Dr. Changhua BAO,
Department of Physics, Tsinghua University, China

Development of time-resolved ARPES and Floquet band engineering

The time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials, leading to tailored electronic properties on an ultrafast timescale [1], dubbed as Floquet engineering. Despite extensive research interests over the past decade, the experimental realization of Floquet engineering in semiconductors remains a crucial step. As a technique that can directly resolve electronic structure under a light field, time- and angle-resolved photoemission spectroscopy (trARPES) is powerful for studying Floquet engineering. In this talk, I will present our recent progress in the development of trARPES instrumentation [2-5]. By utilizing trARPES, we realized Floquet engineering in the model semiconductor black phosphorus. Light-induced dynamical gap opening is observed upon near-resonance pumping with strong pseudospin selectivity [6]. Furthermore, by pushing to lower pumping photon energy, we realized below-gap pumping induced Floquet engineering in black phosphorus [7], which provides a comprehensive understanding of Floquet engineering in semiconductors and also provides guidance for extending Floquet engineering into more materials.

Reference