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Setup

▶ Let K be a complete discretely valued field, denote K◦ for
the ring of integers.

▶ Assume the residue field K̃ is algebraically closed of
characteristic p.

▶ We work with smooth, connected K-varieties X,Y .

▶ Let f : X → Y be generically étale.

goal

Study change of essential skeleta along fan : Xan → Y an

Key input: work by Temkin and collaborators on differents.
Time depending I’ll discuss an application to wild models of curves
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Overview

skeleta

(log) differents

application to wild ramification of curves



Reminders on models and their skeleta

▶ A pure-dimensional normal K◦-variety X is called a model of
its generic fiber X/K, call its special fiber a degeneration.

▶ Each component of a degeneration induces a discrete
valuation on K(X), and so a point in the Berkovich
analytification Xan, such points are called divisorial points.
They lie dense in Xan.

▶ Say a model is snc if it is regular and its special fiber is a snc
divisor.

▶ The skeleton skX of an snc model X is the dual intersection
complex of the components of Xs, it is a compact integral
piecewise affine simplicial space in Xan whose vertices are the
divisorial points of Xs.
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Approaches to canonical skeleta in Berkovich geometry

classical for hyperbolic curves via minimal snc models.
in higher dimension there are at least two approaches:

1. (Kontsevich-Soibelman ’08, Mustaţă-Nicaise ’15)
essential skeleton via weight functions (as will be explained)
(Nicaise-Xu ’16)
Equivalently as the skeleton of a good minimal dlt model

2. (Temkin ’16)
minimality locus of the Kähler valuation on the sheaf of
Kähler differentials



weight functions (after Mustaţă-Nicaise ’15)

For simplicity assume X admits a snc model

▶ Pick any nonzero ω meromorphic pluricanonical form on X

▶ associate an integral piecewise affine weight function

wtω : Xan → R.

If a divisorial point x ∈ Xan corresponds to a component E of
a snc model X , the weight wtω(x) measures how ω
degenerates at E

▶ More precisely, ω seen as a rational form on X defines a
Cartier divisor div X (ω), suppose locally around E we have
div Xω = νE with ν ∈ Z. Then

wtω(x) :=
ν + 1

multXs(E)
− 1

(the +1 & -1 come from considering logarithmic forms on X )
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Example

E : y2 = x3 + 2/Q̂ur
2 has a snc model X with special fiber

special fiber type II.png

Let ω = dx/2y be the invariant differential. Then wtω looks like

wt function example.png

where wtω increases with constant slope 1 with respect to the
induced metric by the Z-affine structure.
For example if E is the green component one computes
div Xω = 4E around E and so wtω(E) = 4+1

6 − 1 = −1
6



▶ If X has a snc model, wtω(x) is bounded below, and we can
define the Kontsevich-Soibelman skeleton as

sk(X,ω) = {x ∈ Xan : wtω(x) is minimal}.

In fact, it is a union of faces of the skeleton of any snc model.

▶ Define the essential skeleton as

sk(X) =
⋃
ω ̸=0

sk(X,ω).

Example (continued)

In the example before, sk(X) is a singleton corresponding to the
divisorial point corresponding to the green component.

Proposition (Mustaţă-Nicaise ’15)

sk(X) is a connected union of faces of any snc model (assuming
the latter exists)
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(logarithmic) differents

Definition

Given a seperable extension of discretely valued fields L/K we
define the different as

δL/K := length
(
ΩL◦/K◦

)
tor

,

similarly the log different δlogL/K := length
(
Ωlog
L◦/K◦

)
tor

.

in case of finite seperable extensions, δ (resp. δlog) measures
ramification (resp. wild ramification), namely it is zero iff the
extension is unramified (resp. tame). Also,

δL/K = δlogL/K + e(L/K)− 1.



differents in algebraic geometry

Example (Riemann-Hurwitz formula)

If f : X → Y is a generically étale morphism of smooth K-curves,
adjunction says

ωX
∼= f∗ωY ⊗ ωX/Y .

A computation shows

ωX/Y
∼= ΩX/Y /OX .

So the ramification divisor is∑
x∈X closed

δ(K(X),vx)/(K(Y ),vf(x)) (x).

Remark

Actually, the above argument still works for regular K◦-varieties,
as well as in higher dimensions, and there is a logarithmic version.
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pullback of weight functions

The previous remark can be used to show

Proposition (W.)

Let f : X → Y be a generically étale morphism of smooth
K-varieties. Let x ∈ Xan be divisorial. Then for all nonzero
rational pluricanonical forms ω on Y we have

wtf∗ω(x)− wtω(f(x)) =
1

e(H(x)/K)
δlogH(x)/H(f(x)) =: d(x)

As a corollary, one can extend d to a positive integral piecewise
affine function on Xan.

Remarks
▶ It follows essential skeleta pull back along tame Galois covers.

▶ In the algebraically closed case, Temkin e.a. have shown the
existence of a similar different function
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Base change of nonarchimedean curves

Let C be a smooth, geometrically connected K-curve, and L/K
Galois. Consider π : CL → C and d : Can

L → R≥0.

Example: y2 = x3 + 2/(K = Q̂ur
2 ) continued

The normalised base change of the minimal snc model to
L = K(

√
2) has a unique singularity, which is resolved after one

normalised blowup; at the node we have d = δlogL/K = 2.

blowup normalised base change.png



Equip C and CL with the metrics induced by the integral piecewise
affine structures, the so-called stable metric. (Baker-Nicaise ’15)
The potential theory of d is less clear than in the algebraically
closed case due to:

bad news

πan : Can
L → Can is not an isometry in general, and disagrees with

the metric introduced by Ducros.

definition

The temperate part of Xan is the closure of the tame divisorial
points, i.e. those divisorial points x with p ∤ e(H(x)/K).

good news

πan is an isometry above the temperate part of Can. In general,
locally the contraction factor is an integer dividing [L : K].

So in concrete cases like degree p extensions, we can work out the
slopes of d from the slopes of weight functions. Also, d ≡ δlogL/K on
the temperate part.
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Curves with potential good ordinary reduction

Suppose moreover that C has bad reduction and CL has good
ordinary reduction and [L : K] = p. Let X be the smooth model of
CL and x ∈ X/Gal(L/K) be singular.

Theorem
▶ (Lorenzini ’14) The singularity in x is isolated and its

resolution has dual graph

p p p p

r 1

p− r 1

n+ 1 components

for some n ∈ pZ≥0 and r ∈ Z≥0 with p ∤ r.

▶ (Obus-Wewers ’20, W. ’22)
n = p · (jump in the ramification filtration of L/K)
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How to determine n using d

▶ Base change the previous resolution graph to L:

slope d is p− 1
contraction factor p

d = 0
d = δlogL/K

▶ d = 0 on the strict transform (the smooth component), as the
residue field extension is unramified

▶ d ≡ δlogL/K above the temperate part of Can, which includes
the node

▶ one computes d has constant slope p− 1 on the segment
between the strict transform and the node

▶ Can show directly that stable metric is not isometry, so length
segment changes by contraction factor p.


	skeleta
	(log) differents
	application to wild ramification of curves

