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Tropical curve counting



Tropical curve counting

Theorem [Mikhalkin, ’03].
For 3d + g − 1 points p in general position we have

Ng ,d =
∑
p⊆Γ

w(Γ)

where w(Γ) = ∏
V ∈Γ0 µ(V ) and µ(V ) is the Mikhalkin

multiplicity of V = the lattice area of the cell corresponding to V
in the dual subdivision.

In particular, this sum is

1. independent of the points (as long as they are generic),
2. and the weight of Γ is a product of terms that are computed

locally.
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Refined invariants



Block-Gottsche refined invariants

Definition.
Block-Gottsche weight of a tropical curve Γ is

BGy (Γ) =
∏

V ∈Γ0

[µ(V )]− ∈ Z[y±1/2],

where
[a]−y := ya/2 − y−a/2

y1/2 − y−1/2

and µ(V ) is the Mikhalkin multiplicity of a vertex V .

Theorem [Block, Gottsche ’14].
Given 3d + g − 1 points p in general position,

BGy (d , g) :=
∑

Γ⊃p, g(Γ)=g
BGy (Γ)

does not depend on the choice of points.
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Why a refined count matters?

• If we substitute y = 1, we obtain Ng ,d

BG1(d , g) = Ng ,d .

• If we substitute y = −1, we obtain totally real Welschinger
numbers near the tropical limit

BG−1(d , g) = W tr
g (RP2).

• This works for (some) other toric surfaces, not only P2.
• Gottsche-Shende conjecture.
• Mikhalkin interpertaition as quantum index.
• Generating series of log-GW invariants due to Bousseau.
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Refined rational broccoli invariant

Definition.
Let ne , nv ∈ N with ne + 2nv = 3d − 1 and let
p1, . . . , pne+nv ∈ R2. For a rational tropical curve Γ, of degree d ,
that passes through p1, . . . , pne+nv and with p1, . . . , pnv on its
vertices,

RBy (Γ) :=
∏

V ∈Γ0∩p
[µ(V )]+y ·

∏
V ∈Γ0\p

[µ(V )]−y

where
[a]+y := ya/2 + y−a/2

y1/2 + y−1/2 .

V1 V2
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Refined rational broccoli invariant

Theorem [Gottsche, Schroeter ’16].

1. The refined rational broccoli invariant

RBy (d , 0, (ne , nv ), p) :=
∑

Γ
RBy (Γ)

is independent of the choice of points.

2. For y = 1 we get

RB1(d , 0, (ne , nv )) = ⟨τ0(2)ne τ1(nv )nv ⟩0
∆

is the descendant GW invariant.
3. The value RB−1(d , 0, (ne , nv )) equals to the Welschinger

invariant with nv pairs of conjugate points.
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Refined elliptic broccoli invariants



Definition of refined elliptic broccoli invariants

To get an invariance in genus 1 we need to consider collinear cycles

V1 V2 V1 V2

and to assign the pair of curves with the 2 different directions of
the collinear cycle the weight [Schroeter, Shustin ’16]

Ψ(2)
y (w , µ(V1), µ(V2)) ·

∏
V ∈Γ0\p

[µ(V )]−y ·
∏

V ∈ Γ0 ∩ p
V /∈ {V1, V2}

[µ(V )]+y .
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Questions

• Is there a local description of this weight where each
individual curve gets its own weight?

• What is the meaning of the values of the refined elliptic
broccoli weight for y = 1, −1?
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Local description

Additional allowed fragment:

V1 V2 V1 V2

ℓ ℓ

V1 V2

Theorem [Shustin, S. ’22+].
There exist a refined weight of elliptic tropical curves which
satisfies:

1. The weight of a curve is a product of multiplicities on its local
fragments.

2. The sum of weights of curves passing through p1, . . . , pne+nv

is equal to the refined elliptic broccoli invariant
RBy (d , 1, (ne , nv )).
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Refined elliptic broccoli invariants at y = 1

Theorem [Shustin, S. ’22+].
The value RB1(d , 1, (ne , nv )) is equal to the number of elliptic
curves of degree d that pass through ne + nv points and have
prescribed tangent directions in nv of those points.
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Example

2
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Example

2
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Higher genera

• In higher genera we need to include the fragment

for which we can not assign a weight that will give an
invariant count.

• This fragment does not appear if nv = 1 or if the points are in
Mikhalkin position, in those situations we get a refined
invariant.
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Psi classes

• The calculation of characteristic numbers is related to
descendant GW invariants through the work of Graber, Kock,
Pandharipande on modified GW invariants.

• We are working on relating those invariants to tropical psi
classes as studied by Cavalieri, Gross, Kerber, Markwig, Rau
and others.
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Questions?
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Ψ(2)
z (m, ν1, ν2) = 1

(z − z−1)3 (z + z−1)
×

×
[

2 (zν2m − z−ν2m)
(
zν1m−1 − z1−ν1m)

z − z−1 −

−2m (zν2m − z−ν2m) (zν1m−m − zm−ν1m)
zm − z−m +

+(m − 1)
(
zν1m − z−ν1m) (

zν2m + z−ν2m)
−

−2 (zν2m − z−ν2m) (zν1m−ν1 − zν1−ν1m)
zν1 − z−ν1

−

−2 (zν1m − z−ν1m) (zν2m−ν2 − zν2−ν2m)
zν2 − z−ν2

]
.

where µ(V1) = mν1 and µ(V2) = mν2.



φ(0)
z (k1, k2) = 2

z + z−1 · [k1]−z [k2]−z
[k1 + k2]−z

,

φ(1)
z (k1, k2, ν) = [k1ν]−z [k2ν]−z − [k1]−z [k2]−z

[k1 + k2]−z
[(k1 + k2)ν]−z
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