Wild models of curves via nonarchimedean geometry

young researchers' in algebraic number theory 2022

Art Waeterschoot (KU Leuven)

Aug 5th, 2022

Setup

- Let K be a complete discretely valued field, denote K° for the ring of integers.
- Assume the residue field \widetilde{K} is algebraically closed of characteristic p.

Setup

- Let K be a complete discretely valued field, denote K° for the ring of integers.
- Assume the residue field \widetilde{K} is algebraically closed of characteristic p.
- We work with smooth, connected K-varieties X, Y.
- Let $f: X \rightarrow Y$ be generically étale.

Setup

- Let K be a complete discretely valued field, denote K° for the ring of integers.
- Assume the residue field \widetilde{K} is algebraically closed of characteristic p.
- We work with smooth, connected K-varieties X, Y.
- Let $f: X \rightarrow Y$ be generically étale.
goal
Study change of essential skeleta along $f^{\text {an }}: X^{\mathrm{an}} \rightarrow Y^{\text {an }}$

Setup

- Let K be a complete discretely valued field, denote K° for the ring of integers.
- Assume the residue field \widetilde{K} is algebraically closed of characteristic p.
- We work with smooth, connected K-varieties X, Y.
- Let $f: X \rightarrow Y$ be generically étale.
goal
Study change of essential skeleta along $f^{\text {an }}: X^{\text {an }} \rightarrow Y^{\text {an }}$
Key input: work by Temkin and collaborators on differents.

Setup

- Let K be a complete discretely valued field, denote K° for the ring of integers.
- Assume the residue field \widetilde{K} is algebraically closed of characteristic p.
- We work with smooth, connected K-varieties X, Y.
- Let $f: X \rightarrow Y$ be generically étale.
goal
Study change of essential skeleta along $f^{\text {an }}: X^{\text {an }} \rightarrow Y^{\text {an }}$
Key input: work by Temkin and collaborators on differents. Time depending l'll discuss an application to wild models of curves

Overview

skeleta

(log) differents

application to wild ramification of curves

Reminders on models and their skeleta

- A pure-dimensional normal K°-variety \mathcal{X} is called a model of its generic fiber X / K, call its special fiber a degeneration.
- Each component of a degeneration induces a discrete valuation on $K(X)$, and so a point in the Berkovich analytification $X^{\text {an }}$, such points are called divisorial points. They lie dense in $X^{\text {an }}$.
- Say a model is snc if it is regular and its special fiber is a snc divisor.

Reminders on models and their skeleta

- A pure-dimensional normal K°-variety \mathcal{X} is called a model of its generic fiber X / K, call its special fiber a degeneration.
- Each component of a degeneration induces a discrete valuation on $K(X)$, and so a point in the Berkovich analytification $X^{\text {an }}$, such points are called divisorial points. They lie dense in $X^{\text {an }}$.
- Say a model is snc if it is regular and its special fiber is a snc divisor.
- The skeleton sk \mathcal{X} of an snc model \mathcal{X} is the dual intersection complex of the components of \mathcal{X}_{s}, it is a compact integral piecewise affine simplicial space in $X^{\text {an }}$ whose vertices are the divisorial points of \mathcal{X}_{s}.

Approaches to canonical skeleta in Berkovich geometry

classical for hyperbolic curves via minimal snc models.
in higher dimension there are at least two approaches:

1. (Kontsevich-Soibelman '08, Mustaţă-Nicaise '15) essential skeleton via weight functions (as will be explained) (Nicaise-Xu '16)
Equivalently as the skeleton of a good minimal dlt model
2. (Temkin '16)
minimality locus of the Kähler valuation on the sheaf of Kähler differentials

weight functions (after Mustață-Nicaise '15)

For simplicity assume X admits a snc model

- Pick any nonzero ω meromorphic pluricanonical form on X
- associate an integral piecewise affine weight function

$$
\mathrm{wt}_{\omega}: X^{\mathrm{an}} \rightarrow \mathbb{R} .
$$

If a divisorial point $x \in X^{\text {an }}$ corresponds to a component E of a snc model \mathcal{X}, the weight $\mathrm{wt}_{\omega}(x)$ measures how ω degenerates at E

weight functions (after Mustață-Nicaise '15)

For simplicity assume X admits a snc model

- Pick any nonzero ω meromorphic pluricanonical form on X
- associate an integral piecewise affine weight function

$$
\mathrm{wt}_{\omega}: X^{\mathrm{an}} \rightarrow \mathbb{R} .
$$

If a divisorial point $x \in X^{\text {an }}$ corresponds to a component E of a snc model \mathcal{X}, the weight $\mathrm{wt}_{\omega}(x)$ measures how ω degenerates at E

- More precisely, ω seen as a rational form on \mathcal{X} defines a Cartier divisor $\operatorname{div} \mathcal{X}(\omega)$, suppose locally around E we have $\operatorname{div} \mathcal{X} \omega=\nu E$ with $\nu \in \mathbb{Z}$. Then

$$
\mathrm{wt}_{\omega}(x):=\frac{\nu+1}{\operatorname{mult}_{\mathcal{X}_{s}}(E)}-1
$$

(the $+1 \&-1$ come from considering logarithmic forms on \mathcal{X})

Example
$E: y^{2}=x^{3}+2 / \widehat{\mathbb{Q}_{2}^{\text {ur }}}$ has a snc model \mathcal{X} with special fiber
special fiber type II.png

Let $\omega=d x / 2 y$ be the invariant differential. Then wt_{ω} looks like

```
wt function example.png
```

where wt_{ω} increases with constant slope 1 with respect to the induced metric by the \mathbb{Z}-affine structure.
For example if E is the green component one computes $\operatorname{div} \mathcal{X} \omega=4 E$ around E and so $\mathrm{wt}_{\omega}(E)=\frac{4+1}{6}-1=-\frac{1}{6}$

- If X has a snc model, $\mathrm{wt}_{\omega}(x)$ is bounded below, and we can define the Kontsevich-Soibelman skeleton as

$$
\operatorname{sk}(X, \omega)=\left\{x \in X^{\mathrm{an}}: \mathrm{wt}_{\omega}(x) \text { is minimal }\right\} .
$$

In fact, it is a union of faces of the skeleton of any snc model.

- Define the essential skeleton as

$$
\operatorname{sk}(X)=\bigcup_{\omega \neq 0} \operatorname{sk}(X, \omega) .
$$

Example (continued)

In the example before, $\operatorname{sk}(X)$ is a singleton corresponding to the divisorial point corresponding to the green component.

Proposition (Mustaţă-Nicaise '15)
$\operatorname{sk}(X)$ is a connected union of faces of any snc model (assuming the latter exists)

Overview

skeleta

(log) differents

application to wild ramification of curves

(logarithmic) differents

Definition

Given a seperable extension of discretely valued fields L / K we define the different as

$$
\delta_{L / K}:=\operatorname{length}\left(\Omega_{L^{\circ} / K^{\circ}}\right)_{\text {tor }},
$$

similarly the log different $\delta_{L / K}^{\log }:=\operatorname{length}\left(\Omega_{L^{\circ} / K^{\circ}}^{\log }\right)_{\text {tor }}$.
in case of finite seperable extensions, δ (resp. $\delta^{\log }$) measures ramification (resp. wild ramification), namely it is zero iff the extension is unramified (resp. tame). Also,

$$
\delta_{L / K}=\delta_{L / K}^{\log }+e(L / K)-1
$$

differents in algebraic geometry

Example (Riemann-Hurwitz formula)
If $f: X \rightarrow Y$ is a generically étale morphism of smooth K-curves, adjunction says

$$
\omega_{X} \cong f^{*} \omega_{Y} \otimes \omega_{X / Y}
$$

A computation shows

$$
\omega_{X / Y} \cong \Omega_{X / Y} / \mathcal{O}_{X}
$$

So the ramification divisor is

$$
\sum_{x \in X \text { closed }} \delta_{\left(K(X), v_{x}\right) /\left(K(Y), v_{f(x)}\right)}(x) .
$$

differents in algebraic geometry

Example (Riemann-Hurwitz formula)
If $f: X \rightarrow Y$ is a generically étale morphism of smooth K-curves, adjunction says

$$
\omega_{X} \cong f^{*} \omega_{Y} \otimes \omega_{X / Y} .
$$

A computation shows

$$
\omega_{X / Y} \cong \Omega_{X / Y} / \mathcal{O}_{X} .
$$

So the ramification divisor is

$$
\sum_{x \in X \text { closed }} \delta_{\left(K(X), v_{x}\right) /\left(K(Y), v_{f(x)}\right)}(x) .
$$

Remark

Actually, the above argument still works for regular K°-varieties, as well as in higher dimensions, and there is a logarithmic version.

pullback of weight functions

The previous remark can be used to show
Proposition (W.)
Let $f: X \rightarrow Y$ be a generically étale morphism of smooth K-varieties. Let $x \in X^{\text {an }}$ be divisorial. Then for all nonzero rational pluricanonical forms ω on Y we have

$$
\mathrm{wt}_{f^{*} \omega}(x)-\mathrm{wt}_{\omega}(f(x))=\frac{1}{e(\mathcal{H}(x) / K)} \delta_{\mathcal{H}(x) / \mathcal{H}(f(x))}^{\log }=: \mathfrak{d}(\mathrm{x})
$$

As a corollary, one can extend \mathfrak{d} to a positive integral piecewise affine function on $X^{\text {an }}$.

pullback of weight functions

The previous remark can be used to show
Proposition (W.)
Let $f: X \rightarrow Y$ be a generically étale morphism of smooth K-varieties. Let $x \in X^{\text {an }}$ be divisorial. Then for all nonzero rational pluricanonical forms ω on Y we have

$$
\mathrm{wt}_{f^{*} \omega}(x)-\mathrm{wt}_{\omega}(f(x))=\frac{1}{e(\mathcal{H}(x) / K)} \delta_{\mathcal{H}(x) / \mathcal{H}(f(x))}^{\log }=: \mathfrak{d}(\mathrm{x})
$$

As a corollary, one can extend \mathfrak{d} to a positive integral piecewise affine function on $X^{\text {an }}$.

Remarks

- It follows essential skeleta pull back along tame Galois covers.
- In the algebraically closed case, Temkin e.a. have shown the existence of a similar different function

Overview

skeleta

(log) differents

application to wild ramification of curves

Base change of nonarchimedean curves

Let C be a smooth, geometrically connected K-curve, and L / K Galois. Consider $\pi: C_{L} \rightarrow C$ and $\mathfrak{d}: C_{L}^{a n} \rightarrow \mathbb{R}_{\geq 0}$.
Example: $y^{2}=x^{3}+2 /\left(K=\widehat{\mathbb{Q}_{2}^{\text {ur }}}\right)$ continued
The normalised base change of the minimal snc model to $L=K(\sqrt{2})$ has a unique singularity, which is resolved after one normalised blowup; at the node we have $\mathfrak{d}=\delta_{L / K}^{\log }=2$.
blqwup normalised base change.png

Equip C and C_{L} with the metrics induced by the integral piecewise affine structures, the so-called stable metric. (Baker-Nicaise '15) The potential theory of \mathfrak{d} is less clear than in the algebraically closed case due to:
bad news
$\pi^{\mathrm{an}}: C_{L}^{\mathrm{an}} \rightarrow C^{\mathrm{an}}$ is not an isometry in general, and disagrees with the metric introduced by Ducros.

Equip C and C_{L} with the metrics induced by the integral piecewise affine structures, the so-called stable metric. (Baker-Nicaise '15) The potential theory of \mathfrak{d} is less clear than in the algebraically closed case due to:
bad news
$\pi^{\mathrm{an}}: C_{L}^{\mathrm{an}} \rightarrow C^{\mathrm{an}}$ is not an isometry in general, and disagrees with the metric introduced by Ducros.

definition

The temperate part of $X^{\text {an }}$ is the closure of the tame divisorial points, i.e. those divisorial points x with $p \nmid e(\mathcal{H}(x) / K)$.
good news
$\pi^{\text {an }}$ is an isometry above the temperate part of $C^{\text {an }}$. In general, locally the contraction factor is an integer dividing $[L: K]$.

So in concrete cases like degree p extensions, we can work out the slopes of \mathfrak{d} from the slopes of weight functions. Also, $\mathfrak{d} \equiv \delta_{L / K}^{\log }$ on the temperate part.

Curves with potential good ordinary reduction

Suppose moreover that C has bad reduction and C_{L} has good ordinary reduction and $[L: K]=p$. Let \mathcal{X} be the smooth model of C_{L} and $x \in \mathcal{X} / \operatorname{Gal}(L / K)$ be singular.

Theorem

- (Lorenzini '14) The singularity in x is isolated and its resolution has dual graph

for some $n \in p \mathbb{Z}_{\geq 0}$ and $r \in \mathbb{Z}_{\geq 0}$ with $p \nmid r$.

Curves with potential good ordinary reduction

Suppose moreover that C has bad reduction and C_{L} has good ordinary reduction and $[L: K]=p$. Let \mathcal{X} be the smooth model of C_{L} and $x \in \mathcal{X} / \operatorname{Gal}(L / K)$ be singular.

Theorem

- (Lorenzini '14) The singularity in x is isolated and its resolution has dual graph

for some $n \in p \mathbb{Z}_{\geq 0}$ and $r \in \mathbb{Z}_{\geq 0}$ with $p \nmid r$.
- (Obus-Wewers '20, W. '22)
$n=p \cdot($ jump in the ramification filtration of $L / K)$

How to determine n using \mathfrak{d}

- Base change the previous resolution graph to L :

$\boldsymbol{\rightharpoonup}=0$ on the strict transform (the smooth component), as the residue field extension is unramified
$\vee \mathfrak{d} \equiv \delta_{L / K}^{\log }$ above the temperate part of $C^{\text {an }}$, which includes the node
- one computes \mathfrak{d} has constant slope $p-1$ on the segment between the strict transform and the node
- Can show directly that stable metric is not isometry, so length segment changes by contraction factor p.

