - I v
Verhp Ver’npg
V¢ {Vi, o}
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= Is there a local description of this weight where each
individual curve gets its own weight?

= What is the meaning of the values of the refined elliptic
broccoli weight for y = 1,—17
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Local description

Additional allowed fragment:
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Local description

Additional allowed fragment:

Theorem [Shustin, S. '22+].
There exist a refined weight of elliptic tropical curves which

satisfies:

1. The weight of a curve is a product of multiplicities on its local

fragments.

2. The sum of weights of curves passing through p1, ..., Pn.+n,
is equal to the refined elliptic broccoli invariant

RB,(d, 1, (ne,ny)).
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Local description

Additional allowed fragment:

A

[(V2)]~ oM (u(Vh), wa, ws) w(Va), wi, ws)

Theorem [Shustin, S. "22+].
There exist a refined weight of elliptic tropical curves which

satisfies:

1. The weight of a curve is a product of multiplicities on its local
fragments.

2. The sum of weights of curves passing through pi, ..., Pn.+n,
is equal to the refined elliptic broccoli invariant

RB}’(dvlv(nevnv))' 10/15



Local description

Additional allowed fragment:

M%ﬁ%%-:x

[(Va)]~ oM (u( V1), wa, wa) (VD)™ ¢ (1(V2), Wi, we2)
(VD] [1(V2)]™ O (w1, w2)

Theorem [Shustin, S. '22+].

There exist a refined weight of elliptic tropical curves which

satisfies:

1. The weight of a curve is a product of multiplicities on its local
fragments.

2. The sum of weights of curves passing through p1, ..., Pn.+n,
is equal to the refined elliptic broccoli invariant

RB}/(dvlv(ne7nv)). 10/15



Refined elliptic broccoli invariants at y = 1

Theorem [Shustin, S. '22+].

The value RB:1(d, 1, (ne, n,)) is equal to the number of elliptic
curves of degree d that pass through ne + n, points and have
prescribed tangent directions in n, of those points.
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Higher genera

= In higher genera we need to include the fragment

for which we can not assign a weight that will give an
invariant count.

= This fragment does not appear if n, = 1 or if the points are in
Mikhalkin position, in those situations we get a refined

invariant.
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Psi classes

= The calculation of characteristic numbers is related to
descendant GW invariants through the work of Graber, Kock,
Pandharipande on modified GW invariants.

= We are working on relating those invariants to tropical psi
classes as studied by Cavalieri, Gross, Kerber, Markwig, Rau
and others.
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zZV1 — z71
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z"2 — 772

where p(V1) = muvy and p(Va) = mus.
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