Refined tropical invariants in positive genus

Uriel Sinichkin (TAU) Work in progress, joint with Eugenii Shustin

August 2nd, 2022

Non-Archemidian and Tropical Geometry, Regensburg

Tropical curve counting

Refined invariants

Refined elliptic broccoli invariants

Tropical curve counting

Theorem [Mikhalkin, '03].

For 3d + g - 1 points \overline{p} in general position we have

$$N_{g,d} = \sum_{\overline{p} \subseteq \Gamma} w(\Gamma)$$

where $w(\Gamma) = \prod_{V \in \Gamma^0} \mu(V)$ and $\mu(V)$ is the Mikhalkin multiplicity of V = the lattice area of the cell corresponding to V in the dual subdivision.

Theorem [Mikhalkin, '03].

For 3d + g - 1 points $\overline{\boldsymbol{p}}$ in general position we have

$$N_{g,d} = \sum_{\overline{p} \subseteq \Gamma} w(\Gamma)$$

where $w(\Gamma) = \prod_{V \in \Gamma^0} \mu(V)$ and $\mu(V)$ is the Mikhalkin multiplicity of V = the lattice area of the cell corresponding to V in the dual subdivision.

In particular, this sum is

- 1. independent of the points (as long as they are generic),
- 2. and the weight of Γ is a product of terms that are computed locally.

Refined invariants

Block-Gottsche refined invariants

Block-Gottsche refined invariants

Definition.

Block-Gottsche weight of a tropical curve Γ is

$$BG_y(\Gamma) = \prod_{V\in \Gamma^0} [\mu(V)]^- \in \mathbb{Z}[y^{\pm 1/2}],$$

where

$$[a]_{y}^{-} := \frac{y^{a/2} - y^{-a/2}}{y^{1/2} - y^{-1/2}}$$

and $\mu(V)$ is the Mikhalkin multiplicity of a vertex V.

Block-Gottsche refined invariants

Definition.

Block-Gottsche weight of a tropical curve Γ is

$$BG_y(\Gamma) = \prod_{V\in \Gamma^0} [\mu(V)]^- \in \mathbb{Z}[y^{\pm 1/2}],$$

where

$$[a]_{y}^{-} := \frac{y^{a/2} - y^{-a/2}}{y^{1/2} - y^{-1/2}}$$

and $\mu(V)$ is the Mikhalkin multiplicity of a vertex V.

Theorem [Block, Gottsche '14].

Given 3d + g - 1 points \overline{p} in general position,

$$BG_y(d,g) := \sum_{\Gamma \supset \overline{oldsymbol{p}}, \ g(\Gamma) = g} BG_y(\Gamma)$$

does not depend on the choice of points.

• If we substitute y = 1, we obtain $N_{g,d}$

 $BG_1(d,g) = N_{g,d}.$

• If we substitute y = 1, we obtain $N_{g,d}$

$$BG_1(d,g) = N_{g,d}.$$

 If we substitute y = -1, we obtain totally real Welschinger numbers near the tropical limit

$$BG_{-1}(d,g) = W_g^{\mathsf{tr}}(\mathbb{R}P^2).$$

• If we substitute y = 1, we obtain $N_{g,d}$

$$BG_1(d,g) = N_{g,d}.$$

 If we substitute y = -1, we obtain totally real Welschinger numbers near the tropical limit

$$BG_{-1}(d,g) = W_g^{\mathsf{tr}}(\mathbb{R}P^2).$$

This works for (some) other toric surfaces, not only P².

• If we substitute y = 1, we obtain $N_{g,d}$

$$BG_1(d,g) = N_{g,d}.$$

 If we substitute y = -1, we obtain totally real Welschinger numbers near the tropical limit

$$BG_{-1}(d,g)=W^{ ext{tr}}_g(\mathbb{R}P^2).$$

- This works for (some) other toric surfaces, not only P².
- Gottsche-Shende conjecture.
- Mikhalkin interpertaition as quantum index.
- Generating series of log-GW invariants due to Bousseau.

Definition.

Let $n_e, n_v \in \mathbb{N}$ with $n_e + 2n_v = 3d - 1$ and let $p_1, \ldots, p_{n_e+n_v} \in \mathbb{R}^2$. For a rational tropical curve Γ , of degree d, that passes through $p_1, \ldots, p_{n_e+n_v}$ and with p_1, \ldots, p_{n_v} on its vertices,

$$RB_y(\Gamma) := \prod_{V \in \Gamma^0 \cap \overline{oldsymbol{p}}} [\mu(V)]_y^+ \cdot \prod_{V \in \Gamma^0 \setminus \overline{oldsymbol{p}}} [\mu(V)]_y^-$$

where

$$[a]_{y}^{+} := rac{y^{a/2} + y^{-a/2}}{y^{1/2} + y^{-1/2}}.$$

Definition.

Let $n_e, n_v \in \mathbb{N}$ with $n_e + 2n_v = 3d - 1$ and let $p_1, \ldots, p_{n_e+n_v} \in \mathbb{R}^2$. For a rational tropical curve Γ , of degree d, that passes through $p_1, \ldots, p_{n_e+n_v}$ and with p_1, \ldots, p_{n_v} on its vertices,

$$RB_y(\Gamma) := \prod_{V \in \Gamma^0 \cap \overline{oldsymbol{p}}} [\mu(V)]_y^+ \cdot \prod_{V \in \Gamma^0 \setminus \overline{oldsymbol{p}}} [\mu(V)]_y^-$$

where

$$[a]_{y}^{+} := \frac{y^{a/2} + y^{-a/2}}{y^{1/2} + y^{-1/2}}.$$

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$RB_y(d, 0, (n_e, n_v), \overline{\boldsymbol{p}}) := \sum_{\Gamma} RB_y(\Gamma)$$

is independent of the choice of points.

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$RB_y(d, 0, (n_e, n_v), \overline{\boldsymbol{p}}) := \sum_{\Gamma} RB_y(\Gamma)$$

is independent of the choice of points.

2. For y = 1 we get

$$RB_1(d,0,(n_e,n_v)) = \langle \tau_0(2)^{n_e} \tau_1(n_v)^{n_v} \rangle_{\Delta}^0$$

is the descendant GW invariant.

Theorem [Gottsche, Schroeter '16].

1. The refined rational broccoli invariant

$$RB_{y}(d, 0, (n_{e}, n_{v}), \overline{\boldsymbol{p}}) := \sum_{\Gamma} RB_{y}(\Gamma)$$

is independent of the choice of points.

2. For y = 1 we get

$$\mathsf{RB}_1(d,0,(n_e,n_v)) = \langle au_0(2)^{n_e} au_1(n_v)^{n_v}
angle_\Delta^0$$

is the descendant GW invariant.

3. The value $RB_{-1}(d, 0, (n_e, n_v))$ equals to the Welschinger invariant with n_v pairs of conjugate points.

Refined elliptic broccoli invariants

Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider *collinear cycles*

Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles

and to assign the pair of curves with the 2 different directions of the collinear cycle the weight [Schroeter, Shustin '16]

$$\Psi_{y}^{(2)}(w,\mu(V_{1}),\mu(V_{2})) \cdot \prod_{V \in \Gamma^{0} \setminus \overline{p}} [\mu(V)]_{y}^{-} \cdot \prod_{V \in \Gamma^{0} \cap \overline{p}} [\mu(V)]_{y}^{+}.$$
$$V \notin \{V_{1},V_{2}\}$$

- Is there a local description of this weight where each individual curve gets its own weight?
- What is the meaning of the values of the refined elliptic broccoli weight for y = 1, -1?

Additional allowed fragment:

Additional allowed fragment:

Theorem [Shustin, S. '22+].

There exist a refined weight of elliptic tropical curves which satisfies:

- 1. The weight of a curve is a product of multiplicities on its local fragments.
- The sum of weights of curves passing through p₁,..., p_{ne+nv} is equal to the refined elliptic broccoli invariant RB_y(d, 1, (n_e, n_v)).

Additional allowed fragment:

Theorem [Shustin, S. '22+].

There exist a refined weight of elliptic tropical curves which satisfies:

- 1. The weight of a curve is a product of multiplicities on its local fragments.
- The sum of weights of curves passing through p₁,..., p_{ne+nv} is equal to the refined elliptic broccoli invariant RB_y(d, 1, (n_e, n_v)).

Additional allowed fragment:

Theorem [Shustin, S. '22+].

There exist a refined weight of elliptic tropical curves which satisfies:

- 1. The weight of a curve is a product of multiplicities on its local fragments.
- The sum of weights of curves passing through p₁,..., p_{n_e+n_v} is equal to the refined elliptic broccoli invariant RB_y(d, 1, (n_e, n_v)).

10/15

Theorem [Shustin, S. '22+].

The value $RB_1(d, 1, (n_e, n_v))$ is equal to the number of elliptic curves of degree d that pass through $n_e + n_v$ points and have prescribed tangent directions in n_v of those points.

Example

Example

• In higher genera we need to include the fragment

for which we can not assign a weight that will give an invariant count.

 This fragment does not appear if n_v = 1 or if the points are in Mikhalkin position, in those situations we get a refined invariant.

- The calculation of characteristic numbers is related to descendant GW invariants through the work of Graber, Kock, Pandharipande on modified GW invariants.
- We are working on relating those invariants to tropical psi classes as studied by Cavalieri, Gross, Kerber, Markwig, Rau and others.

Questions?

$$\begin{split} \Psi_{z}^{(2)}\left(m,\nu_{1},\nu_{2}\right) &= \frac{1}{\left(z-z^{-1}\right)^{3}\left(z+z^{-1}\right)} \times \\ \times \left[\frac{2\left(z^{\nu_{2}m}-z^{-\nu_{2}m}\right)\left(z^{\nu_{1}m-1}-z^{1-\nu_{1}m}\right)}{z-z^{-1}} - \right. \\ &\left. -\frac{2m\left(z^{\nu_{2}m}-z^{-\nu_{2}m}\right)\left(z^{\nu_{1}m-m}-z^{m-\nu_{1}m}\right)}{z^{m}-z^{-m}} + \right. \\ &\left. +\left(m-1\right)\left(z^{\nu_{1}m}-z^{-\nu_{1}m}\right)\left(z^{\nu_{2}m}+z^{-\nu_{2}m}\right) - \right. \\ &\left. -\frac{2\left(z^{\nu_{2}m}-z^{-\nu_{2}m}\right)\left(z^{\nu_{1}m-\nu_{1}}-z^{\nu_{1}-\nu_{1}m}\right)}{z^{\nu_{1}}-z^{-\nu_{1}}} - \right. \\ &\left. -\frac{2\left(z^{\nu_{1}m}-z^{-\nu_{1}m}\right)\left(z^{\nu_{2}m-\nu_{2}}-z^{\nu_{2}-\nu_{2}m}\right)}{z^{\nu_{2}}-z^{-\nu_{2}}} \right]. \end{split}$$

where $\mu(V_1) = m\nu_1$ and $\mu(V_2) = m\nu_2$.

$$\varphi_{z}^{(0)}(k_{1},k_{2}) = \frac{2}{z+z^{-1}} \cdot \frac{[k_{1}]_{z}^{-}[k_{2}]_{z}^{-}}{[k_{1}+k_{2}]_{z}^{-}},$$
$$\varphi_{z}^{(1)}(k_{1},k_{2},\nu) = [k_{1}\nu]_{z}^{-}[k_{2}\nu]_{z}^{-} - \frac{[k_{1}]_{z}^{-}[k_{2}]_{z}^{-}}{[k_{1}+k_{2}]_{z}^{-}}[(k_{1}+k_{2})\nu]_{z}^{-}$$