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https://link.springer.com/book/10.1007/3-540-33571-4
https://link.springer.com/book/10.1007/978-3-662-64650-2


Applied Financial Econometrics — 1. Introduction — U Regensburg — April 2023 — 6

1. Introduction

1.1. Themes

• How to measure returns and risks of financial assets?

• Are asset returns predictable? In the short run - in the long run?

−→ requires command of time series econometrics

• Does the risk of an asset vary with time? Is this important? How can one model time-varying

risk?

• Is the equity premium (excess returns of stocks over bonds) really that high?

• How can one explain variations in stock returns across various stocks?

For outline of the course see Contents
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This course provides an introduction to the basics of financial econometrics, mainly to analyzing

financial time series. There are many more topics in financial econometrics that cannot be covered by

this course but are treated in advanced textbooks such as Franke, Härdle, und Hafner (2019) or Tsay

(2010).

A selection of advanced topics not treated here is:

• Statistics of extreme risks

• Credit risk management and probability of default

• Interest rate models and term structure models

• Analyzing high-frequency data and modeling market microstructure

• Analyzing and estimating models for options

• Multivariate time series models

• Technical methods such as state-space models and the Kalman filter, principal components and

factor models, copulae, nonparametric methods, ....
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1.2. Some basics

• Return Rt (or gross return)

Rt =
Pt + Dt

Pt−1

• Net return
(Pt − Pt−1) + Dt

Pt−1
= Rt − 1

• Log returns rt or continuously compounded returns

– Recall: ln(1) = 0, ∂ ln(x)
∂x = 1

x. Taking a Taylor expansion of degree 1 at x0 delivers

lnx ≈ lnx0 +
∂ ln(x)

∂x |x0

(x− x0) = lnx0 +
1

x0
(x− x0)

Thus, expanding at x0 = 1, one has for x close to 1

lnx ≈ x− 1

– Replacing x by Rt gives

rt = log(Rt) ≈ Rt − 1
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• Real prices

real pricet(t) =
Pt

CPIt
Note that if real prices should be given in prices of year s, then one has to compute

real pricet(s) = Pt
CPIs
CPIt

• Real return

real returnt =
Pt/CPIt + Dt/CPIt

Pt−1/CPIt−1
=
Pt + Dt

Pt−1

CPIt−1

CPIt
= Rt

CPIt−1

CPIt

• Log real returns

logged real returnt = log

(
Rt
CPIt−1

CPIt

)
= log(Rt) + logCPIt−1 − logCPIt

= rt + logCPIt−1 − logCPIt

• Excess log returns of asset A over asset B

excess log returnt = log(RA
t )− log(RB

t )

= rAt − rBt
= rAt + logCPIt−1 − logCPIt −

(
rBt + logCPIt−1 − logCPIt

)
= excess log real returnt
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A first look at data: S&P 500 Composite Index

Real prices of the S&P 500 Composite and real earnings, January 1871 – February 2023,

Source: homepage of Robert Shiller: www.econ.yale.edu/~shiller/
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Are real prices RPt predictable?

• Estimating a simple model

RPt = α0 + α1RPt−1 + ut, t = 1, . . . , 1825 (1.1)

What do you learn from that? Potential pitfalls?

www.econ.yale.edu/~shiller/
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Table 1.1.: Real Prices of the S&P 500, Jan 1971 - Feb 2023, OLS
Call:

lm(formula = RP_t ~ 1 + RP_tm1)

Residuals:

Min 1Q Median 3Q Max

-0.30955 -0.01915 0.00368 0.02340 0.41294

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001497 0.006167 0.243 0.808

RP_tm1 1.000086 0.001008 992.211 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0409 on 1823 degrees of freedom

Multiple R-squared: 0.9982,Adjusted R-squared: 0.9982

F-statistic: 9.845e+05 on 1 and 1823 DF, p-value: < 2.2e-16

See appendix A.1 for the R-program and the data source.
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Potential issues when estimating a model like (1.1):

– lagged endogeneous regressors,

– nonstationarity of regressor,

– heteroskedastic errors,

– lag length.

Models where the regressors are exclusively lagged endogenous variables are called autoregressive

models, see section 2.1.
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1.3. Stochastic processes

First, some more terms:

Stochastic process or random process:

A stochastic process {yt}t∈T is a collection of random variables yt’s with their indices t ordered within

the index set T.

If the index t represents time, stochastic processes are also called time series processes.

In this lecture, only time discrete stochastic processes are considered with T = Z or T = N.

An observed realization of a stochastic process is called trajectory or sample path.
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The simplest example of a stochastic process is:

White Noise (WN):

A collection of random variables {ut}t∈T is called white noise and denoted as

ut ∼ WN(0, σ2), t ∈ T,

if

• the unconditional mean is zero E[ut] = 0 for all t ∈ T, and

• the variance is identical for all t, i.e. V ar(ut) = σ2 for all t ∈ T, and

• the random variables are uncorrelated over time Cov(ut, us) = 0 for all t, s ∈ T and t 6= s.

In case stock returns are white noise, what does this imply?

Notes:

• The properties of a white noise process do not imply that E[ut|ut−1] = 0:

Cov(ut, ut−1) = E[utut−1]− E[ut]E[ut−1] = E[utut−1] (due to WN: E[ut] = 0)

= E [ut−1E[ut|ut−1]] = 0 (using LIE and property of WN.)

Therefore, white noise does not imply that g(ut−1) := E[ut|ut−1] = 0 since only the expectation

of the product E[ut−1g(ut−1)] as well as E[g(ut−1)] are zero by the properties of WN.
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• White noise processes may exhibit dependence in the higher order moments (moments of order

three or more). E.g., one has E[u2
tu

2
s] 6= E[u2

t ]E[u2
s]).

Both issues are excluded if the ut and us are stochastically independent and identically (i.i.d.)

distributed, denoted as

ut ∼ IID(0, σ2), t ∈ T.

The i.i.d. condition is automatically fulfilled if the random variables are normally distributed and

uncorrelated. Then one has a stronger version of white noise: Gaussian white noise.

If one only wants to ensure that E[ut|ut−1] = 0 but allow for dependence in higher moments, then

one has to assume that the process ut is a martingale difference.

Martingale:

A stochastic process {yt}t∈T is called martingale if

E[yt|yt−1, yt−2, . . .] = yt−1 (1.2)

holds.

Martingale Difference Sequence (MDS):

A process is called a martingale difference sequence{ut}t∈T if

E[ut|ut−1, ut−2, . . .] = 0 (1.3)

holds (Hassler, 2019).
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Therefore, if {yt} is a martingale, ut := yt − yt−1, t > 1 and u1 = y1 is an MDS since (Davidson,

2000, Section 6.2.1)

E[ut|ut−1, . . .] = E[yt − yt−1|yt−1, . . . , y1] = yt−1 − yt−1 = 0.
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2. The basics of time series modeling

2.1. Autoregressive processes

2.1.1. Autoregressive processes of order one (AR(1) processes)

A stochastic process {yt}t∈T that is generated by the following (stochastic) difference equation

yt = α0 + α1yt−1 + ut, t ∈ T

where the ut’s are white noise and T = {0, 1, 2, . . . , } or T = Z = {. . . ,−2,−1, 0, 1, 2, . . . , } is

called autoregressive process of order one (AR(1) process). If T = Z we say that the process

started a long time age.

The random variable ut is called error, disturbance, shock, or innovation.
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Simulating AR(1) processes

Using the R program given in appendix A.2 one can generate R different realizations of an AR(1)

process. Since for simulations one always needs a presample value y0, several options are possible to

choose y0. For generating the AR(1) series the R command filter(x, filter, method, init)

is used:

• x: element t is given by α0 + ut, t = 1, . . . , T ,

• filter: given by α1,

• method: use recursive as the yt’s are computed recursively,

• init: contains the presample value y0.

The R program also allows to illustrate non-ergodic AR(1) processes, see the handout of Methods of

Econometrics for an explanation of ergodicity.

Statistical properties of an AR(1) process

• For α1 = 0 the stochastic process yt − α0 is white noise.
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• Expressing yt as a weighted sum of past and present white noise terms (plus starting value)

yt = α0 + α1 (α0 + α1yt−2 + ut−1) + ut

= α0 + α1α0 + α2
1yt−2 + α1ut−1 + ut

...

= α0

(
1 + α1 + α2

1 + · · · + αj−1
1

)
+ αj1yt−j + αj−1

1 ut−(j−1) + · · · + α2
1ut−2 + α1ut−1 + ut

= α0

j−1∑
k=0

αk1 + αj1yt−j +

j−1∑
k=0

αk1ut−k.

– For |α1| < 1 and j →∞ (process has run since ever) one has(
1 + α1 + α2

1 + · · · + αj1 + . . .
)

= 1/(1− α1)

αj1y0 → 0

and therefore

yt = α0/(1− α1) +

∞∑
j=0

αj1ut−j. (2.1)

The random variable yt is a weighted infinite sum of past values and the present value of the

white noise process {ut}. The importance of shocks declines quickly. E.g. for α1 = 0.9 one

has 0.910 = 0.349 and 0.950 = 0.05.
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– For α1 = 1 one cannot let j →∞. Typically one chooses j = t and obtains

yt = tα0 + y0 + ut + ut−1 + · · · + u1, t = 1, 2, . . . .

∗ If α0 = 0, the stochastic process {yt}∞t=1 is called random walk because yt is an un-

weighted sum of random increments. Shocks keep their importance. One also says that

yt has long memory (even perfect memory).

∗ For α0 6= 0, it will be seen below that E[yt] = α0t+E[y0]. Thus, one has a combination

of a (pure) random walk with a deterministic trend or drift. In this case {yt} is called a

random walk with drift.

– For α1 > 1 the influence of a shock increases with its distance to the present observation.

One has an explosive autoregressive model.

• In order to obtain the conditional expectation

E[yt|yt−1] = α0 + α1yt−1

which is in general different from zero, the assumption ut ∼ WN(0, σ2) is not sufficient for the

reason described in section 1.3.

One needs

– either the assumption that {ut}t∈T is a martingale differencee sequence (MDS) or
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– the even stronger assumption {ut} ∼ IID(0, σ2)

and in case of T = N and a stochastic presample value y0 that ut and y0 are stochastically

independent for all t > 0. To see this, consider

E[yt|yt−1] = α0 + α1yt−1 + E[ut|yt−1]

= α0 + α1yt−1 + E

[
ut

∣∣∣∣∣α0

t−2∑
k=0

αk1 + αt−1
1 y0 +

t−2∑
k=0

αk1ut−1−k

]
which reveals the possible dependence of ut on past ut’s and y0 that is not ruled out by the white

noise assumption alone. By the independence of y0 of all future ut’s one hasE[ut|ut−1, . . . , u1, y0] =

E[ut|ut−1, . . . , u1]. And by the MDS assumption, the latter expression is zero.

• The unconditional expectation for period t is

µt ≡ E[yt] =


α0/(1− α1) if |α1| < 1 and t ∈ Z — independent of t,

α0(1 + α1 + . . . + αt−1
1 ) + αt1E[y0] if t = 1, 2, . . . — dependent on t,

tα0 + E[y0] if α1 = 1 and t = 1, 2, . . . — dependent on t.

Knowing µt one can rewrite the autoregressive process as

yt − µt = α1(yt−1 − µt−1) + ut.

Check!
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• Unconditional variance:

V ar(yt) ≡ E[(yt − µt)2]

= E
[
(α1(yt−1 − µt−1) + ut)

2
]

= E
[
α2

1(yt−1 − µt−1)2
]

+ 2E[α1(yt−1 − µt−1)ut] + E[u2
t ]

= α2
1V ar(yt−1) + 2 · 0 + σ2

= α2
1V ar(yt−1) + σ2.

Again, further results depend on α1:

Inserting iteratively delivers

V ar(yt) =


σ2/(1− α2

1) if |α1| < 1 and t ∈ Z — independent of t,

σ2
∑t−1

j=0 α
2j
1 if V ar(y0) = 0 and t = 1, 2, . . . — dependent on t,

σ2t if α1 = 1 and V ar(y0) = 0 and t = 1, 2, . . . — dependent on t.



Applied Financial Econometrics — 2.1.1. AR(1) processes — U Regensburg — April 2023 — 23

• Definition of the autocovariance function:

Cov(yt, ys) ≡ E[(yt − µt)(ys − µs)]

Computation: Take for simplicity s = t− 1:

Cov(yt, yt−1) = E [(α1(yt−1 − µt−1) + ut) (yt−1 − µt−1)]

= E
[
α1(yt−1 − µt−1)2 + ut(yt−1 − µt−1)

]
= α1E[(yt−1 − µt−1)2] + E[ut(yt−1 − µt−1)]

= α1V ar(yt−1).

Thus, with the results for the unconditional variance we obtain

Cov(yt, yt−1) = α1V ar(yt−1) =


α1σ

2/(1− α2
1) if |α1| < 1 and t ∈ Z — independent of t,

α1σ
2
∑t−2

j=0 α
2j
1 if V ar(y0) = 0 and t = 1, 2, . . . — dependent on t,

(t− 1)σ2 if α1 = 1, V ar(y0) = 0, t = 1, 2, . . . — dependent on t.

Similarly one can show that

Cov(yt, yt−k) = αk1V ar(yt−k) =


αk1σ

2/(1− α2
1) if |α1| < 1 and t ∈ Z — independent of t,

α1σ
2
∑t−1−k

j=0 α2j
1 if V ar(y0) = 0 and t = 1, 2, . . . — dependent on t,

(t− k)σ2 if α1 = 1 and V ar(y0) = 0, t = 1, 2, . . . — dep. on t.
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• Weak stationarity or Covariance stationarity:

A stochastic process {yt} is called weakly stationary if the first and second unconditional moment

are independent of the time index t:

– E[yt] = µt = µ for all t ∈ T,

– Cov(yt, yt−k) = γk for all t ∈ T.

• Thus, if |α1| < 1 and it has run since ever, the AR(1) process is weakly stationary.

– Stochastic processes for which

lim
t→∞

E(yt) = µ,

lim
t→∞

Cov(yt, yt−k) = γk,

are called asymptotically stationary. Of course any stationary process is also asymptoti-

cally stationary.

– If a process is not asymptotically stationary, it is nonstationary.

– There is another concept of stationarity, frequently called strict stationarity. A stochastic

process is called strictly stationary if the joint distribution of (yt1, yt2, . . . , ytm) is the same as

for (yt1+h, yt2+h, . . . , ytm+h) for any t1, . . . , tm and for all m ∈ N, h ∈ Z.

Is a weakly stationary AR(1) process also strictly stationary? If not, which additional assump-
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tions do you need?

• Properties of a (weakly) stationary AR(1) process:

– The autocovariances are always different from zero albeit they may be very small.

– The autocovariances converge to zero exponentially fast if |α1| < 1:

γk = αkγ0.

Therefore, stationary AR(1) processes are called stochastic processes with short memory.

The effect of a shock ut in time t has a negligible effect on yt+h for h large. The opposite

holds for a random walk where the effect of ut stays the same for any yt+h in the future!

Therefore, random walks are said to have long memory.

• Further remark: If {yt} is weakly stationary, it can be represented as a weighted sum of past and

present white noise terms plus a constant. This result holds for all stationary stochastic processes

and is known as the Wold decomposition, see (2.1).

• If one replaces in (2.1) αj1 by φj, then one obtains a so called moving average process

yt = µ +

∞∑
j=0

φjut−j, t ∈ Z,

see also section 2.2.
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2.1.2. Autoregressive processes of higher order

• Some more notation:

– Backshift or lag operator

Lut ≡ ut−1.

Thus, L2ut = L(Lut) = Lut−1 = ut−2 and Lkut = ut−k.

– Differencing operator

∆xt = (1− L)xt = xt − Lxt = xt − xt−1.

• A stochastic process {yt} is called autoregressive process of order p (AR(p) process) if

yt = α0 + α1yt−1 + α2yt−2 + · · · + αpyt−p + ut, t ∈ T

where ut is white noise. The index set can be T = Z or T = {p, p + 1, p + 2, . . .}.

Alternative representations with lag operator

yt − α1yt−1 − · · · − αpyt−p = α0 + ut

1− α1Lyt − · · · − αpLpyt = α0 + ut

(1− α1L− · · · − αpLp)yt = α0 + ut

α(L)yt = α0 + ut
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where α(L) ≡ (1− α1L− · · · − αpLp) is called an AR(p) lag polynomial.

• Relationship of an AR(2) process with AR(1) processes:

Example: Let {wt} and {ut} be a weakly stationary AR(1) process and white noise, respectively.

Then

wt = λ1wt−1 + ut, t = . . . ,−2,−1, 0, 1, 2, . . . ,

(1− λ1L)wt = ut.

Now consider the process {yt}

yt = λ2yt−1 + wt, t = . . . ,−2,−1, 0, 1, 2, . . . ,

(1− λ2L)yt = wt

– Is the stochastic process {yt} weakly stationary?

– Can the stochastic process {yt} be represented as an AR(p) process?
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Answer:

(1− λ2L)yt =
ut

(1− λ1L)
does this work?

(1− λ2L)(1− λ1L)yt = ut

((1−λ1L− λ2L︸ ︷︷ ︸
−α1L

+λ1λ2L
2︸ ︷︷ ︸

−α2L2

)yt = ut

yt − α1yt−1 − α2yt−2 = ut

yt = α1yt−1 + α2yt−2 + ut

with α1 = λ1 + λ2, α2 = −λ1λ2.

• In general it holds that one can factor an AR(p) process as

1− α1z − · · · − αpzp = (1− λ1z) · · · (1− λpz)

where the values λi can be complex numbers.

• Complex numbers C:

– Define i =
√
−1. Thus i2 = −1. i is called an imaginary number. Any number obtained

by multiplying i with a scalar produces again an imaginary number, e.g. 5i.

– A complex number consists of a real part and imaginary part

z = a + bi
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where a and b are real scalars.

– Examples: λ1 = a + bi, λ2 = a− bi:

−α1 = −(a + bi)− (a− bi) = −a− bi− a + bi = −2a real number

−α2 = (a + bi)(a− bi) = a2 − abi + abi− b2i2 = a2 − b2(−1) = a2 + b2 real number

(a + bi)(a + bi) = a2 + abi + abi + b2i2 = a2 + b2(−1) + 2abi = a2 − b2 + 2abi complex number

– For more information on complex numbers see the article on Wikipedia or Neusser und Wagner

(2022, Appendix A).

• The solutions z∗ to the so-called characteristic equation

(1− λ1z) · · · (1− λpz) = 0

are called its roots.

• Each factor (1 − λiz) can be viewed as AR(1) polynomial which produces a weakly stationary

process if its root is outside the unit circle, that is

|zi| > 1 for all i = 1, . . . , k. (2.2)

Equivalently

|λi| < 1 for all i = 1, . . . , k.

http://en.wikipedia.org/wiki/Complex_number
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Thus, (2.2) is called stability condition of an AR(p) process. One also says: All roots of the

AR(p) polynomial α(L) are outside the unit circle.

Frequently (2.2) is also called stationarity condition. This, however, is not entirely correct

because the process is only asymyptotically stationary if it starts in t = 0 even if the stability

condition holds. Why?

• Is for exactly one factor the root z = 1 (let’s say for λ1 = 1) and all others fulfil the stability

condition, then one has

(1− z)(1− λ2z) · · · (1− λpz) = (1− z)(1− α∗1z − · · · − α∗p−1z
p−1)

α(L) = (1− L)α∗(L)

where α∗(L) fulfils the stability condition (2.2) and the AR(p) process contains a random walk

component. One also says that it contains a unit root or is integrated of order 1,

yt ∼ I(1).

• In general: An AR(p) process {yt} is said to be integrated of order d, if

α(L) = (1− L)dα∗(L)

and α∗(L) fulfils the stability condition (2.2).

The integration parameter d may take real values → long memory models (Tschernig, 1994,

Chapter 3).
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• Moments of a stationary AR(p) process:

– Mean: E(yt) = µ, for all t.

It holds that

α0 = α(L)µ = α(1)µ = µ(1− α1 − α2 − · · · − αp)

since from α(L)yt = α0 + ut one obtains α(L)(yt − µ) = −α(L)µ+ α0 + ut by subtracting

α(L)µ on both sides. If µ represents the mean, then −α(L)µ + α0 must be zero.

– Variance and autocovariance function: cf. Hamilton (1994, p. 59, eq. (3.4.36))

γk =

 α1γ1 + α2γ2 + · · · + αpγp + σ2 for k = 0

α1γk−1 + α2γk−2 + · · · + αpγk−p for k = 1, 2, . . .
(2.3)

This system of equations is called Yule-Walker equations.

– Partial autocorrelation function Corr(yt, yt−k|yt−1, . . . , yt−k+1):

In an AR(p) process it holds that

ak = Corr(yt, yt−k|yt−1, . . . , yt−k+1).

Thus, all partial autocorrelations for k > p are zero since ak = αk = 0 for k > p.
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• It can be shown that the autocovariances of a stationary AR(p) process converge exponentially

fast towards zero (Hamilton, 1994, p. 59), (Kirchgässner, Wolters, und Hassler, 2013, Example

2.4). For the AR(1) process this was shown in section 2.1.1.

• A stationary AR(p) process exhibits the following representation

yt = φ(L)ut (2.4)

yt = ut + φ1ut−1 + φ2ut−2 + . . . + φiut−i + . . .

where the lag polynomial φ(L) is determined by the following equations

1

α(L)
= φ(L) (2.5)

α(L)φ(L) = 1 (2.6)

The parameters of φ(L) can be determined by comparing coefficients (method of undetermined

coefficients (Kirchgässner, Wolters, und Hassler, 2013, Section 2.1.2)):

φj =

j∑
i=1

φj−iαi, j = 1, 2, . . . , α0 = 1, αi = 0 for i > p

The representation (2.4) is an example of an MA(∞) process, see section 2.2.3.
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2.2. Moving average processes

2.2.1. MA(1) processes

• A stochastic process {yt} is called moving average process of order 1 (MA(1) process)

if it fulfils the following equation

yt = ut + m1ut−1, t = . . . ,−2,−1,−, 1, 2, . . .
yt = (1 + m1L)ut

where {ut} is white noise.

• An MA(1) process can be simulated using the R program shown in section A.3.

• Properties:

– Mean: E(yt) = 0
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– (Auto)covariance function:

Cov(yt, yt−k) = E(ytyt−k)

= E((ut + m1ut−1)(ut−k + m1ut−k−1))

= E(utut−k) + m1E(utut−k−1)

+ m1E(ut−1ut−k) + m2
1E(ut−1ut−k−1)

∗ Lag 0, k = 0:

V ar(yt) = E(u2
t ) + m1E(utut−1)

+ m1E(ut−1ut) + m2
1E(ut−1ut−1)

= σ2 + m2
1σ

2 = γ0

∗ Lags -1,1, k = 1 oder k = −1:

Cov(yt, yt−1) = E(utut−1) + m1E(utut−2)

+ m1E(u2
t−1) + m2

1E(ut−1ut−2)

= m1σ
2 = γ1

∗ For all lagged variables with |k| ≥ 2 holds that

Cov(yt, yt−k) = 0 = γk
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2.2.2. MA(q) processes

• A stochastic process {yt} is called MA(q) process if it has the following representation

yt = ut + m1ut−1 + · · · + mqut−q, t = . . . ,−2,−1,−, 1, 2, . . .

where {ut} is white noise.

• Short notation using lag polynomials:

yt = (m0 + m1L + · · · + mqL
q)ut, m0 = 1

yt = m(L)ut

• Properties:

– Mean: E(yt) = 0

– (Auto)covariance function: Similarly to above we have

∗ Lag 0, k = 0:

V ar(yt) = γ0 = σ2 + m2
1σ

2 + · · ·m2
qσ

2

= σ2

(
1 +

q∑
i=1

m2
i

)
= σ2

q∑
i=0

m2
i
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∗ Lag k, −q ≤ 0 < k ≤ q:

Cov(yt, yt−k) = γk = σ2

q−k∑
i=0

mimk+i

∗ For all lags |k| > q:

Cov(yt, yt−k) = γk = 0

– Remarks:

∗ All autocovariances for lags larger than q are 0! Put differently: A shock that

occurred q or more periods before does not influence the stochastic behavior of yt !

∗ All partial autocorrelations are unequal zero for any lag, see later.

2.2.3. Moving Average of infinite order (MA(∞) processes)

• A stochastic process {yt} is called MA(∞) process if it has the following representation

yt = ut + m1ut−1 + · · · + mqut−q + · · · ,
yt = (1 + m1L + · · · + mqL

q + · · · )ut
yt = m(L)ut
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where {ut} is white noise.

• Properties:

– Mean: E(yt) = 0

– (Auto)covariance function:

∗ Variance

V ar(yt) = σ2
∞∑
i=0

m2
i

Remark:

The variance of an MA(∞) process only exists if the infinite sum
∑∞

i=0m
2
i converges to

a finite number. This a necessary condition for weak stationarity. Why?

(Why is it not a necessary condition for strict stationarity?)

In other words:

Weak stationarity requires that the influence of a shock ut−k decreases fast enough if the

number of lags k increases.

∗ Autocovariance function:

Cov(yt, yt−k) = γk = σ2

( ∞∑
i=1

mimk+i

)
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– A MA(∞) process for which the MA polynomial m(z) has all roots outside the unit circle is

called invertible and has an AR(∞) or even AR(p) representation.

• Remarks:

– In practice one cannot estimate an MA(∞) process since one cannot estimate the infinitely

many parameters mi. However, one can approximate an MA(∞) process by an MA(q) process

with high order q. This only makes sense if the DGP that generated the observed time series

does not have autocovariances for lags larger q.

– If small but non-zero autocovariances occur for lags larger than q, then using a stationary

AR(p) model can be more appropriate since any stationary AR(p) process can be represented

as an MA(∞) process. See (2.1) for an AR(1) process and (2.4) for an AR(p) process.

– Summary:

∗ AR(p) process: γk 6= 0 for k > p, ak = 0 for k > p

∗ MA(q) process: γk = 0 for k > q, ak 6= 0 for k > q.

These properties can be used to select between AR and MA models in practice if one has

reliable estimators for the autocorrelation and partial autocorrelation function. This is an

integral part of the Box-Jenkins model specification strategy.

– Sometimes, neither an AR(p) nor an MA(q) process is appropriate, then a combination of
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both may do it: the ARMA(p, q) process.

2.3. ARMA processes

• A stochastic process {yt} is called autoregressive moving average process (ARMA(p, q)

process) with AR order p and MA order q if it follows the equation

α(L)yt = m(L)ut

and {ut} is white noise and if {yt} is weakly stationary.

• An ARMA(1,1) process can be simulated using the R program shown in section A.3.

• Properties:

– Mean: E(yt) = 0 for all periods t

– Autocovariance function:

∗ For |k| ≥ max(p, q) holds

γk = α1γk−1 + α2γk−2 + · · · + αpγk−p.

For large lags the ARMA process performs like an AR process.
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∗ For |k| < max(p, q+1) the computation is somewhat more complicated than in the AR(p)

case, see e.g. Hamilton (1994, Section 3.6).

– How does the partial autocorrelation function behave?

– The stationarity condition for an ARMA(p, q) process and an AR(p) process are identical.

– Therefore, a stationary ARMA process exhibits an MA(∞) representation that can be obtained

via comparing coefficients like (2.5).

– Is the MA polynomial invertible, then the ARMA(p, q) process can be written as an AR(∞)

process. Invertibility requires:

1 + m1z + · · · + mqz
q 6= 0 for |z| ≤ 1

where z can be complex.

– Attention:

If the AR polynomial α(L) and the MA polynomial m(L) have common roots, then some or all

parameters of these polynomials are not identified, (see examples) and cannot be estimated.

Therefore one needs a reliable determination of the AR and MA order. More on that later

when model selection criteria are discussed.
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Examples:

∗

yt = ut

(1− α1L)yt = (1− α1L)ut

so that m1 = −α1.

∗

(1− λ1L)(1− λ2L)yt = (1− λ1L)(1 + λ3L)ut

(1− (λ1 + λ2)︸ ︷︷ ︸
α1

L + λ1λ2︸︷︷︸
−α2

L2)yt = (1 + (−λ1 + λ3)︸ ︷︷ ︸
m1

L + λ1λ3︸︷︷︸
m2

L2)ut

(1− λ2︸︷︷︸
α′1

L)yt = (1 + λ3︸︷︷︸
m′1

L)ut

• Useful commands in R for computing the MA(∞) representation as well as the autocorrelation

and partial autocorrelation function are given in the R program in section A.4.



Applied Financial Econometrics — 2.4. Trajectory examples — U Regensburg — April 2023 — 42

2.4. Trajectory examples

Note: The animations work when using Adobe Acrobat Reader or Adobe Acrobat. They do not work

in Vorschau of the Apple operating system.

yt = 0.2yt−1 + ut, where ut i.i.d.N(0, 1) and y0 = 0.
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yt = 10 + 0.2yt−1 + ut, where ut i.i.d.N(0, 1) and y0 = 0.
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yt = yt−1 + ut, where ut i.i.d.N(0, 1) and y0 = 0.
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2.5. Estimation

2.5.1. OLS Estimation of AR(p) Models

AR(p) process

yt = α0 + α1yt−1 + α2yt−2 + · · · + αpyt−p + ut

with {ut} being white noise

• Some more notation and convention:

– One has p presample values y−p+1, . . . , y0 and a sample with T observations y1, . . . , yT .

Hence, for estimating the parameters of an AR(p) process we need T + p observations.
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– Define the vectors and matrices

α =



α0

α1

α2

...

αp


Yt−1 =



1

yt−1

yt−2

...

yt−p



y =


y1

y2

...

yT

 , X =


1 y0 y−1 · · · y1−p

1 y1 y0 · · · y2−p
... ... ... . . . ...

1 yT−1 yT−2 · · · yT−p

 , u =


u1

u2

...

uT


Thus, one can write

y = Xα + u

• OLS estimator

α̂ = (X ′X)−1X ′y =

(
T∑
t=1

Yt−1Y
′
t−1

)−1 T∑
t=1

Yt−1yt
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Example: If p = 1, one has yt = αyt−1 + ut and

α̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

=︸︷︷︸
conditions?

α +

∑T
t=1 yt−1ut∑T
t=1 y

2
t−1

or

α̂− α =

∑T
t=1 yt−1ut∑T
t=1 y

2
t−1

All the important properties of the OLS estimator can be illustrated for a simple AR(1) model.

• Statistical properties in finite samples:

– Consider

E [α̂] = α + E
[
(X ′X)−1X ′u

]
= α + E

E [(X ′X)−1X ′u|X
]︸ ︷︷ ︸

6=0

 = α + E

(X ′X)−1X ′E [u|X ]︸ ︷︷ ︸
6=0


The reason why the conditional expectation is not zero is that X is not exogenous in the

present case because it consists of lagged yt’s that are weighted sums of ut’s. Thus, the

ut’s are already contained in the condition. This is different from the simple linear model for

cross-section data.
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Therefore, the OLS estimator α̂ is biased in finite samples.

E[α̂] 6= α

– The probability distribution of α̂ is not exactly known even if the ut’s are normally distributed.

Note that in this case also the yt’s follow a normal distribution. Why? Consider the OLS

estimator of a simple AR(1) model

α̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

As one can see, the same normal random variables appear in the numerator and denominator.

Thus, the OLS estimator is a highly nonlinear function of normal random variables for which

the distribution is generally unknown.

– Example: Distribution of α̂, when the process is

yt = 0.8yt−1 + ut

and ut ∼ IN(0, 1): The finite sample distribution in figure 2.1 is not centered around the true

value 0.8 but around 0.75 so there exists an estimation bias. Moreover, the finite-sample

distribution deviates considerably from a normal distribution.
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Figure 2.1.: Monte-Carlo simulation of finite-sample distribution of OLS for n = 30 observations using 10.000

replications. See appendix A.5 for the R program.
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• Statistical properties in very large samples — asymptotic properties:

– Consider the OLS estimator of the AR(1) model first:

α̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

=
1
T

∑T
t=1 yt−1yt

1
T

∑T
t=1 y

2
t−1

Note that if the AR(1) process is stationary it holds that (see above)

Cov(yt, yt−1) = αV ar(yt)

and thus

α =
Cov(yt, yt−1)

V ar(yt)
.

Note also that
1

T

T∑
t=1

yt−1yt

is an estimator of Cov(yt, yt−1) and

1

T

T∑
t=1

y2
t−1

is an estimator of V ar(yt−1) = V ar(yt).
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– In order to check the properties of the OLS estimator for large samples, one may check the

behavior of the covariance and the variance estimator. If for an arbitrary ε > 0

lim
T→∞

P

(∣∣∣∣∣ 1

T

T∑
t=1

y2
t−1 − V ar(yt)

∣∣∣∣∣ < ε

)
= 1 (+)

then the estimation error disappears. One says that the estimator 1
T

∑T
t=1 y

2
t−1 converges in

probability to the true value, which is V ar(yt) in the present case. A short hand notation is

plim
T→∞

1

T

T∑
t=1

y2
t−1 = V ar(yt).

An estimator for which the estimation error diminishes with increasing sample size is also

called consistent.

It can be shown that the variance and the covariance estimator are both consistent if the

autoregressive process is stationary. Moreover, for two arbitrary sequences of random numbers

zT and wT , for which

plim zT = z plimwT = w

it holds that

plim zTwT = plim zT plimwT = zw.

Note that this property does not hold for expected values!
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Thus, if the model is correctly specified and thus Cov(yt, yt−1) = αV ar(yt) holds, one has

plim α̂ =
plim 1

T

∑T
t=1 yt−1yt

plim 1
T

∑T
t=1 y

2
t−1

= αV ar(yt)/V ar(yt) = α.

The OLS estimator is consistent.

The following figure (animated) shows the distribution of the OLS estimator of the AR(1)

model when the true data generating process is

yt = 0.8yt−1 + ut

where ut ∼ IN(0, 1). Sample sizes vary from 20 to 1000.
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Note: variance diminishes with larger sample size
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– Using a central limit theorem one can also show that
√
T (α̂− α)

d−→ N(0, q)

with some asymptotic variance q.

In order to state the asymptotic properties of the OLS estimator for AR(p) models we state the

conditions that the unknown but true AR(p) process has to fulfil:

– Assumption A:

1. The AR(p) process is stationary and correctly specified. This implies that the order p is

correctly chosen and the errors are not serially correlated.

2. The errors are homoskedastic V ar(ut) = σ2 for all periods t = 1, . . . , T .

3. E[u4
t ] <∞ for all periods t = 1, . . . , T .
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Under Assumption A the following holds for the OLS estimator α̂:

∗ It is consistent, i.e.

lim
T→∞

P (|α̂− α| < ε)→ 1

for arbitrary ε > 0 or in short hand notation

plimT→∞α̂ = α.

∗ The OLS estimator is asymptotically normally distributed:
√
T (α̂− α)

d−→ N (0, Q)

where Q denotes the asymptotic covariance matrix

Q = σ2plimT→∞
(
T−1X ′X

)−1
= σ2plimT→∞

(
T−1

T∑
t=1

Yt−1Y
′
t−1

)−1

.

A less precise but more intuitive way to write this result for reasonably large T is

α̂ ≈ N
(
α, σ2 (X ′X)

−1
)

or α̂ ≈ N

α, σ2

(
T∑
t=1

Yt−1Y
′
t−1

)−1
 .



Applied Financial Econometrics — 2.5.1. OLS Estimation of AR(p) Models — U Regensburg — April 2023 — 57

– Remarks

∗ Cf. Lütkepohl und Kraetzig (2008, Section 2.4.1), for proofs see Brockwell und Davis

(1991, Sections 8.7 and 8.8) who require ut ∼ IID(0, σ2) instead of the weaker white

noise assumptions.

∗ Weaker conditions that only require stability of the AR polynomial and some regularity of

the error process are possible, see e.g. Davidson (2000, Chapter 6).

∗ OLS estimation is used in EViews if the lags of a variable Y are specified by Y(-1), Y(-2),

etc. and is automatically used in the software JMulTi. In R, function ar() uses a different

estimation technique by default (using the Yule-Walker equations). You need to add the

option method = "ols" to get the least squares estimator.

∗ The OLS estimator is even asymptotically normally distributed if {yt} contains one unit

root and the AR order is at least 2. However, in this case the asymptotic covariance

matrix Q is singular (which, for example, implies that F tests do not work). This is due

to the faster convergence rate of the unit root compared to the stationary roots.
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• Asymptotic distribution of the OLS estimator in case of a simple random walk

– Note that a simple random walk process

yt = yt−1 + ut

with {ut} being white noise does not fulfil Assumption A. What are then the asymptotic

properties? To see that things change, consider again 1
T

∑T
t=1 y

2
t−1. Does it converge with

increasing sample size T to a finite quantity? Remember that in case of a random walk

V ar(yt) = tσ2.

– The asymptotic distribution of the OLS estimator for the autoregression parameter α in

case of a random walk as DGP is

T (α̂− 1) =
1
T

∑T
t=1 yt−1ut

1
T 2

∑T
t=1 y

2
t−1

d−→
1
2 (X − 1)

Z

where X = [W (1)]2 ∼ χ2(1) and Z ∼
∫ 1

0 [W (r)]2dr and X and Z are not independent. For

specialists: The W (r) denotes Brownian motion which is the continuous time version of a

simple discrete time random walk. This asymptotic distribution is often called Dickey-Fuller

distribution.

Thus: In case of p = 1 and α1 = 1 one obtains a

∗ completely different asymptotic distribution (graphic shows distribution of T (α̂− 1):
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Figure 2.2.: Monte-Carlo simulation of Dickey-Fuller distribution for n = 1000 observations. See appendix A.6

for the R program.



Applied Financial Econometrics — 2.5.1. OLS Estimation of AR(p) Models — U Regensburg — April 2023 — 60

∗ the OLS estimator converges much faster to the true value α = 1. It is called super

consistent. The variance of the OLS estimator converges much faster towards zero than

in the stationary case. Here, the rate is T−1 instead of T−1/2 in the stationary case. The

reason is that with an increasing number of observations the variation of the regressor and

the regressand increase — in contrast to the stationary case:
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Note: even for T = 20 the variance of α̂ is much smaller than in the stationary case

∗ For conducting valid inference one has to check which distribution applies!! This can be

done with an appropriate unit root test, see section 4.1.

∗ If the model contains deterministic terms (constant, trend, seasonal dummies,



Applied Financial Econometrics — 2.5.1. OLS Estimation of AR(p) Models — U Regensburg — April 2023 — 62

structural breaks, etc.), the asymptotic distribution changes, see section 4.1.

∗ The result holds for ut being white noise or Gaussian white noise.

∗ If the {ut} process is not white noise but correlated, then the asymptotic distribution

changes −→ Phillips-Perron-Test

∗ In order to avoid correlated ut, one can also estimate a more general model, e.g. an

AR(p) model. However, for testing purposes it has to be rewritten in a specific way −→
Augmented Dickey-Fuller-Test, see section 4.1.
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• Estimation of the error variance using the OLS residuals ût = yt − Y ′t−1α̂

– OLS estimator (for the model including a constant term)

σ̂2 =
1

T − p− 1

T∑
t=1

û2
t

– Maximum Likelihood estimator

σ̃2 =
1

T

T∑
t=1

û2
t

– Asymptotic properties: under suitable conditions both estimators are consistent

plimT→∞σ̂
2
T = σ2

plimT→∞σ̃
2
T = σ2

• A complete empirical analysis can be conducted using the R in section A.9. The data can be

downloaded from Yahoo finance.
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2.5.2. Alternative Estimators for AR(p) models

• Nonlinear least squares:

A stationary AR(1) process can alternatively be written as (similarly for an AR(p) process)

yt = µ + vt (2.7a)

vt = α1vt−1 + ut. (2.7b)

Inserting (2.7a) into (2.7b) delivers

yt = µ(1− α1) + α1yt−1 + ut. (2.8)

This equation is nonlinear in the parameters µ and α1 and can be estimated by nonlinear least

squares. This is done in EViews if lagged endogenous variables are specified by AR(1), AR(2),

etc.

Be aware that in this case in the EViews output C refers to the estimated mean µ, not the

estimated α0.

• Both, the OLS and nonlinear LS estimator require that the first p observations of a sample

are needed as starting values, thus reducing the number of observations by p. This can be

avoided if one can assume ut ∼ NID(0, σ2). Then, one can apply maximum likelihood

(ML) estimation. See section 5.2 for a brief introduction to maximum likelihood estimation of

stationary AR(p) models and e.g. Hamilton (1994, Sections 5.2 and 5.3) for details.
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2.5.3. Estimation of MA(q) and ARMA(p, q) models

The estimation of MA(q) and ARMA(p, q) models cannot be done by OLS directly. Mainly three

procedures are used:

• 2-step procedure using OLS techniques:

1. step: if the MA or ARMA process is invertible, it has an infinite AR representation. This

can be approximated by an AR(p∗) model with p∗ rather large. So fit an AR(p∗) model with

p∗ >> max(p, q) and calculate residuals ût(p
∗) = yt − Y ∗′t−1α̂

∗, t = 1, . . . , T

2. step: Estimate ARMA(p, q) model with residuals ût(p
∗)

yt = ν + α1yt−1 + · · · + αpyt−p + ut + m1ût−1(p∗) + · · · + mqût−q(p
∗)

using the OLS estimator.

Under suitable conditions asymptotically normally distributed.

• Maximum likelihood (ML) estimation. See section 5.2 for an introduction to ML estimation

or Kapitel 5 in Fortgeschrittene Ökonometrie. This estimator is highly nonlinear in the ARMA

parameters, requires nonlinear optimization techniques and starting values. The latter can be

obtained via the first method. Under suitable conditions both estimators are asymptotically

normally distributed.
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A detailed treatment can be found in Hamilton (1994, Chapter 5). Technical details for algorithms

and proofs can be found in Brockwell und Davis (1991, Chapter 8).

• Nonlinear least squares with backcasting techniques (EViews 5, User Guide, Chapter 17; EViews

6, User guide, Chapter 26)
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3. Forecasting (financial) time series

3.1. Some general remarks and definitions

• To begin with, one may call prediction a general statement about the dependent variable given

some conditioning information, e.g. predicting the wage of an individual knowing his/her age,

experience, education etc.

• Forecasting is a particular type of prediction of a future value of the dependent variable or a

value of it that is outside the current sample.

• A forecasting rule is any systematic operational procedure for making statements about future

events.

• Before we continue, we need to define the conditioning information set for which we introduce

the general notation It. Intuitively, It contains all sets for which a probability can be assigned. In
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case of lagged endogenous variables, for example in case of AR(p) processes, these sets contain

all combinations of intervals in which past values could have been observed. In practice, one often

writes for the given example It−1 = {yt−1, yt−2, . . .}. Then in case of an AR(1) process

yt = αyt−1 + ut, ut ∼ i.i.d.(0, σ2)

one has

E[yt|It−1] = αyt−1 6= E[yt] = 0.

Thus, knowing the condition helps to predict yt. Predictability is not only limited to the (condi-

tional) mean. One may state this even more general w.r.t. to densities.

• A random variable is unpredictable with respect to a given information set It−1 if the con-

ditional probability distribution F (yt|It−1) is identical to the unconditional/marginal probability

distribution F (yt)

F (yt|It−1) = F (yt).

• Any prediction is very likely to be false. Let yT+h|T denote a predictor for yT+h based on some

information set up to time T . Then the prediction error is

eT+h|T = yT+h − yT+h|T .

To evaluate the prediction error one may e.g. miminize the

– mean squared error of prediction (MSEP) MSEP (yT+h|T ) ≡ E[(yT+h − yT+h|T )2]
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– mean absolute error of prediction(MAEP) MAEP (yT+h|T ) ≡ E[|yT+h − yT+h|T |]

The function of which the mean is taken is called loss function, in case of the MSEP it is the

squared prediction error. Note that it does not make much sense to minimize the squared

error of prediction
(
yT+h − yT+h|T

)2
alone since the optimal predictor may vary from sample to

sample even if the information set stays the same. One therefore takes the mean of all potential

samples.

• By the law of iterated expectations, the MSEP (equivalently for the MAEP) can be written as

MSEP (yT+h|T ) = E
[
E[(yT+h − yT+h|T )2

∣∣ IT ]
]
, (3.1)

where IT denotes the information set used to compute yT+h|T . Note thatE[(yT+h − yT+h|T )2
∣∣ IT ]

measures the mean of squared prediction errors for a given path up to time T due to the condi-

tioning on IT so that yT+h|T is the same while yT+h varies randomly. Some authors call (more

precisely) E[(yT+h − yT+h|T )2
∣∣ IT ] the mean squared error of prediction and denote the expression

E
[
E[(yT+h − yT+h|T )2

∣∣ IT ]
]

as mean integrated squared error of prediction since it ’integrates’

out the impact of history up to time T . Both are the same in case of ARMA processes so that

we follow the standard textbook usage and call (3.1) MSEP (Lütkepohl, 2005, Section 2.2.2),

(Hamilton, 1994, Chapter 4). These concepts in general differ in case of nonlinear time series

processes.

• The minimal mean squared prediction error is obtained by using the conditional expectation
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E[yT+h|IT ] (does not minimize the MAEP), i.e. use yT+h|T = E[yT+h|IT ]. Thus, forecasting by

using conditional expectations implicitly means that one aims at minimizing the mean squared

prediction error.

• Possible approaches for predicting time series data:

– using exclusively past/current observations (univariate/multivariate time series models — ex-

ample: AR(p)/VAR(p) model)

– using regression models including conditioning/explanatory variables

yt = β1 + β2xt2 + · · · + βkxt,k + ut

where ut is white noise and the xtj’s are observable at time t. Having found a regression model

explaining yt is not sufficient for predictions since the xtj’s are unknown in future periods.

One then needs an auxiliary model for predicting all explanatory variables.

– a combination of the pure time series and the pure regression approach: dynamic econo-

metric models

Example:

yt = β0 + α1yt−1 + β1xt1 + β2xt−1,1 + β3xt2 + ut
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• Important issues:

– How to choose the best suited approach for a given prediction problem?

– Which model framework should be chosen?

univariate vs. multivariate models, linear vs. non-linear models,...)

– Is it necessary for obtaining good forecasts to have a model with good explanatory power

(’good’ model)?

– Alternatives to econometric/statistical forecasts that are based on models: judgement, expert

opinions,...

– Forecasting horizon

• Further issues — not treated here

– Combination of forecasts and encompassing forecasts

– Interval forecasts

– Forecasting the complete conditional density
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3.2. Decomposition of prediction errors

• Some notation

– Optimal predictor if MSEP has to be minimized: conditional expectation

yT+h|T ≡ E[yT+h|IT ]

Note that the optimal predictor yT+h|T is in general unfeasible since the conditional expected

value of yT+h given the information set is unknown. The conditional expected value (and the

conditional density) would be known if the DGP were known.

Supplement (not applied): Proof:

1. Let pT be any predictor that uses all information given by IT . Without loss of generality one can set

pT = E[yT+h|IT ] + aT

where aT denotes the deviation of the predictor pT from the conditional expectation.

2. By the law of iterated expectations one has for the MSEP

E
[
(yT+h − pT )2

]
= E

[
E
[
(yT+h − pT )2|IT

]]
We first focus on the conditional expectation E [(yT+h − pT )2|IT ].
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3. Next we show that the conditional expectation E [(yT+h − pT )2|IT ] is minimized for aT = 0:

E
[
(yT+h − pT )2|IT

]
= E

[
(yT+h − (E[yT+h|IT ] + aT ))2|IT

]
= E

[
(yT+h − E[yT+h|IT ]− aT )2|IT

]
= E

[
((yT+h − E[yT+h|IT ])− aT )2|IT

]
= E

[
(yT+h − E[yT+h|IT ])2|IT

]
− 2E [aT (yT+h − E[yT+h|IT ])|IT ]

+ E
[
a2T |IT

]
Now we have 3 terms: the first one is independent of aT and can thus be ignored for finding the minimum. Let us look at the

second term E [aT (yT+h − E[yT+h|IT ])|IT ]. Since aT is known given IT , it can be taken out of the conditional expectation.

Then one can solve the conditional expectation and one obtains

E [aT (yT+h − E[yT+h|IT ])|IT ] = aT (E[yT+h|IT ]− E [E [yT+h|IT ] |IT ])

= aT (E[yT+h|IT ]− E[yT+h|IT ]) = 0

Finally, the third conditional expectation contains a square and is thus minimized if aT = 0.

4. Since the above step holds for any realization, that is for any history IT , it holds also for the MSEP. More formally

E
[
(yT+h − pT )2

]
= E

[
E
[
(yT+h − E[yT+h|IT ])2|IT

]]
− 2E [aT0]

+ E
[
E
[
a2T |IT

]]
= E

[
(yT+h − E[yT+h|IT ])2

]
+ E

[
a2T
]

which again is minimized for aT = 0. q.e.d.

5. We conclude that the MSEP is minimized if we use the predictor pT = E[yT+h|IT ], i.e. we use the conditional expectation.

– In order to estimate the conditional expectation one has in general to select/specify a model

that contains a set of conditional expectations that vary with respect to a parameter vector

θ, say an AR(3) model.



Applied Financial Econometrics — 3.2. Decomposition of prediction errors — U Regensburg — April 2023 — 74

– In general one has a set of model candidates, say all AR(p) models with p = 0, 1, . . . , pmax

where the maximum order pmax is chosen by the researcher. Let Mj denote the j-th model

of the available set of models. The predictor based on model Mj with parameter vector θj is

E[yT+h|IT ,Mj, θj].

At this point the parameter vector θj is unspecified.

The optimal predictor in the MSEP sense given model Mj is obtained by minimizing

min
θj∈Mj

E
[
(yT+h − E[yT+h|IT ,Mj, θj])

2
]

with respect to all θj included in model Mj. This minimizing parameter vector θ0
j is frequently

called pseudo-true parameter vector.

Note that the pseudo-true parameter vector can change if one minimizes another criterion

such as e.g. MAEP.

– A feasible predictor of yT+h given information set IT and model Mj is obtained by estimating

the model parameters θj and inserting them into the conditional expectation of model Mj

ŷT+h|T ≡ E[yT+h|IT ,Mj, θ̂j].

Feasible means that the predictor can be computed once a sample with observations up to

time T is available.
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• During the process described a number of wrong decisions can be made that all contribute to the

total prediction error.

• Classification of prediction errors

êT+h|T = yT+h − ŷT+h|T

= yT+h − E[yT+h|IT ]︸ ︷︷ ︸
unavoidable error

+ E[yT+h|IT ]− E[yT+h|IT ,Mj, θ
0
j ]︸ ︷︷ ︸

approximation error/model misspecification

+ E[yT+h|IT ,Mj, θ
0
j ]− E[yT+h|IT ,Mj, θ̂j]︸ ︷︷ ︸

estimation error/parameter uncertainty

• Example:

DGP: AR(2) process yt = α1yt−1 + α2yt−2 + ut,

selected model: AR(1) model yt = ayt−1 + vt:

yT+1|T = E[yT+1|yT , yT−1, . . . , y0] = α1yT + α2yT−1

E[yT+1|yT , yT−1, . . . , y0, AR(1), a] = ayT

ŷT+1|T = E[yT+1|yT , yT−1, . . . , y0, AR(1), â] = âyT

– Unavoidable error: uT+1
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– Approximation error: α1yT + α2yT−1 − a0yT

where a0 denotes the parameter value that minimizes the mean squared approximation error.

– Estimation error: (a0 − â)yT

• Notes:

– One cannot avoid the genuine prediction error eT+h|T = yT+h − E[yT+h|IT ].

– The approximation error is zero if the DGP is in the chosen model Mj, e.g. data are generated

by an AR(p) process and we use an AR(q) model for prediction, where p ≤ q.

– In order to reduce a possible approximation error one may have to select a model that is

’closer’ to the correct model (includes DGP). It may have more parameters.

– If the correct model has many parameters, there is a tradeoff between facing large parameter

uncertainty and/or a considerable approximation error. Thus, for prediction a ’wrong’ model

may be superior to the correct model that contains the DGP.

– Model selection procedures are designed to optimize tradeoff between approximation and

estimation error by miminizing the mean of the squared approximation and estimation error,

see the following section.
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• Further potential sources for prediction errors:

– Parameter instability: the parameters of the model may change over time. In this case the

stationarity assumption for the model is violated.

– Variable mis-measurement: data is not exactly measured or is not yet completely known (e.g.:

preliminary GNP data)

– Initial condition uncertainty: the starting value y0 in a dynamic model is also random.

– Incorrect exogeneity assumptions.

– Policy changes: the model may change completely due to policy changes.
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3.3. AR Model Specification

See Lütkepohl und Kraetzig (2008, Section 2.5)

• (Economic) theory usually does not give many hints about the possible AR order p. Therefore p

has to be determined with statistical methods.

• Model specification procedures are also useful to identify a model for which the assumptions are

fulfilled.

• There are three possible procedures:

– Model selection criteria

– Sequential testing: Start with a large lag order p = pmax and test for significance of the

parameter for the pmaxth lag. If it is significantly different from zero, you are done, if not,

reduce the lag order to p = pmax − 1 and repeat the testing procedure. Continue until you

are able to reject the null hypothesis.

– Box-Jenkins method:

The Box-Jenkins method requires to define and estimate the partial autocorrelation function.

Since this procedure is not so popular any more, we do not discuss it here.
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Model selection criteria

• General structure:

Criterion(p) = ln σ̃2(p) + cTφ(p)︸ ︷︷ ︸
penalty term

with

σ̃2(p) =
1

T

T∑
t=1

û2
t (p)

where the ût(p)’s denote the residuals of a fitted AR(p) model.

– One chooses a maximum order pmax and computes Criterion(p) for p = 0, 1, . . . , pmax. The

selected order p̂ is the order for which the selection criterion achieves its minimum.

– ∂φ(p)
∂p > 0, i.e. adding lags increases the penalty term.

– cT can be seen as the weight of φ(p) in the criterion function. ∂cT
∂T < 0. i.e. adding lags for

short time series (T small) increases the penalty term by a larger amount than for long time

series.

– σ̃2(p) ≤ σ̃2(p− 1) when AR models are fitted by OLS.

– Note that the maximum likelihood estimator for the error variance is used, i.e. there is no

correction for degrees of freedom.
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– For p = 0, 1, . . . , pmax the sample size used for fitting the AR(p) model should be kept fixed,

see Ng und Perron (2005) for a simulation study.

• Standard order selection criteria: (all have φ(p) = p)

– Akaike Information Criterion (AIC)

AIC(p) = ln σ̃2(p) +
2

T
p

– Hannan-Quinn Criterion (HQ)

HQ(p) = ln σ̃2(p) +
2 ln lnT

T
p

– Schwarz (and Rissanen) Criterion (SC, SIC or BIC)

SC(p) = ln σ̃2(p) +
lnT

T
p

• Asymptotic properties

– Condition I: true order p0 < ∞ and pmax ≥ p0, , p̂T denotes the estimated order, the roots

of the AR polynomial are all outside or on the unit circle (unit root and stationary processes!)

– AIC: P (p̂T > p0) > 0

– HQ: plimT→∞p̂T = p0
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– SC: p̂T
a.s.−→ p0

– T ≥ 16: p̂(SC) ≤ p̂(HQ) ≤ p̂(AIC)

– Condition II: true order p0 infinite: AIC is the best

3.4. Prediction with AR models

See Lütkepohl und Kraetzig (2008, Section 2.8)

•• One-step ahead predictions for T + 1 based on an AR(p) model

(1− α1L− · · ·αpLp)yt = ut

with known AR parameters:

yT+1|T = E[yT+1|yT , yT−1, . . . , y1, . . . , y−p+1]

= α1yT + α2yT−1 + · · · + αpyT−p+1

• One can show that the prediction based on the conditional expectation has the smallest

mean squared error of prediction (MSEP) if

ut ∼ i.i.d.(0, σ2).
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The MSEP, often also abbreviated by MSE, is given for the present case:

MSE = E
[(
yT+1 − yT+1|T

)2
]

= E[u2
T+1] = σ2

• Predictions for several time periods ahead, h > 1, usually abbreviated as h-step predictions,

can be calculated recursively

yT+h|T = α1yT+h−1|T + α2yT+h−2|T + · · · + αpyT+h−p|T ,with yT+j|T = yT+j for j ≤ 0.. (3.2)

• Prediction error:

A stationary AR(p) process α(L)yt = ut can be represented as

yt = φ(L)ut = ut + φ1ut−1 + φ2ut−2 + · · · .

This representation is an example of an infinite Moving Average Process (MA(∞) process).

It is possible to compute the moving average parameters φj, j = 1, 2, . . . , by solving α(L)φ(L) =

1 leading to φs =
∑s

j=1 φs−jαj, s = 1, 2, . . . with φ0 = 1 and αj = 0 for j > p (see e.g. (2.4)

in section 2.1.2).

One then obtains for the conditional expectation

yT+h|T = E [yT+h|yT , yT−1, · · · ]
= E [uT+h + φ1uT+h−1 + · · · + φh−1uT+1 + φhuT + φh+1uT−1 + · · · |yT , yT−1, · · · ]
= φhuT + φh+1uT−1 + · · ·
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and the prediction error is given by

yT+h − yT+h|T = uT+h + φ1uT+h−1 + · · · + φh−1uT+1 + φhuT + φh+1uT−1 + · · ·
− (φhuT + φh+1uT−1 + · · · )
= uT+h + φ1uT+h−1 + · · · + φh−1uT+1.

• The mean squared error of prediction (MSEP) of an h-step prediction is therefore

σ2
y(h) = E

[(
yT+h − yT+j|T

)2
]

= σ2
h−1∑
j=0

φ2
j ,

since the errors ut are assumed to be i.i.d.

Note that if ut ∼ i.i.d.(0, σ2), then the h-step predictor yT+h|T is optimal, that is it exhibits

among all possible prediction methods the smallest MSEP.

• If the errors ut are just white noise, then equation (3.2) delivers the best linear prediction (where

then the parameters depend on the goal function and are then pseudo-true values).

• Since the variance σ2
y of a stationary process is given by

σ2
y = σ2

∞∑
j=0

φ2
j

(see Neusser (2009, Abschnitt 2.4, Theorem 2.3)), the variance of the prediction error σ2
y(h) =

σ2
∑h−1

j=0 φ
2
j of an h-step prediction approaches σ2

y with the number of steps h increasing.
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• If the errors ut are Gaussian white noise, then the prediction errors are also i.i.d. normally dis-

tributed and one can compute a prediction interval for a given confidence level (1− γ)100%

[yT+h|T − c1−γ/2σy(h), yT+h|T + c1−γ/2σy(h)]

where c1−γ/2 denotes the 1− γ/2 quantile of the standard normal distribution.

• One can use the predictor (3.2) also for autoregressive processes with a unit root. As a

technical remark note that in this case the parameters φj do not represent the parameters of an

MA(∞) process, simply because the latter does not exist.

Observe that the prediction variance increases in this case with the number of prediction periods

h towards infinity since the variance of a random walk also increases unboundedly with t.

• In empirical work the parameters of the data generating process are unknown and have to be

estimated. One therefore replaces in (3.2) all unknown parameters by their estimates and obtains

the feasible predictor

ŷT+h|T = α̂1ŷT+h−1|T + α̂2ŷT+h−2|T + · · · + α̂pŷT+h−p|T . (3.3)

This leads to the prediction errors

yT+h − ŷT+h|T = [yT+h − yT+h|T ] + [yT+h|T − ŷT+h|T ]

=

h−1∑
j=0

φjuT+h−j + [yT+h|T − ŷT+h|T ].
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The second term on the right hand side through which the estimation uncertainty is captured

approaches zero with increasing sample size if the parameters are estimated consistently (correct

order, etc.).

The variance of the prediction error with estimated parameters is given by

σ2
ŷ(h) = E

[(
yT+h − ŷT+h|T

)2
]

= σ2
y(h) + ’something that appraoches zero for T →∞’.

Note that in small samples the additional variance due to the estimation uncertainty is non-

negligible and should be included when computing prediction intervals. Details can be found e.g.

in Lütkepohl (2005, Section 3.5).
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3.5. Evaluation of forecasts

• Properties of optimal forecasts

– The optimal predictor (=use model that includes DGP with the true parameter values) is

unbiased (by definition).

– Prediction errors based on optimal 1-step ahead predictions are white noise.

– Prediction errors based on optimal h-step ahead predictions may be correlated. (If so, they

follow a Moving Average Process of order h− 1 or less).

– The variance of the prediction errors of h-step predictions converges to the unconditional

variance (in case the DGP is stationary).

Thus: Residuals from good forecasts must be unpredictable! This property can be used for

checking the quality of a forecasting procedure by testing e.g. in

êt+1|t = β1 +

k∑
i=1

βixti + errort, t = 1, . . . , T,

whether βi = 0, i = 2, . . . , k. If some xti has significant explaining power, then we should

incorporate this variable into our forecasting procedure.
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• Quantities to compare forecasts

– Forecast error: êT+h|T = yT+h − ŷT+h|T .

– Forecast percent error:
yT+h−ŷT+h|T

yT+h
.

• Measures to compare forecast errors:

– Mean error of prediction (MEP)

MEP (h) = E
[
êT+h|T

]
– Mean squared error of prediction (MSEP)

MSEP (h) = E
[
ê2
T+h|T

]
– Root mean squared error of prediction (RMSEP)

RMSEP (h) =

√
E
[
ê2
T+h|T

]
– Mean absolute error of prediction (MAEP)

MAEP (h) = E
[∣∣êT+h|T

∣∣] .
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Notes:

– These measures can also be defined for the forecast percent error.

– The RMSEP and the MAEP have the same scale as the prediction error.

– The MAEP is not minimized by using the conditional expectation as predictor.

– There also exist measures that weight positive and negative prediction errors differently.

– All measures are generally not observable and have to be estimated. A popular tool for

estimation are out-of-sample forecasts.
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• Out-of-sample forecasts:

– Split the sample into 2 parts with the first T1 observations in subsample 1 and the second

T − T1 observations in subsample 2.

– Estimate the model on basis of subsample 1 and predict yT1+h where h ≤ T − T1. Denote

the prediction error by

êT1+h|T1
= yT1+h − ŷT1+h|T1

– Re-estimate the model using all data from t = 1, . . . , T1 + 1, predict yT1+1+h and save the

prediction error.

– Repeat the previous step until you predict yT .

– At the end you estimate the mean of your measure by averaging over all out-of-sample pre-

dictions. For example, the MSEP is estimated by

M̂SEP =
1

T − T1 − h + 1

T−h∑
j=T1

ê2
j+h|j.

• Advanced literature to testing and comparing predictive quality of various models: Diebold und

Mariano (1995), West (1996), Giacomini und White (2006).
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4. More on modeling time series

4.1. Unit root tests

4.1.1. Dickey-Fuller test

• The simplest case

– Consider the estimation of the simple AR(1) model

yt = αyt−1 + ut

– Null and alternative hypothesis:

H0 : α = 1 versus H1 : α < 1
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– t-statistic

tT =
α̂− 1

σ̂α̂
with

σ̂2
α̂ =

σ̂2∑T
t=1 y

2
t−1

, σ̂2 =
1

T − 1

T∑
t=1

(yt − α̂yt−1)2

– Asymptotic distribution of the t-statistic in case of a random walk as DGP

tT
d−→

1
2

(
[W (1)]2 − 1

)
[∫ 1

0 [W (r)]2dr
]1/2

A table of selected values of this distribution is given below.

• Dickey-Fuller tests for various hypotheses

A: No deterministic trend

1. So far:

H0 : random walk versus H1 : stationary AR(1) without constant (I)

(Case 1 in Hamilton (1994, Section 17.4))
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2. More relevant in empirical work:

H0 : random walk versus H1 : stationary AR(1) with constant (II)

(Case 2 in Hamilton (1994, Section 17.4))

∗ Remark:

Two representations of an AR(1) with constant

yt − µ0 = α(yt−1 − µ0) + ut,

yt = ν + αyt−1 + ut, with ν = µ0(1− α).

Thus, in case of the null hypothesis α = 1 the constant ν = µ0(1− 1) = 0 drops out!

∗ The asymptotic distribution changes if a constant is allowed under the alternative. One

then has:

tT
d−→

1
2

(
[W (1)]2 − 1

)
−W (1)

∫
W (r)dr[∫ 1

0 [W (r)]2dr −
(∫

W (r)dr
)2
]1/2

,

see the table below and e.g. Hamilton (1994, Section 17.4) for mathematical details

B: Linear deterministic trend in DGP

3. a) H0: Stochastic and deterministic trend (random walk with drift)

yt = µ0 + yt−1 + xt, ∆yt = µ0 + xt, xt stationary AR(1)
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b) H1: Deterministic trend only (difference stationary)

yt = µ0 + µ1t + xt, xt stationary AR(1)

Representation of the null and alternative hypothesis

yt = µ0 + µ1t + xt, xt = αxt−1 + ut

H0 : α = 1 versus H1 : α < 1

Inserting delivers:

yt − µ0 − µ1t = α (yt−1 − µ0 − µ1(t− 1)) + ut

yt = µ0(1− α) + µ1t(1− α) + αµ1 + αyt−1 + ut

H0 : yt = µ1 + yt−1 + ut random walk with drift

H1 : yt = ν + δt + αyt−1 + ut AR(1) with linear trend.

Summary

H0 : random walk with drift versus H1 : AR(1) with linear trend (III)

(Case 4 in Hamilton (1994, Section 17.4))

For this case the asymptotic distribution of the Dickey-Fuller test turns out to be different

again (see e.g. Hamilton (1994, Equation 17.4.55)) and the table below.
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4. If a linear trend is excluded from the alternative and the pair of hypotheses is the following

H0 : random walk with drift versus H1 : AR(1) with constant

(Case 3 in Hamilton (1994, Section 17.4)),

one finds that the t-statistic is asymptotically normally distributed.

This case is empirically not very relevant since a trend must be of stochastic nature due

to the particular choice of the alternative hypothesis.

• Asymptotic critical values for the Dickey-Fuller unit root tests

Quantile 1% 2.5% 5% 10% 97.5%

t-statistic

Pair of hypotheses (I) -2.56 -2.23 -1.94 -1.62 1.62

Pair of hypotheses (II) -3.43 -3.12 -2.86 -2.57 0.24

Pair of hypotheses (III) -3.96 -3.66 -3.41 -3.13 -0.66

T (α̂− 1)

Pair of hypotheses (I) -13.7 -10.4 -8.0 -5.7 1.6

Pair of hypotheses (II) -20.6 -16.9 -14.1 -11.2 0.4

Pair of hypotheses (III) -29.4 -25.1 -21.7 -18.2 -1.8

Quelle: Davidson und MacKinnon (1993, Table 20.1, p.708)
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• How to proceed in empirical work

– If a trend is expected in the data, one chooses the pair of hypotheses (III).

– If the data should not contain a trend for economic reasons, e.g. interest rate date, one

chooses the pair of hypotheses (II).

– The fewer parameters have to be estimated, that is the smaller the number of the pair of

hypothesis (I)-(III), the larger is the power of the test.

– There is the possibility to test the null hypothesis α = 1 und δ = 0 jointly with an F

test. The corresponding F statistic has also an asymptotic nonstandard distribution, see e.g.

Hamilton (1994, Section 17.4). If this hypothesis is rejected, there is empirical evidence for a

deterministic linear trend.
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4.1.2. Unit Root Tests in the Presence of Autocorrelation

Augmented Dickey-Fuller Test

• In general, the DGP may have a larger order than 1 and be an AR(p) process

(1− α1L− α2L
2 − · · · − αpLp)xt = ut

α(L)xt = ut

with ut being white noise.

– The asymptotic distributions of the Dickey-Fuller statistics were derived for null hypotheses

based on the AR(1) case, e.g. xt = αxt−1 + ut, H0 : α = 1, H1 : α < 1 . If the DGP is

in fact an AR(p) process, then the asymptotic distributions all change! Then the

asymptotic distribution contains unknown parameters that depend on the correlation structure

of the DGP! One solution is to estimate these additional parameters nonparametrically and

adapt the test statistic accordingly −→ Phillips-Perron test (This test will not be discussed

in this course. Details are found in Hamilton (1994, Section 17.6))

– Alternative: one includes the additional lags in the estimation equation −→ Augmented

Dickey-Fuller test

• In order to obtain the (Augmented) Dickey-Fuller test statistic for the general AR(p) case, one
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has to use the following decomposition

xt = (α1 + α2 + · · · + αp)xt−1 + α∗1∆xt−1 + · · · + α∗p−1∆xt−(p−1) + ut

or, after subtracting xt−1 on both sides and writing φ = (α1 + α2 + · · · + αp)− 1 = −α(1),

∆xt = φxt−1 +

p−1∑
j=1

α∗j∆xt−j + ut. (4.1)

(1− α∗1L− · · · − α∗p−1L
p−1)︸ ︷︷ ︸

α∗(L)

∆xt = φxt−1 + ut

Try this decomposition for an AR(2) process!

Note that

– the order of the AR model (4.1) in first differences is exactly p− 1;

– under H0 and H1 the stationarity condition holds for the α∗(z) polynomial, that is, all roots

lie outside the unit circle. Thus, the dependent variable ∆xt is both under the null and

the alternative hypothesis stationary (H0: xt contains random walk component, H1: xt

stationary). The same holds for the lagged differences ∆xt−j, j = 1, . . . , p− 1;

– the process {xt} contains exactly one unit root if φ = 0, and thus α(1) = 0;

– this version of the Dicky-Fuller test that is augmented by lagged differences is called Aug-

mented Dickey-Fuller test (ADF test);
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– Notice that under H0 the regressor xt−1 on the right hand side is non-stationary. Since

its variance increases with increasing sample size, one observes that the estimate φ̂ converges

particularly fast towards the true value 0. This occurs with rate T (instead of
√
T in the

stationary case). One therefore calls the OLS estimator for φ in this case superconsistent.

What is the rate under H1?

• The pairs of hypotheses:

A: No trend

H0 : unit root AR(p) versus H1 : stationary AR(p) without constant (I)

H0 : φ = 0 versus H1 : φ < 0

H0 : unit root AR(p) versus H1 : stationary AR(p) with constant (II)

H0 : φ = 0 versus H1 : φ < 0

B: With trend

yt = µ0 + µ1t + xt, ∆xt = φxt−1 +

p−1∑
j=1

α∗j∆xt−j + ut

H0 : unit root AR(p) with drift versus H1 : stationary AR(p) with linear trend (III)

H0 : φ = 0 versus H1 : φ < 0
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• Asymptotic distributions

– φ: The asymptotic distribution of

T φ̂

1− α̂∗1 − · · · − α̂∗p−1

corresponds under H0 with the asymptotic distribution of T (α̂−1) for the corresponding pair

of hypotheses in the AR(1) case, see previous table for critical values.

– t-statistic for φ: The asymptotic distribution is given by the asymptotic distribution of the

AR(1) case for the corresponding pair of hypotheses, see previous table for critical values.

– The reason for this property is the superconsistency of the OLS estimator for φ under H0. Fur-

ther details including derivations can be found in Hamilton (1994, Section 17.7) or Davidson

(2000, Chapter 14).

– α∗j and corresponding t statistics: like in the stationary AR model.

– All the results mentioned so far only hold if the order p is not chosen too small

that is

∗ ut is white noise or

∗ ut is approximately white noise. This means that given the sample size one makes the

residuals resemble white noise as much as possible. One can achieve this by letting the
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order p increase with sample size T such that the residual process becomes ’whiter’. This

case occurs if the true order is infinite. It is important that the p for the estimated model

does neither grow too fast nor too slow (Too fast: not enough observations to estimate

parameters with small enough variance; too slow: residuals do not become white enough).

• In sum: to obtain a valid asymptotic distribution, the order p has to be large enough. However,

a too large order leads to a loss in power (since the variance of parameter estimates decreases

not fast enough).

Luckily, it is possible to determine an appropriate order by using model selection criteria

like in the stationary case: The Hannan-Quinn HQ(n) and the Schwarz criterium SC(n) are

consistent if the time series is generated by an AR(p) process with finite p and pmax ≥ p.

• In empirical work it may happen that the degree of integration is larger than I(1). One then can

use the Pantula principle to determine the appropriate order of integration, see e.g. Lütkepohl

und Kraetzig (2008, Section 2.7.1).

• The case of (conditionally) heteroskedastic innovations is treated by Demetrescu (2010) who

suggests robust standard errors.
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• The power of the ADF test depends on the specification of the deterministic components and

increases with sample size:
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Figure 4.1.: Monte-Carlo simulation of distribution of ADF test statistic given n = 50 observations with param-

eters α1 = 0.6, α2 = 0.4 under H0 and α1 = 0.6, α2 = 0.3 under H1. See appendix A.7 for the R

program.
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Figure 4.2.: Monte-Carlo simulation of distribution of ADF test statistic given n = 5000 observations with

parameters α1 = 0.6, α2 = 0.4 under H0 and α1 = 0.6, α2 = 0.3 under H1. See appendix A.7 for

the R program.
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4.1.3. Other Unit Root Tests

• Phillips-Perron Test:

see comments above and for an overview e.g. Kirchgässner, Wolters, und Hassler (2013, Section

5.3.3). A detailed derivation can be found in Hamilton (1994, Section 17.6).

• KPSS Test:

The null hypothesis of all tests discussed so far is that yt ∼ I(1). Kwiatkowski et al. (1992) have

developed a test that allows to test stationarity directly using the pair of hypotheses:

H0 : yt ∼ I(0) versus H1 : yt ∼ I(1).

– See e.g. Kirchgässner, Wolters, und Hassler (2013, Section 5.3.5) or Lütkepohl und Kraetzig

(2008, Section 2.7.4) for an overview.

– This test is based on the Beveridge-Nelson decomposition (not covered in this course but you

may see the slides of Fortgeschrittene Dynamische Ökonometrie (available on request)

that states that an autoregressive process with a unit root can be decomposed into a random

walk and a stationary component

yt = zt + ηt

zt = zt−1 + vt, vt ∼ iid(0, σ2
v).
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– The pair of hypotheses can now be stated more precisely as

H0 : σ2
v = 0 versus H1 : σ2

v > 0.

If H0 holds, then zt is a constant and yt is stationary.

– The test statistic is:

KPSS =
1

T 2

∑T
t=1

[∑t
j=1 (yj − ȳ)2

]
σ̂2
η,∞

where σ2
η,∞ denotes the so-called long-run variance of the stationary process {ηt}.

If yt is stationary (H0 holds), then the numerator converges. If yt is non-stationary (H1

holds), then the numerater diverges to plus infinity! Since for both hypotheses σ2
η,∞ < ∞,

one rejects the null hypothesis if the numerator and thus the test statistic is too large.

– The asymptotic distribution of the KPSS test is also non-standard and is given in the tables

of Kwiatkowski et al.

– If there is a linear trend under the null hypothesis (trend stationarity), then one considers

yt = µ1t + zt + ηt.

Further details can be found e.g. in Lütkepohl und Kraetzig (2008, Section 2.7.4)

• If one uses the ADF or the Phillips-Perron test jointly with the KPSS test, it may happen that
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both tests reject or do not reject. This happens if one of the two tests does not have enough

power or if the alternative does not contain the true data generating process.

• A structural break in the data in general reduces the power of the ADF or the Phillips-Perron

test (meaning it is less likely to reject the unit root hypothesis if it is not true). The reason is

that the standard alternative hypothesis cannot capture the structural break well.

Thus, if one suspects a structural break, one has to include it in the alternative

hypothesis. If one does not know the break point exactly, one may estimate it. This can be

done with the freely available menu-driven software JMulTi, see Lütkepohl und Kraetzig (2008,

Section 2.7.3) for a description.

• There are a number of other tests, see e.g. other tests in R package urca.

• Besides the unit root discussed so far it may also happen that the data driven process exhibits

seasonal roots. If a data generating process contains all seasonal roots, then one can obtain a

stationary process by applying the operator (1− LS) to the data.

Depending on the number of seasons S one can decompose this filter differently. Example S = 4:

(1− L4) = (1− L)(1 + L)(1 + L2).

One notices that the (seasonal) unit roots occur at 1,−1, i. With the HEGY test one can test

which seasonal unit roots cannot be rejected for a given time series. This test is e.g. implemented

http://www.jmulti.de
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in JMulTi and described in Lütkepohl und Kraetzig (2008, Section 2.7.5).

4.2. Model Checking

4.2.1. Descriptive Analysis of the Residuals

• Outliers or structural breaks frequently show up in the plotted time series of the residuals.

=⇒
Plot the standardized residuals ûst :

ûst =
ût − ¯̂ut
σ̃u

with ¯̂ut = T−1
T∑
t=1

ût and σ̃2
u = T−1

T∑
t=1

(
ût − ¯̂ut

)2

(Technical note: the OLS residuals do not sum to 0 if there is no constant in the model; therefore

the mean of the residuals has to be subtracted.)

If the residuals are standard normally distributed (e.g. in case the DGP is Gaussian white noise

with variance 1), about 95% of the residuals should be within the interval [−2, 2]. If the residuals

are approximately normally distributed (e.g. if the DGP has Gaussian white noise errors), then the

rule can be applied approximately for identifying outliers and/or structural breaks.

http://www.jmulti.de
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• Analysis of the squared residuals in order to check the homoskedasticity assumption. If the errors

are homosekdastic, the squared residuals should not exhibit very large peaks.

• Analysis of the autocorrelation structure in the residuals:

Let

ρu,i =
Cov(ut, ut−i)√
V ar(ut)V ar(ut−i)

denote the i-th autocorrelation of the error process {ut}. An estimator of the autocorrelation

coefficient ρu,i is

ρ̂u,i =
T−1

∑T
t=i+1

(
ût − ¯̂ut

) (
ût−i − ¯̂ut

)
σ̃2
û

= T−1
T∑

t=i+1

ûst û
s
t−i.

If the error process is white noise, the estimated autocorrelations of the residuals should be in the

interval [−2/
√
T , 2/

√
T ] with roughly 95% probability. In small samples one should correct for

the sample size, see e.g. Lütkepohl (2005, Proposition 4.6).

Observing ’too many’ autocorrelations outside the interval [−2/
√
T , 2/

√
T ] is an indication that

relevant lags have been missed in the specified model.

• For the spectral estimation of the residuals, you are referred e.g. to Lütkepohl und Kraetzig (2008,

Section 2.2.2).
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4.2.2. Diagnostic tests

• Tests for autocorrelation in the residuals

In order to test whether the error process underlying an estimated model is a white noise process

it is in principle necessary to check whether all its autocorrelations are 0. In empirical work one

restricts oneself to test whether the first h autocorrelations are jointly 0. Since the errors are

unobservable, the test must be based on the residuals ût.

– Portmanteau test for residual autocorrelation

The Portmanteau (=luggage) test checks whether the first h autocorrelations are jointly 0:

H0 : ρu,1 = · · · = ρu,h = 0

versus

H1 : ρu,i 6= 0 for at least one i = 1, . . . , h.

Portmanteau test statistic (Box-Pierce statistic):

Qh = T
h∑
j=1

ρ̂2
u,j (4.2)

Under H0 and for T →∞ it holds that Qh follows asymptotically a χ2(h−p−q)-distribution.

Note: Test can only be performed for h > p + q. Problem: The test is not very reliable in

small samples. One therefore uses in practice a modified version described next.
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– Modified Portmanteau test statistic (Ljung-Box statistic)

QLB
h = T (T + 2)

h∑
j=1

ρ̂2
u,j

T − j
(4.3)

This test also has an asymptotic χ2(h− p− q)-distribution under H0.

– Lagrange multiplier (LM) test for autocorrelation in the residuals:

∗ The Lagrange multiplier test is a general testing principle that is derived in the setting

of maximum likelihood estimation that will be discussed later during this course. The test

statistic of the Lagrange multiplier test varies with the specific model and null hypothesis

under consideration.

∗ The basis for the LM test for autocorrelation in the residuals of AR models is an

autoregressive model for the errors

ut = β1ut−1 + · · · + βhut−h + errort

that allows to test the null hypothesis

H0 : β1 = · · · = βh = 0 versus H1 : β1 6= 0 or · · · or βh 6= 0.

This test is not feasible since the errors are not observable. To make the test feasible one

uses the residuals ût of the fitted model instead.
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∗ The computation of the test statistic is quite easy:

LMh = TR2

where the coefficient of determination R2 is obtained (in case of a fitted AR(p) model)

from the following auxiliary regression

ût = ν + α1yt−1 + · · · + αpyt−p + β1ût−1 + · · · + βhût−h + et.

The Lagrange multiplier test statistic follows asymptotically a χ2-distribution with h de-

grees of freedom, thus,

LMh = TR2 d→ χ2(h).

∗ In small samples, the F version of the LM statistic frequently delivers a better approxima-

tion of the finite sample distribution

FLMh =
R2

1−R2

T − p− h− 1

h
≈ F (h, T − p− h− 1).

∗ The LM test is frequently called the Breusch-Godfrey test or the Godfrey test.

• Test for nonnormal errors: Lomnicki-Jarcqe-Bera test

– If the assumption of normally and identically distributed errors is not violated, then the fol-

lowing holds for the third and fourth moment of the standardized errors ust = ut/σ:

E
[
(ust)

3
]

= 0, E
[
(ust)

4
]

= 3.
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The Lomnicki-Jarcqe-Bera test checks whether these two moments correspond to the values

implied by a normal distribution:

H0 : E
[
(ust)

3
]

= 0 and E
[
(ust)

4
]

= 3

H1 : E
[
(ust)

3
]
6= 0 or E

[
(ust)

4
]
6= 3

– The test statistic is

LJB =
T

6

[
T−1

T∑
t=1

(ûst)
3

]2

+
T

24

[
T−1

T∑
t=1

(ûst)
4 − 3

]2

d−→ χ2(2).

– Remark: If H0 is not rejected, then this does not imply that the errors are normally distributed

but merely that their first four moments are compatible with a normal distribution.
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• Testing for (conditional) heteroskedasticity in the error process

– Important definitions:

A stochastic process {yt}, t = . . . ,−2,−1, 0, 1, 2, . . . , is called

∗ homoskedastic if

V ar(yt) = σ2
y for all t,

∗ (unconditionally) heteroskedastic if

V ar(yt) = σ2
y,t 6= V ar(ys) = σ2

y,s for some t 6= s,

∗ conditionally heteroskedastic if

V ar(yt|yt−1, yt−2, . . . , ) 6= V ar(yt) for some t.

∗ These definitions apply also to the noise process {ut} of a stochastic process {yt}.

– To test for the presence of unconditional heteroskedasticitiy in the noise process one can use

tests for structural breaks.

To test for the presence of conditional heteroskedasticity in the noise process one can use the

ARCH-LM test that is described in section 5.5.
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4.3. Estimating dynamic regression models

• The dynamic regression model

yt = X ′tβ + ut (4.4)

with

X ′t =
(
xt1 xt2 · · · xtk

)
, β =


β1

β2

...

βk


and X ′t belongs to the information set It.

The following assumptions are made about the stochastic processes of the error term and the

regressors:

1. Assumption B (compare to assumptions (C1) to (C4) in Methods of Econometrics):

a) The conditional expectation of the error term ut given the information set up to time t is

zero

E[ut|It] = 0.

b) The conditional variance of the error term ut given the information set up to time t is

https://www.uni-regensburg.de/assets/wirtschaftswissenschaften/vwl-tschernig/methoden-der-oekonometrie/methoden_oekonometrie_handout_2021_10_22.pdf
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constant (= the error term ut is homoskedastic)

E[u2
t |It] = σ2.

c) The regressor matrix behaves nicely in large samples, that is the empirical moment matrix

converges asymptotically to a fixed matrix

plim T→∞
1

T

T∑
t=1

XtX
′
t = lim

T→∞

1

T

T∑
t=1

E [XtX
′
t] = MXX

with MXX being positive definite.

d) Strict stationarity of all variables or

E
[
|λ′Xtut|2+δ

]
≤ B <∞, δ > 0, for all t, for all λ with λ′λ = 1.

Then it can be shown that the OLS estimator is asymptotically normally distributed:

√
T
(
β̂ − β

)
=

(
1

T

T∑
t=1

XtX
′
t

)−1

1√
T

T∑
t=1

Xtut
d−→ N

(
0, σ2M−1

XX

)
• Notes to the assumptions:

– Note that Assumption A for estimating AR(p) models, see subsection 2.5.1, guarantees

that Assumption B holds. Thus, the dynamic regression model is a generalization of AR(p)



Applied Financial Econometrics — 4.3. Estimating dynamic regression models — U Regensburg — April 2023 — 115

models by allowing also for further explanatory variables that are not lagged endogenous

variables.

This implies that parameters associated with lagged endogenous variables have to fulfil the

stationarity conditions known from the AR models! This has to be checked in the model

analysis!

– The main issue in B(c) is that it is excluded that

∗ asymptotically the moment matrix MXX becomes singular (Example: xt1 = 1, xt2 = 1/t)

∗ the empirical second moments do not converge such that MXX does not exist (Example:

all regressors contain a random walk).

If all regressors are stationary, Assumption B(c) is fulfilled. It basically restricts the memory

of the regressors (remember that a random walk has perfect/infinite memory and therefore

violates the requirement of restricted memory).

– As conditioning/explanatory variables one may include

∗ deterministic variables (but watch out: deterministic trends can violate B(c), see below.)

∗ lagged variables

∗ current dated (=contemporaneous variables) that are weakly exogenous for β and σ2. This
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requires for example that they are uncorrelated with ut.

– The homoskedasticity assumption in B(b) can be relaxed to heteroskedastic errors. This,

however, requires to use a heteroskedasticity-robust estimator for the covariance matrix of the

parameter estimates (or the use of FGLS methods, which may be difficult).

– Assumption B(d) generalizes Assumption A. This assumption is needed such that the vari-

ance of 1/
√
T
∑T

t=1 xtiut asymptotically exists. Among other things, this requires that the

variances of ut or xti are not allowed to increase without bound. It also avoids that the error

or the regressor variable have too fat tails.

• A consistent estimator for the covariance matrix is

σ̂2 (X ′X)
−1
, σ̂2 =

1

T − k

T∑
t=1

û2
t .

• Because the OLS parameters are asymptotically normally distributed, it can be shown that the

standard t and F tests can be applied, however, only asymptotically (for more details on this, see

Methoden der Ökonometrie).

• Some further (important) notes:

– If dummy variables are used, there must be a nonzero fraction of 1’s or 0’s in any sample.

Thus, there is no asymptotic distribution for a dummy that is 1 for a single (or a finite number
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of periods) and 0 otherwise in case the sample size increases. Tests for such dummies must

be based on other grounds. Including a dummy for a single period means asymptotically that

this observation is dropped from the sample.

– A variable is called trend-stationary if regressing it on t delivers stationary residuals. If one

includes variables that are trend-stationary, then the parameter estimates corresponding to

these variables do not have the
√
T rate of convergence and thus, the standard errors are not

correct. Solution: Include a deterministic trend xti = t as an additional regressor. However:

the trend variable has now a different (faster) convergence rate, see also unit root tests.

– Random walks and cointegration. Will not be discussed here.

4.4. R Code

Testing time series y for a unit root

# y denotes data series

install.packages("urca") # only necessary when used for the first time

library(urca)

# ADF test with up to 5 lags (chosen by AIC) against the alternative of

# a stationary process around a (non-zero) constant (pair of hypotheses (II))

y.adf <- ur.df(y, type = "drift", lags = 5, selectlags = "AIC")

summary(y.adf)
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# KPSS test with number of lags depending on T against the alternative of

# a unit root process without deterministic trend

y.kpss <- ur.kpss(y, type = "mu", lags = "long")

summary(y.kpss)

# See ur.pp() for the Phillips-Perron Test

?ur.pp

# Other unit root tests in package urca that have not been discussed so far

?ur.ers

?ur.sp

?ur.za

Diagnostic tests: serial correlation and non-normality

# Analysing residuals from AR(4) regression

ar.est <- ar(y, demean = FALSE, aic = FALSE, order.max = 4)

ar.resid <- ar.est$resid # contains NA values for first 4 observations

# Autocorrelation structure of residuals (ignoring NA values)

acf(ar.resid, na.action = na.pass)

# Portmanteau test for serial correlation in residuals

# up to order h

h <- 7

Box.test(ar.resid, lag = h, type = "Box-Pierce", fitdf = 4)

# modified version of Portmanteau test

Box.test(ar.resid, lag = h, type = "Ljung-Box", fitdf = 4)

# Test for nonnormal errors

ar.resid <- na.omit(ar.resid) # getting rid of NA values
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T <- length(ar.resid)

ar.resid.mean <- mean(ar.resid)

ar.resid.demean <- ar.resid - ar.resid.mean

ar.resid.var <- mean( ar.resid.demean^2 )

ar.resid.stndrd <- ar.resid.demean / sqrt(ar.resid.var) # standardized residuals

ar.resid.skew <- mean( ar.resid.stndrd^3 ) # skewness

ar.resid.kurt <- mean( ar.resid.stndrd^4 ) - 3 # (excess) kurtosis

LJB <- T/6 * (ar.resid.skew^2) + T/24 * (ar.resid.kurt^2) # LJB test statistic

1- pchisq(LJB, df = 2) # p-value

Dynamic regression

# Dynamic regressions are easily performed using the interface provided

# by the dynlm package

library(dynlm)

?dynlm
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5. Modeling volatility dynamics

A brief introduction:

• Consider the very simple conditionally heteroskedastic stochastic process {yt}

yt = ut

where the noise process is conditionally heteroskedastic

V ar(ut|ut−1, ut−2, . . .) 6= V ar(ut). (5.1)

Note that in the special case considered at the moment

V ar(ut|yt−1, yt−2, . . .) = V ar(ut|ut−1, ut−2, . . .)

since the ut−j’s are known if and only if the yt−j’s are known for all j = 1, 2, . . ..

Note that E[ut|yt−1, yt−2, . . .] = 0 as in the independent white noise case.



Applied Financial Econometrics — 5. Modeling volatility dynamics — U Regensburg — April 2023 — 121

• A more general conditionally heteroskedastic process is the conditionally heteroskedastic

autoregressive process of order p

(1− α1L− α2L
2 − · · ·αpLp)yt = ut

where the noise process exhibits conditional heteroskedasticity as given by (5.1). If the autore-

gressive parameters are known, then

V ar(ut|yt−1, yt−2, . . .) = V ar(ut|ut−1, ut−2, . . .).

If the autoregressive parameters are not known, then the two conditioning sets are different since

the errors ut are unobservable and have to be estimated.

• In the following we present models for conditional heteroskedastic noise and for simplicity we

assume that the errors are observable. Later on this assumption will be relaxed.

• In order to save notation we frequently write in the following

σ2
t = V ar(ut|ut−1, ut−2, . . .).

• In all what follows we assume that

ut = σtξt, ξt ∼ IID(0, 1)

and ξt and us are stochastically independent for t > s. The distribution for ξt may vary, depending

on the specific application.
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5.1. Standard conditional volatility models

• Autoregressive Conditionally Heteroskedastic Models (ARCH(m) Models)

– Simplest case: ARCH(1) process

σ2
t = V ar(ut|ut−1, ut−2, . . .) = V ar(ut|ut−1) = γ0 + γ1u

2
t−1.

The conditional variance only depends on one lagged error.

Properties:

∗ Sufficient conditions for positive variance: γ0 > 0 and γ1 > 0.

∗ How can one generate a realization of an ARCH(1) process with conditionally normally

distributed innovations?

ut = σtξt, ξt ∼ i.i.d.N(0, 1)

with σ2
t given above. You may use the R program in section A.8 for generating ARCH(1)

realizations.

∗ Unconditional mean E[ut] = 0 if the unconditional variance exists since

E[ut] = E

[√
γ0 + γ1u2

t−1

]
︸ ︷︷ ︸

D

E[ξt]︸︷︷︸
=0 by assumption

= D 0.
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Thus, D has to be finite which can be shown to be the case if the unconditional variance

exists.

∗ Unconditional variance

V ar(ut) = E[u2
t ]

law of iterated expectations
= E[E[u2

t |ut−1]]

= E[γ0 + γ1u
2
t−1] = γ0 + γ1E[u2

t−1]

V ar(ut) = γ0 + γ1V ar(ut−1)

Under the assumption of stationarity V ar(ut) = V ar(ut−1) = σ2 we get

V ar(ut) =
γ0

1− γ1

Note the unconditional variance only exists if γ1 < 1.

∗ Conditional fourth moment

E[u4
t |ut−1] = (γ0 + γ1u

2
t−1)2E[ξ4

t ]

∗ Unconditional fourth moment (only exists if fourth moment stationary). Then one has

E[u4
t ] = E[u4

t−1] = m4 and one can derive under the assumption of normally distributed

ξt

m4 =
3γ2

0(1 + γ1)

(1− γ1)(1− 3γ2
1)
.
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Note that the unconditional fourth moment only exists if the unconditional variance exists

and γ2
1 < 1/3.

∗ Unconditional kurtosis in case of normally distributed ξt:

κ =
E[u4

t ]

(V ar(ut))
2 =

m4

(σ2)2 = 3
1− γ2

1

1− 3γ2
1

> 3.

Thus, an ARCH(1) process is leptokurtic: the tail distribution of ut is heavier than that of

a normal distribution. Put differently, compared with a normal distribution, ’outliers’ are

more likely.

– ARCH(m) process:

σ2
t = V ar(ut|ut−1, ut−2, . . . , ut−m) = γ0 + γ1u

2
t−1 + · · · + γmu

2
t−m

The conditional variance depends on m lagged errors. The ARCH(m) model was proposed

by the nobel prize winner Robert Engle in Engle (1982)

Properties:

∗ Sufficient conditions for positive variance: γ0 > 0 and γj > 0, j = 1, . . . ,m.

∗ Unconditional variance:

The unconditional variance

V ar(ut) = σ2 =
γ0

1− γ1 − · · · − γm

http://weber.ucsd.edu/~mbacci/engle/
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exists if 1− γ1 − · · · − γm > 0.

∗ The ARCH(m) process corresponds to a conditionally heteroskedastic AR(m) process in

the squared errors

u2
t = σ2

t ξ
2
t

u2
t = σ2

t + σ2
t (ξ

2
t − 1)︸ ︷︷ ︸
ηt

u2
t = γ0 + γ1u

2
t−1 + · · · + γmu

2
t−m + ηt

where E[ηt] = E[E[ηt|ut−1, . . . , ut−m]] = E[σ2
tE[(ξ2

t − 1)]] = E[σ2
t 0] = 0, since E[ξ2

t ] =

1 by assumption.

∗ Other moments and conditions can also be derived but are messier to present.

Drawbacks of ARCH(m) models:

∗ Positive and negative shocks have the same impact on volatility. In practice one observes

frequently an asymmetric behavior.

∗ The parameter restrictions are quite severe if one requires (unconditional) fourth moments

to be stationary.

∗ The model may not be very parsimonious if large lags have an important impact (m large).
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• Generalized Autoregressive Conditionally Heteroskedastic Processes (GARCH(m,n)

process)

– To solve the problem of having too many parameters in an ARCH(m) model, Taylor (2008)

and Bollerslev (1986) independently suggested the GARCH(m,n) model that uses lagged

conditional variances as explanatory variables in addition to the lagged squared shocks

σ2
t = V ar(ut|ut−1, ut−2, . . .) = γ0 + γ1u

2
t−1 + · · · + γmu

2
t−m + β1σ

2
t−1 + · · · + βnσ

2
t−n.

– A special case is the so-called integrated generalized autoregressive conditionally

heteroskedastic (IGARCH(1,1)) process for which γ1 + β1 = 1.

– Properties:

∗ Unconditional variance of ut:

The unconditional variance is

V ar(ut) =
γ0

1− γ1 − . . .− γm − β1 − . . .− βn
and exists if γ1 + . . . + γm + β1 + . . . + βn < 1.

∗ Conditional fourth moment:

E[u4
t ]|ut−1, ut−2, . . .] =

(
γ0 + γ1u

2
t−1 + · · · + γmu

2
t−m + β1σ

2
t−1 + · · · + βnσ

2
t−n
)2
E
[
ξ4
t

]
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∗ Unconditional fourth moment for a GARCH(1,1) process:

If ξt ∼ IN(0, 1), then E[ξ4
t ] = 3 and then one can show that

E[u4
t ] =

3γ2
0(1 + γ1 + β1)

(1− γ1 − β1)(1− β2
1 − 2γ1β1 − 3γ2

1)
.

The fourth moment exists if (β2
1 + 2γ1β1 + 3γ1)2 < 1. Note that this condition is stronger

than the one for a stationary variance.

∗ Kurtosis for a GARCH(1,1) process:

If ξt ∼ IN(0, 1), then E[ξ4
t ] = 3 and then one can show that

κ =
E[u4

t ]

(E[u2
t ])

2 =
3(1− γ1 − β1)(1 + γ1 + β1)

1− β2
1 − 2γ1β1 − 3γ1

> 3.

Thus, a conditionally normally distributed GARCH(1,1) process is leptokurtic, meaning

that the tails of the unconditional probability density of ut are thicker than those of a

normal density that has a kurtosis of 3: large shocks are more likely to occur than in case

of a normally distribution. Note that the type of the distribution is not normal even if ξt
is IN(0,1).

∗ Although the unconditional distribution does not correspond to a known standard distri-

bution, Nelson (1990) has shown that a GARCH(1,1) process is strictly stationary and

ergodic if

E
[
log
(
β1 + γ1ξ

2
t

)]
< 0.
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This condition means that one should not observe too often values of β1 + γ1ξ
2
t that are

way beyond 1 and thus getting too much impact.

Note that this condition is weaker than the stationarity condition for the unconditional

variance since an IGARCH(1,1) process is strictly stationary but not covariance stationary.

• Using the R program in section A.8 one can simulate and estimate an AR(1)-GARCH(1,1) process.

.

• There exist a number of extensions of ARCH and GARCH processes. They will be discussed after

the presentation of estimation procedures.

5.2. Maximum Likelihood Estimation

• Introductory Example: Consider having thrown a coin 10 times with the results of 9 heads

and 1 tail. Do you think that this is a ’fair’ coin (a coin for which the probability for observing

head is 0.5)?

– Note that the probability to obtain k times head out of n throws is given by the binomial

distribution

P (’k heads of out n trials’|p) =
n!

(n− k)!k!
pk(1− p)(n−k) (5.2)
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where p denotes the probability for getting a head in one throw.

– Thus, the probability to observe the outcome stated above is for various p:

p = 1/2 −→ P (’9 heads of out 10 trials’|p = 1/2) ≈ 0.01

p = 3/4 −→ P (’9 heads of out 10 trials’|p = 3/4) ≈ 0.19

p = 9/10 −→ P (’9 heads of out 10 trials’|p = 9/10) ≈ 0.39

Hence, the probability of observing the given result is only about 1% if the coin is ’fair’. It

seems more likely that the probability of getting head in one throw is far larger than 0.5.

– One may now change the use of the probability function (5.2) and use it to assign a given

event a probability based on a chosen value for p. In this interpretation one calls (5.2) a

likelihood function in order to distinguish it from the use of a probability function. One

writes for the present case

L(p|’k heads of out n trials’) =
n!

(n− k)!k!
pk(1− p)(n−k) (5.3)

– Since one can compute the likelihood L(p|’k heads of out n trials’) for a given outcome, e.g.

’9 heads out of 10 throws’, for any p, one can maximize the likelihood L(p|’k heads of out n trials’)

with respect to p. One then obtains an estimate p̂ for p that maximizes the likelihood for

which the observed outcome may be observed. Therefore, this estimator is called maximum

likelihood (ML) estimator.



Applied Financial Econometrics — 5.2. Maximum Likelihood Estimation — U Regensburg — April 2023 — 130

– In the current case, one can easily obtain the ML estimator p̂ by setting the first derivative

of (5.3) to zero and solving for p.

– Very often it is more convenient to maximize the likelihood function after taking logarithms.

That does not change the maximum likelihood estimator since taking logarithms is a strictly

monotone transformation. However, it makes the analytical or numerical optimization much

easier. The log-likelihood function in the present case is

l(p|’k heads of out n trials’) = lnL(p|’k heads of out n trials’)

= ln

(
n!

(n− k)!k!

)
+ k ln p + (n− k) log(1− p).

The first derivative is
∂ lnL(p|·)

∂p
=
k

p
− n− k

1− p
!

= 0.

The ML estimate for p is therefore p̂ = k/n = 9/10. (For completeness one has to check

whether the extremum is a maximum. This requires the second derivative to be negative

around p̂.)

• Maximum likelihood estimation in the case of continuous random variables:

– For a continuous random variable Y it holds that the probability ’Y takes the value y’ is zero,

that is P (Y = y) = 0. This is because there are an infinite number of possible values and a

sum of infinitely many positive probabilities cannot sum to 1.
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Instead one considers an interval for Y , e.g. [a, b] or frequently [−∞, y]. For the latter

interval one obtains the probability distribution function

F (Y < y) = P (Y < y)

which must be nonzero for some intervals. Thus one can also analyze the change of the

probability if one increases the interval by an marginal amount δ > 0. This delivers the

absolute change in probability

P (Y < y + δ)− P (Y < y)

and the relative change in probability

P (Y < y + δ)− P (Y < y)

δ
.

Letting the change in the interval length δ go to 0, one obtains the probability density

function

f (y) = lim
δ→0

P (Y < y + δ)− P (Y < y)

δ
that must be nonzero at some y since otherwise the probability would not change if the

interval is increased.

Since

P (y ≤ Y < y + δ) = P (Y < y + δ)− P (Y < y)
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one obtains, loosely speaking,

P (y ≤ Y < y + δ) ≈ f (y)δ.

One can approximate the probability that a realization of Y is observed to be in the interval

[y, y+δ) by the density multiplied with the interval length. Of course, this approximation is the

better, the smaller δ. The density is approximately proportional to the probability

of Y being observed in a very short interval around y.

– Equivalently, if the probability and density function depend on a parameter θ one has

P (y ≤ Y < y + δ|θ) ≈ f (y|θ)δ.

Maximizing the likelihood for observing Y (to be in a extremely tiny interval around y) thus

can be done by maximizing the density with respect to θ. For continuous random variables

the density therefore has the interpretation of the likelihood function

L(θ|y) = f (y|θ).

The ML estimator θ̂ for θ is then given by

max
θ
L(θ|y) (= max

θ
f (y|θ)).

– Thus, for deriving the ML estimator for a specific problem one has to choose an appropriate

parameterized density function.
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– For a sample of T observations y1, y2, . . . , yT the likelihood function is the joint density with

respect to θ

L(θ|y1, y2, . . . , yT ) = f (y1, y2, . . . , yT |θ)

– The joint density for T i.i.d. observations is the product of T marginal densities. Thus, the

likelihood is given by

L(θ|y1, y2, . . . , yT ) = f (y1, y2, . . . , yT |θ) = f (y1|θ) · · · f (yT |θ)

and the log-likelihood is the sum of the log-likelihood for each observation

l(θ|y1, y2, . . . , yT ) = ln f (y1, y2, . . . , yT |θ) =

T∑
t=1

ln f (yt|θ).

This property is very convenient for maximizing the (log)-likelihood!

– In case the observations are not i.i.d. one can use the following decomposition

L(θ|y1, y2, . . . , yT ) = f (y1, y2, . . . , yT |θ)

= f (yT |yT−1, . . . , y1; θ)f (yT−1, yT−2, . . . , y1|θ)

= f (yT |yT−1, . . . , y1; θ)f (yT−1|yT−2, . . . , y1|θ)f (yT−2, . . . , y1|θ)

= f (yT |yT−1, . . . , y1; θ)f (yT−1|yT−2, . . . , y1|θ) · · · f (y2|y1; θ)f (y1|θ)
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Taking logarithms one obtains the sum

l(θ|y1, y2, . . . , yT ) = ln f (y1, y2, . . . , yT |θ)

=

T∑
t=1

ln f (yt|yt−1, . . . , y1; θ) + ln f (y1|θ).

– If the term ln f (y1|θ) is ignored one obtains the conditional likelihood function that is

conditional on y1. Its maximization delivers the conditional maximum likelihood esti-

mator.

5.3. Estimation of GARCH(m,n) models

• GARCH models are usually estimated with the (conditional) maximum likelihood estimator. This

requires to assume a density for the errors ξt.

• Assume independent normally distributed errors

ξt ∼ N(0, 1)

with density

f (ξt) =
1√
2π

exp

(
−1

2
ξ2
t

)
.
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Since by definition

ξt =
ut
σt

one has

ut|ut−1, . . . ∼ N(0, σ2
t )

and thus by the properties of the normal density

f (ut|ut−1, . . . , u1; γ0, . . . , γm, β1, . . . , βn) =
1√

2πσ2
t

exp

(
−1

2

u2
t

σ2
t

)
The log-likelihood function of an GARCH(m,n) model is then given by

l(γ0, . . . , γm, β1, . . . , βn|uT , uT−1, . . . , u1) =

T∑
t=1

ln f (ut|ut−1, . . . ; γ0, . . . , γm, β1, . . . , βn)

=

T∑
t=1

ln

{
1√

2πσ2
t

exp

(
−1

2

u2
t

σ2
t

)}

= −T
2

ln(2π)− 1

2

T∑
t=1

lnσ2
t −

1

2

T∑
t=1

u2
t

σ2
t

which after inserting σ2
t becomes

−T
2

ln(2π)− 1

2

T∑
t=1

ln
(
γ0 + γ1u

2
t−1 + · · · + βnσ

2
t−n
)
− 1

2

T∑
t=1

u2
t

γ0 + γ1u2
t−1 + · · · + βnσ2

t−n



Applied Financial Econometrics — 5.3. Estimation of GARCH(m,n) models — U Regensburg — April 2023 — 136

This log-likelihood function has to be maximized for obtaining the ML estimates γ̂0, . . . , β̂n based

on the assumption of conditionally normally distributed errors.

• Frequently residuals of GARCH models of financial time series are leptokurtic (they have fatter tails

than normally distributed residuals). In this case the assumption of conditionally normally

distributed errors is wrong and such a model is misspecified.

Solutions:

– Use other error distribution, e.g. t-distribution.

– Use quasi-maximum likelihood estimator.

• Assume conditionally t-distributed errors.

The density of a t-distributed error variable u with ν degrees of freedom and variance σ2 is

f (u; ν) =
Γ
(
ν+1

2

)
√
vπ Γ

(
ν
2

) (1 +
u2

ν

)−ν+1
2

where Γ(h) denotes the gamma function Γ(h) =
∫∞

0 xh−1 exp(−x)dx, h > 0.

The moments are

– E[u] = 0 if ν ≥ 2

– V ar(u) = ν
ν−2 if ν ≥ 3
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– all odd moments are zero

– r-th moment, see Johnson, Kotz, und Balakrishnan (1995),

µr(u) = ν
1
2r

1 · 3 · · · (r − 1)

(ν − r)(ν − r + 2) · · · (ν − 2)

– E[u4] = 3 ν
ν−4V ar(u)

– kurtosis: κ = 3ν−2
ν−4

• Assume conditional generalized error distribution (GED)

f (u; ν) =
νΓ
(

3
ν

)1/2

2Γ
(

1
ν

)3/2
exp

−|u|ν (Γ
(

3
ν

)
Γ
(

1
ν

))ν/2


where ν > 0. For ν = 2 one obtains a normal distribution N(0, σ2) and for ν < 2 one has a

leptokurtic distribution.

• Transformation of random variables:

How can one obtain the density for a random variable X if one knows the density fZ(z) of

Z = h(X) and the function h(·)? Then the density of X is obtained by

fX(x) = fZ(h(x))|h′(x)|,

see e.g. Davidson und MacKinnon (2004, p. 438-439) for a derivation.
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• Setting U = Z
s with u = h(z) = z

s and h′(z) = 1/s one obtains e.g. in case of a t-distributed

random variable the density

f (z; ν, s) =
Γ
(
ν+1

2

)
s
√
vπ Γ

(
ν
2

) (1 +
z2

s2ν

)−ν+1
2

.

• Numerical optimization

There exists a number of algorithms for the optimization of nonlinear functions. For maximizing

the log-likelihood function a particularly suited algorithm was developed by Berndt et al. (1974)

(BHHH algorithm).

In the i-iteration you update the estimator θ̂i by

θ̂i = θ̂i−1 + φ

(
T∑
i=1

∂lt
∂θ

∂lt
∂θ′

∣∣∣∣
θ=θ̂i−1

)−1 T∑
t=1

∂lt
∂θ

∣∣∣∣∣
θ=θ̂i−1

where φ denotes the step length that also can be automatically chosen.

For running these iterations you have to choose

– starting values θ0,

– a maximum number of iterations imax,

– a stopping rule, e.g. |θ̂i − θ̂i−1| < ε where the precision ε is a priori chosen,
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– a numerical method or the analytical derivatives to compute the various derivatives,

– possibly an algorithm to determine the step length.

Attention: the choice of the starting values matters whatever numerical algorithm one chooses.

Badly chosen starting values may result in a local instead of a global maximum! Thus, it is

often useful to try several starting values, e.g. even by drawing random numbers / vectors. If

possible, one may get the starting values from an auxiliary model (e.g. for estimating an ARCH

model from the parameter estimates of the ARCH-LM test, see below.)

• Under the regularity conditions, see below, the ML estimator is asymptotically normally

distributed √
T
(
θ̂ − θ

)
d−→ N

(
0, S−1

)
with

S = lim
T

1

T

T∑
t=1

E

[
∂lt
∂θ

∂lt
∂θ′

]
= lim

T

1

T
E

[
∂l

∂θ

∂l

∂θ′

]
= lim

T

1

T
V ar

(
∂l

∂θ

)
denoting the asymptotic Fisher information matrix. The Fisher information matrix or the

covariance matrix of the gradient of the log-likelihood function is given by E
[
∂lt
∂θ

∂lt
∂θ′
]
.
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Note that the expectation of the score (=first derivative of the log-likelihood function) computed

at the true parameter vector is zero,

E

[
∂l

∂θ

∣∣∣∣
θ=θtrue value

]
= 0

if the model is correctly specified! For details see e.g. Methoden der Ökonometrie.

• Let It denote the information set that is available for computing the log-likelihood function at

time t. In case of an AR(p) model, the information set is given by all past observations of the

endogenous variable.

The regularity conditions are

– E[ut|It] = 0

The conditional mean of the error is zero (standard assumption)

– E[u2
t |It] = σ2

t

Conditional heteroskedasticity is correctly modeled.

– plim 1
T

∑T
t=1 Yt−1Y

′
t−1 = lim 1

T

∑T
t=1

[
Yt−1Y

′
t−1

]
= M <∞ and M is invertible.

This means that even for very large samples the regressors are well behaved, e.g. not becoming

perfectly linearly dependent.

– E
[
|ut|4+δ

]
<∞
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The fourth moments of the errors exist.

• In case no error distribution is found to be appropriate, one may use quasi-maximum likelihood

estimation (QML estimation) : one uses the maximum likelihood estimator based on a normal

error density although the true errors may follow a different distribution.

Properties:

– The QML estimator is consistent.

– The QML estimator requires the computation of a more complicated covariance matrix of

the parameter estimates. Denote the limit of the negative expectation of the Hessian matrix

(matrix of all second partial derivatives) divided by T by

D = − lim
T

1

T
E

[
∂2l

∂θ∂θ′

]
.

Then the covariance matrix of the QML estimator is D−1SD−1. Thus, the QML

estimator is not efficient since in general the covariance matrix is ’larger’ than the covariance

matrix based on the correct error density.

– The QML estimator is asymptotically normally distributed
√
T
(
θ̂ − θ

)
d−→ N

(
0, D−1SD−1

)
.
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– If the information matrix equality

D−1 = S

holds asymptotically, then the asymptotic distribution of the QML estimator is identical with

that of the ML estimator. Note, however, that the matrices S and D have to be estimated

in practice. Thus, in general D̂−1ŜD̂−1 6= Ŝ−1 and one should use the ML estimator if the

errors are indeed normal.

For details see e.g. Methoden der Ökonometrie.

Warnings:

– The QML principle only works with the normal distribution. Using another ’wrong’ distribution

does not lead to a consistently and asymptotically normally distributed estimator.

– If one has estimated the covariance matrix by QML, one cannot produce forecasting intervals

since the error distribution is still unknown.

• Tests based on ML estimators in case of nonnormal errors are misleading since the

standard errors of the parameter estimates are incorrectly estimated!

• Estimation of conditional mean and conditional variance functions:

– The information matrix is block diagonal if the covariances between all parameter estimators

for the conditional mean function and all parameter estimators for the conditional variance
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function are zero.

– Sequential estimation is possible if the information matrix is block diagonal. One then can

consistently estimate in the first step the conditional mean function (e.g. an AR(p) model) and

in the second step based on the residuals from the first step the parameters of the conditional

variance function (e.g. GARCH(1,1) parameters). Nevertheless, both the conditional mean

and the conditional variance have to be specified correctly for obtaining correct standard

errors for the parameters of the conditional mean estimates. Otherwise, the information

matrix equality is violated as well.

Models with a block diagonal information matrix:

ARCH, GARCH, TGARCH with symmetric errors (see next section)

– Models without a block diagonal information matrix:

EGARCH, GARCH-in-mean and TGARCH models with skewed (=asymmetric) errors (see

next section).

5.4. Asymmetry and leverage effects

In many cases it has been observed that negative shocks have a larger impact on the volatility than a

positive shock of the same magnitude. Models that allow for such asymmetric effects are e.g.:
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• Threshold GARCH (TGARCH model)

σ2
t = γ0 + γ1u

2
t−1 + γ−1 I(ut−1 < 0)u2

t−1 + β1σ
2
t−1

where I(A) is the indicator function, taking the value 1 if the argument A is true and the value

0 otherwise.

Properties:

– if the parameter γ−1 has a positive sign, then negative shocks increase volatility more than

positive shocks. One also calls this phenomenon leverage effect.

• Exponential GARCH (EGARCH model)

log σ2
t = γ̃0 + γ̃1 (|ξt−1| − E [|ξt−1|]) + γ̃−1 ξt−1 + β̃1 log σ2

t−1

Properties:

– If ξt ∼ N(0, 1), then E [|ξt|] =
√

2/π

– γ̃1 > 0 causes volatility clustering

γ̃−1 < 0 causes a leverage effect

– By construction one always has a positive variance since log σ2
t implies σ2

t > 0.

– In practice it was found that outliers get too much impact on the estimation.
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• ARCH-in-mean model

It may happen that the conditional risk also influences the return itself, e.g. if there is a nonlinear

relationship between risk and return. A potentially useful model is an AR model that also has an

ARCH effect in the conditional mean function.

yt = α1yt−1 + · · · + αpyt−p + ρσt−1 + ut, ut = σtξt

σ2
t = γ0 + γ1u

2
t−1 + · · · + γmu

2
t−m

5.5. Testing for the presence of conditional

heteroskedasticity

• Before one enters into the stage of modeling conditional heteroskedasticity, one should test for

the presence of (conditional) heteroskedasticity. A good test is the ARCH-LM test.

• ARCH-LM test:

One considers the following autoregression model for the squared errors

u2
t = β0 + β1u

2
t−1 + · · · + βqu

2
t−q + errorst

In case of homoskedastic errors all βj = 0, j = 1, 2, . . . , q. Thus, one has the pair of hypotheses

H0 : β1 = β2 = · · · = βq = 0 versus H1 : at least one βj 6= 0, j = 1, 2, . . . , q
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Since the errors are not directly observable, they are replaced the residuals ût. One then estimates

û2
t = β0 + β1û

2
t−1 + · · · + βqû

2
t−q + errorst

and computes the resulting R2. Then the test statistic and its asymptotic distribution are given

by

ARCHLM(q) = TR2 d−→ χ2(q).

Choice of q: In long time series one easily should choose q large enough. However, in short

time series testing jointly too many parameters may lead to a loss of power since the estimated

variances of the parameter estimates are quite large. Very often, choosing q small is already

sufficient to reject the null of homoskedasticity.

• Inspection of autocorrelation of squared residuals If there are many estimated autocorre-

lations of the squared residuals outside the 95% confidence interval, one definitely should conduct

the ARCH-LM test of adequate order.

• Important: If the null hypothesis is rejected, the asymptotic distribution of the OLS estimator

for the conditional mean function is invalid!

Solutions:

– Use heteroskedasticity consistent standard errors, e.g. the White procedure

– Specify model for conditional heteroskedasticity, e.g. ARCH, GARCH etc.
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5.6. Model selection

In general the type and order of the conditional mean and the conditional volatility function are

unknown and have to be estimated as well. The typical procedure is:

1. test for the presence of stochastic or deterministic trends or other kinds of nonstationarity (e.g.

using ADF tests)

2. specify the conditional mean function (e.g. select order and terms in AR model)

3. check residuals of conditional mean model for remaining autocorrelation and potential (condi-

tional) heteroskedasticity (e.g. using the LM test for autocorrelation and the ARCH-LM test).

Again: ignoring (conditional) heteroskedasticity implies false inference!

4. specify a conditional heteroskedasticity model (e.g. ARCH or TGARCH) and choose a ML or the

QML estimator

5. check standardized residuals

ξ̂t =
ût
σ̂t

of full model for remaining autocorrelation and check choice of error distribution in the previous

step (problem: asymptotic distribution of ARCH-LM test not known except in the case of H0:

“no remaining ARCH´´); visual inspection of density estimate (e.g. histogram) of standardized
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residuals

5.7. Prediction of conditional volatility

For simplicity assume a simple GARCH(1,1) process

σ2
t = V ar(ut|ut−1, ut−2, . . .) = γ0 + γ1u

2
t−1 + β1σ

2
t−1, ξt ∼ i.i.d.(0, 1)

Derivation of the h-step ahead forecast of σ2
T+h given information up to time T :

• Rewriting the GARCH(1,1) for various periods T + j, j = 1, 2, 3 one obtains

σ2
T+1 = γ0 + γ1u

2
T + β1σ

2
T

σ2
T+2 = γ0 + γ1u

2
T+1 + β1σ

2
T+1

σ2
T+3 = γ0 + γ1u

2
T+2 + β1σ

2
T+2

• It is well known that the conditional expectation is the best predictor for minimizing the mean

squared error of prediction (here for σ2
T+h). Therefore, the optimal predictor given information

up to time T is

σ2
T+h|T ≡ E[σ2

T+h|IT ]

where IT denotes the available information up to time T .
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• Note that by the law of iterated expectations one has

E[σ2
T+h|IT ] = E[E[σ2

T+h|IT+h−1]|IT ]

Applying to h = 2 one obtains

σ2
T+2|T = E[E[σ2

T+2|IT+1]|IT ]

= E[γ0 + γ1u
2
T+1 + β1σ

2
T+1|IT ]

= γ0 + γ1E[u2
T+1|IT ] + β1E[σ2

T+1|IT ]

Since u2
t = σ2

t ξ
2
t and therefore

E[u2
T+1|IT ] = E[σ2

T+1|IT ]︸ ︷︷ ︸
=σ2

T+1

E[ξ2
T+1|IT ]︸ ︷︷ ︸

=1 since ξt iid

one obtains

σ2
T+2|T = γ0 + γ1σ

2
T+1 + β1σ

2
T+1

= γ0 + (γ1 + β1)σ2
T+1

• Similarly one can compute the optimal predictor for h = 3:

σ2
T+3|T = E[E[σ2

T+3|IT+2]|IT ]

= E[γ0 + γ1u
2
T+2 + β1σ

2
T+2|IT ]

= γ0 + γ1E[u2
T+2|IT ] + β1E[σ2

T+2|IT ]

= γ0 + (γ1 + β1)σ2
T+2|T
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Inserting σ2
T+2|T delivers

σ2
T+3|T = γ0 + (γ1 + β1)

[
γ0 + (γ1 + β1)σ2

T+1

]
= γ0 [1 + (γ1 + β1)] + (γ1 + β1)2σ2

T+1

• One can continue in this way in order to derive the h-step ahead predictor, h ≥ 2,

σ2
T+h|T = γ0

h−1∑
i=1

(γ1 + β1)i−1 + (γ1 + β1)h−1σ2
T+1

• In practice the optimal predictor is usually not feasible since the parameters are unknown. They

have then to be replaced by consistent estimators.

• In R it is possible to compute these forecasts by applying method predict() to an object of

class garch. An object of class garch is returned by function garch(), which estimates a

GARCH(m,n) model by maximum likelihood. This function is part of package tseries.
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5.8. Supplement: Organisation of an empirical project

An R program containing a complete empirical analysis is given in section A.9.

• Purpose of project and data definition

– goal of project / model

– definition of original data what is measured, how is measured (e.g. construction of financial

indices/redefinitions, etc.)

– period, sampling frequency

– data source

– specific data choice, e.g. opening/closing price...

– data transformations (taking logarithms, etc.)

• Descriptive statistics and first analysis of data properties

– plot of original and transformed data

– mean

– median
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– max/min

– potential (conditional) heteroskedasticity

– skewness

– kurtosis

– normality

– correlations

– unit root testing:

∗ choice of lags

∗ choice of deterministic components (trend, constant, seasonal dummies)

∗ choice of test(s) and required assumptions

∗ level, differences

– seasonal components

– structural breaks, etc.

– Summary of findings and guess of model class(es)
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• Model choice and diagnostics

– choice of model class: e.g. AR or ARMA

– choice of lag orders

– choice of deterministic components: constant, time trend, seasonal dummies

– choice of estimator and required assumptions

– residual diagnostics

∗ residual (auto)correlation

∗ (conditional) heteroskedasticity

∗ normality

∗ stationarity

– if necessary: model modification: e.g.: ARCH, GARCH, TGARCH

∗ model choice

∗ lag choice

∗ residual check, see above plus correspondence of assumption about error distribution with
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residual distribution

• Statistical results and interpretation

• Forecasting or other uses

– point forecasts

– interval forecasts

– take into account prior data transformations

• Check spelling



Applied Financial Econometrics — 5.8. Supplement: Organisation of an empirical project — U Regensburg — April 2023

— 155

• Offizielle Beschreibungen der ’DAXe’ von der Deutschen Börse

– DAX

Aktienindex, der die Wertentwicklung der 30 nach Marktkapitalisierung größten und

umsatzstärksten deutschen Aktien im Prime Standard der FWB® Frankfurter Wert-

papierbörse abbildet.

Der DAX-Index (Deutscher Aktienindex) wird von der Deutschen Börse aus den Kursen

der 30 umsatzstärksten deutschen Aktien berechnet und ist der meist beachtete Indika-

tor für die Entwicklung des deutschen Marktes.

Die DAX-Werte notieren im Prime Standard. Kriterien für die Gewichtung der Aktien

in DAX sind Börsenumsatz und Marktkapitalisierung des Streubesitzes. DAX wird als

Kurs- und Performance-Index aus Xetra®-Kursen sekündlich berechnet und aktual-

isiert.

Kursdaten zu DAX und den enthaltenen Werten sowie die Termine der Neuzusam-

mensetzung finden Sie auf boerse-frankfurt.de/indizes.

– MDAX

Index, der die Wertentwicklung der 50 größten auf die DAX®-Werte folgenden Un-

ternehmen der klassischen Branchen im Prime Standard abbildet.

http://www.boerse-frankfurt.de
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MDAX® wird seit dem 19. Januar 1996 berechnet. Der Index enthält die 50 nach

Marktkapitalisierung und Börsenumsatz größten Unternehmen der klassischen Branchen

im Prime Standard unterhalb der DAX-Werte. Basis der Berechnung ist der 30. Dezem-

ber 1987 mit einem Wert von 1.000 Punkten.

Die Indexzusammensetzung wird üblicherweise halbjährlich überprüft und mit Wirkung

zum März und September angepasst. Kriterien für die Gewichtung der Aktien in MDAX

sind Börsenumsatz und Marktkapitalisierung auf Basis des Streubesitzes (Freefloats).

Ein Unternehmen kann außerhalb der ordentlichen überprüfungstermine aus dem Index

genommen werden, wenn es beim Kriterium Marktkapitalisierung oder Börsenumsatz

nicht mehr zu den 75 größten Unternehmen zählt, bzw. in den Index aufgenommen

werden, wenn es bei den Kriterien Marktkapitalisierung und Börsenumsatz eines der

40 größten Unternehmen ist. Der Austausch findet zum nächsten Verkettungstermin

statt. über Veränderungen in MDAX entscheidet der Vorstand der Deutsche Börse AG.

Er wird dabei vom Arbeitskreis Aktienindizes beraten.

– SDAX

Index der 50 größten auf die MDAX®-Werte folgenden Unternehmen der klassischen

Branchen des Prime Standard.

SDAX® startete am 21. Juni 1999. Er umfasst die 50 nach Marktkapitalisierung und
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Börsenumsatz größten Unternehmen der klassischen Branchen unterhalb der MDAX-

Werte. Der Index wird als Kurs- und Performance-Index von der Deutschen Börse

berechnet. Basis der Berechnung ist der 30. Dezember 1987 mit einem Wert von

1.000 Punkten.

Die Indexzusammensetzung wird üblicherweise halbjährlich überprüft und mit Wirkung

zum März und September angepasst. Kriterien für die Gewichtung der Aktien in

SDAX sind: Börsenumsatz und Marktkapitalisierung auf Basis des Streubesitzes sowie

Branchenrepräsentativität. über Veränderungen in SDAX entscheidet der Vorstand der

Deutschen Börse. Er wird dabei vom Arbeitskreis Aktienindizes beraten.

– TecDAX

Index für die Wertentwicklung der 30 größten Technologieaktien im Prime Standard

unterhalb der DAX®-Titel.

TecDAX® startete am 24. März 2003. Er umfasst die 30 nach Marktkapitalisierung

und Börsenumsatz größten Unternehmen der Technologiebranchen im Prime Standard

unterhalb des Leitindex DAX. Der Index wird als Kurs- und als Performance-Index

berechnet. Basis der Berechnung ist der 30. Dezember 1997 mit einem Wert von

1.000 Punkten.

Die Indexzusammensetzung wird üblicherweise halbjährlich überprüft und mit Wirkung
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zum März und September angepasst. Kriterien für die Gewichtung der Aktien in

TecDAX sind: Börsenumsatz und Marktkapitalisierung auf Basis des Streubesitzes

(Freefloats).

Ein Unternehmen kann außerhalb der ordentlichen überprüfungstermine aus dem Index

genommen werden, wenn es beim Kriterium Marktkapitalisierung oder Börsenumsatz

nicht mehr zu den 45 größten Unternehmen zählt, bzw. in den Index aufgenommen

werden, wenn es bei den Kriterien Marktkapitalisierung und Börsenumsatz eines der 25

größten Unternehmen ist. Ein Austausch findet zum nächsten Verkettungstermin statt.

über Veränderungen in TecDAX entscheidet der Vorstand der Deutsche Börse AG. Er

wird dabei beraten vom Arbeitskreis Aktienindizes.
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6. Long-run forecasting

6.1. Estimating/predicting unconditional means

• Time series and (dynamic) regression models are normally used to compute conditional predic-

tions.

• For long-term investment decisions reliable forecasts of the unconditional mean of stock returns,

interest rates, etc. are important as well: for large h, the h-step ahead forecast for a stationary

time series is the unconditional mean of the series.

• Consider a stationary process {yt} (of returns) that has mean µ and variance σ2
y,

yt ∼ (µ, σ2
y).

Note that we did not assume that yt is i.i.d., thus the covariances Cov(yt, ys) may be non-zero.
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The traditional mean estimator of a realization with T observations is

µ̂ =
1

T

T∑
t=1

yt

Properties:

– Expected Value

E(µ̂) =
1

T

T∑
t=1

E(yt) =
1

T

T∑
t=1

µ = µ
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– Variance

V ar(µ̂) = E

( 1

T

T∑
t=1

yt − µ

)2


= E

( 1

T

T∑
t=1

yt −
1

T
Tµ

)2
 =

1

T 2
E

( T∑
t=1

(yt − µ)

)2


=
1

T 2
E

[
T∑
t=1

T∑
s=1

(yt − µ)(ys − µ)

]

=
1

T 2

T∑
t=1

V ar(yt) +
1

T 2

T∑
t=1

T∑
s=1,s 6=t

Cov(yt, ys)

=
1

T
σ2
y +

1

T 2

T∑
t=1

T∑
s=1,s6=t

Cov(yt, ys)

This expression simplifies if {yt} is uncorrelated. Then

V ar(µ̂) =
σ2
y

T
.

– Asymptotic normality
√
T (µ̂− µ)

d−→ N
(
0, σ2

y + γ∞
)
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with

γ∞ = lim
T→∞

1

T 2

T∑
t=1

T∑
s=1,s 6=t

Cov(yt, ys).

Note that γ∞ = 0 if yt is uncorrelated.

The term γ∞ converges if yt is a stationary autoregressive process.

• Estimating annual returns

– Given a time series of annual observations one has in case of uncorrelated returns the estima-

tion variance
σ2
y

T .
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– Does it help to collect a time series of daily observations of daily returns?

Let s denote the day of the year and t the year with 250 working days per year. Then

Rt =

250∏
s=1

Rts

and in log returns

rt ≈
250∑
s=1

rts.

For simplicity, assume i.i.d. daily returns with

µday = µyear/250

and

σday = σyear/
√

250.

Then

E[rt] = E

[
250∑
s=1

rts

]
= 250µday = µyear

V ar(rt) = V ar

(
250∑
s=1

rts

)
iid
=

250∑
s=1

V ar(rts) = 250σ2
day = 250

(
σyear√

250

)2

= σ2
year



Applied Financial Econometrics — 6.1. Estimating/predicting unconditional means — U Regensburg — April 2023 — 164

∗ Thus, one has to multiply the daily mean by 250 in order to get the annual mean!

∗ And the estimation variance for the annual mean stays the same since

V ar(250µ̂day) = V ar

(
250

1

250T

T∑
t=1

250∑
s=1

rts

)

= V ar

(
1

T

T∑
t=1

250∑
s=1

rts

)
iid
=

1

T

T∑
t=1

250∑
s=1

V ar(rts)

= 250σ2
day = σ2

year.

Therefore, sampling at higher frequencies does not help to reduce the estimation variance!

∗ This conclusion remains qualitatively unchanged if returns are correlated.

• Estimating long-horizon annualized returns

– If one is interested in estimating the 20-year return, then the same argument holds as above:

sampling at a yearly frequency does not help to reduce the 20-year return variance.

– However, if one is interested in the annualized h-year return? Let Rh−year denote the
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h-year return and rh−year the corresponding log return. The annualized return is then

Rh−year,annualized = h
√
Rh−year = (Rh−year)

1
h

and the annualized log return

rh−year,annualized =
1

h
rh−year.

Therefore,

µh−year,annualized = µh−year/h

and

σ2
h−year,annualized = σ2

h−year/h
2.

Note that one has here the same scaling effect as for yearly and daily returns. Thus, the

estimation variance for estimating h-year returns cannot be reduced by this trick.

– To make it completely clear: If one is interested in the 100-year overall return and has a sample

of 100 annual returns, then the estimation variance is just 100σ2
year (while for estimating the

1-year return it is σ2
year/100).

• Don’t look only at the estimated mean alone! It always pays to compute a confidence

interval or even estimate the probability distribution of the returns. The latter can be done by

looking at the

– histogram or
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– quantiles

of the empirical distribution.

• Overlapping observations

If one observes only T/h observations for the h-year mean return but one has yearly observations,

then one may compute overlapping h-year returns: r1 + · · ·+ rh, r2 + · · ·+ rh+1, . . ., rT−h+1 +

· · · + rT . Note that computing a histogram/quantiles with overlapping observations does not

deliver much more information since each observation is used h times! Nevertheless doing this

delivers nicer pictures.

And is done in practice. In the book of

Dimson, E., Marsh, P. and Staunton, M. (2002), Triumph of the Optimists, Princeton Uni-

versity Press

one finds a large collection of results on the performance of various assets in OECD countries

over the last 100 years. The following graph from this book shows the quantiles for the estimated

20-year return minus the risk free rate using overlapping observations:
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6.2. Predicting long-term wealth: the role of arithmetic

and geometric means

Timing schedule for discrete payments / returns on investments

Time period 0 period 1 period 2 period 3

begin end begin end begin end begin

Payments W0(R1 − 1) W0(R2 − 1)

Wealth W0 W0 ·R1︸ ︷︷ ︸
W1

W0 ·R1 ·R2︸ ︷︷ ︸
W2

• Average of a given flow of discrete returns R̄h over h periods if received payments are reinvested:

Wh = W0 ·R1 · · ·Rh

= W0 · R̄ · · · R̄
= W0 · (R̄)h.

=⇒ Average of a given flow of discrete return is given by the geometric mean of

returns

R̄ = [R1 · · ·Rh]
1
h
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• Uncertain flow of discrete returns:

Consider the expected value of the uncertain final wealth Wh

E [Wh] = E

[
W0

h∏
t=1

(Rt)

]
(6.1)

– If discrete returns are independently distributed, then the expectation of the returns is

the product of the expectations and one obtains

µW ≡ E [Wh]
indep.

= W0

h∏
t=1

E [Rt] (6.2)

= W0

h∏
t=1

E[Rt]. (6.3)

If the means of the Rt’s are known, then the expected final wealth is easily computed.

– If discrete returns are independently and identically distributed, then this simplifies with

µR = E[Rt] to

µW = W0(µR)h.
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• Additional estimation risk:

If the means are unknown, one faces in addition estimation risk. Now one has to be careful how

to estimate E[Wh]!

For simplicity, we continue to assume i.i.d. returns

Rt = µR + εt, εt ∼ i.i.d.(0, σ2
R).

It is well known from statistics that one then can estimate an expected value by the sample mean,

thus estimate

µ̂R =
1

T

T∑
t=1

Rt.

This estimator for µR is unbiased since

E[µ̂R] =
1

T

T∑
t=1

E[µR + εt] = µR = E[Rt].

In order to estimate µW

µW = W0

h∏
j=1

µR = W0(µR)h

one has to replace µR by some estimate:
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– Arithmetic mean: Replacing in µW the unknown µR by its arithmetic mean estimate delivers

µ̂W = W0

 1

T

T∑
t=1

Rt︸ ︷︷ ︸
=µ̂R


h

.

However, µ̂W is biased since (for simplicity consider h = 2)

E [µ̂W ] = W0E [(µ̂R)(µ̂R)]

= W0E
[
µ̂2
R

]
= W0

E [(µR + ε̄)2
]

︸ ︷︷ ︸
=E[µ2

R+2µRε̄+ε̄
2]


= W0

(
µ2
R +

1

T
σ2

)
> W0

(
µ2
R

)
= µW .

Thus, using the arithmetic mean estimator results in overestimating the expected

final wealth.

Exception: For very large T , the arithmetic mean is fine because the nonlinearity does no



Applied Financial Econometrics — 6.2. Predicting long-term wealth: the role of arithmetic and geometric means — U

Regensburg — April 2023 — 172

longer matter. Therefore, the arithmetic mean estimator is consistent.

– Geometric mean: Replacing in µW the unknown µR by its geometric mean

µ̃R =

(
T∏
t=1

R1 · · ·RT

)1/T

delivers

µ̃W = W0

(
T∏
t=1

R1 · · ·RT

)h/T

.

Thus, the expected value is

µ̃W = W0E

( T∏
t=1

R1 · · ·RT

)h/T


iid
= W0E

[
R
h/T
1

]
· · ·E

[
R
h/T
T

]
.

If h = T and E[Rt] = µR, one obtains

µ̃W = W0µ
h
R.

Only in this special case, h = T , the geometric mean estimator delivers an unbiased wealth

estimate because there is no averaging effect.
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Since both mean estimators are unbiased only in extreme situations, recently a combination of

both was suggested to obtain an unbiased predictor (Eric Jacquier, Alex Kane, and Alan J.

Marcus (2003). ”Geometric or Arithmetic Mean: A Reconsideration”, Financial Analysts Journal,

59, 46-53):

µ̆W = W0 (Arithmetic average × (1− h/T ) + Geometric average × h/T )h

(see Bodie, Kane & Marcus (2005), Investments, McGraw-Hill, 8th edition, p. 866).

– Note that the correction is horizon dependent!

– The correction can be large if the difference between the arithmetic and the geometric mean

is large!

– Note that while the above estimator delivers an unbiased estimator of the annualized rate

of return over h periods, this estimator does not exhibit the smallest mean squared error of

prediction. For obtaining this, yet another estimator for µR has to be used, see Bodie, Kane &

Marcus (2002). Optimal Forecasts of Long-Term Returns and Asset Allocation: Geometric,

Arithmetic, or Other Means?, Working Paper or a paper of the same authors in Financial

Analysts Journal, 2003.

– This case is a nice example that one has to consider the goal function explicitly in case of

nonlinear functions.
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6.2.1. Log or continuously compounding returns

• Using the definition of continuously compounding returns

rt ≡ log(Rt) ≈ Rt − 1

and therefore

ert = Rt

one can rewrite the wealth equation Wh = W0 ·R1 · · ·Rh as

Wh = W0e
r1 · · · erh

= W0e
r1+···+rh

= W0e
∑h
j=1 rj

= W0e
hr̄h

where

r̄h =
1

h

h∑
j=1

rj

defines the arithmetic mean of the continuously compounding returns.



Applied Financial Econometrics — 6.2.1. Log or continuously compounding returns — U Regensburg — April 2023 — 175

• Summary:

Wh

W0
=

h∏
j=1

(Rj) = e
∑h
j=1 rj

and

R̄h ≡

 h∏
j=1

Rj

 1
h

= e
1
h

∑h
j=1 rj ≡ er̄h.

The geometric mean of discrete returns translates into the arithmetic mean of log

returns.

• In case (log) returns are uncertain, one obtains

–

E [Wh] = W0E
[
e
∑h
j=1 rj

]
(6.4)

– If stock returns are independent, then this equation simplifies to

E [Wh] = W0

h∏
j=1

E [erj ]

– If stock returns are i.i.d., this equation further simplifies to

E [Wh] = W0 (E [erj ])h
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– To check the equality of both expectations indicates whether the returns are i.i.d.! This

property can be used for testing the i.i.d. hypothesis.

– In order to compute the expected values one has to know the probability distribution for Rj.

If it is unknown, in many cases a reasonable assumption is that

Rj is i.i.d.lognormally distributed.

This means assuming that

rt = µ + εt, εt ∼ i.i.d.N(0, σ2)

and applying statistical rules to Rt = ert so that

E[Rt] = E [ert] = eE[rt]+
1
2V ar(rt) = eµ+1

2σ
2
.

Thus, if the discrete returns are i.i.d.lognormally distributed, then the expected value of final

wealth is

E[Wh] = W0

h∏
j=1

(
eµ+1

2σ
2
)

= W0e
h(µ+1

2σ
2) 6= W0e

hE[rt].

The inequality sign should not surprise since the expected value cannot be switched with

nonlinear functions!

– If the mean µ and the variance σ2 of the log returns rt have to be estimated, one faces the

same problems as for estimating the means of the Rj’s. One cannot simply insert estimators
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for µ in the exponent. This leads to a biased estimate. The reason for these difficulties is the

same as above, the nonlinearity of the exponential function.

6.3. Are long-term returns predictable?

• This is an ongoing debate in current research. Some recent literature is:

– Campbell, J.Y., A.W. Lo, and A.C. MacKinlay (1997). The Econometrics of Financial Mar-

kets, Princeton University Press

– Campbell, J.Y. and Shiller, R.J. (2004). Valuation ratios and the long-run stock market

outlook: an update, in: Barberis, N. und Thaler, R. (eds.). Advances in Behavioral Finance,

Volume II, Russel-Sage Foundation. Working paper can be downloaded.

– Cochrane, J.H. (2006). The dog that did not bark: a defense of return predictability, University

of Chicago.

– Goyal, A. and Welch, I. (2003),

Predicting the Equity Premium with Dividend Ratios, Management Science, 49, 639-654.

– Goyal, A. and Welch, I. (2006),

A Comprehensive Look at the Empirical Performance of Equity Premium Prediction (January

http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/campbell_shiller_2001.pdf
http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/cochrane_2006_the_dog.pdf
http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/goyal_welch_2003.pdf
http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/SSRN-id517667.pdf
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11, 2006). Yale ICF Working Paper No. 04-11 Available at SSRN:

– Pesaran, M.H. und Timmermann, A.G. (2000). A recursive modelling approach to predicting

UK stock returns, Economic Journal, 110, 159-191.
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7. Explaining returns and estimating factor models

7.1. The basics of the theory of finance

• Literature:

– Cochrane, J. (2005). Asset Pricing, Princeton University Press (book is used in graduate

courses and succeeds in providing a unifying approach to finance using stochastic discount

factors)

– Bodie, Kane, Marcus (2005). Investments, MacGrawHill (an undergraduate book, techni-

cally much less demanding with a very broad focus and very up-to-date with empirical and

theoretical develepments)

• The basic problem of an investor

– The setup is made as simple as possible. There are many, more complicated extensions that do
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not alter the basic message here. The presentation follows largely Cochrane (2005, Sections

1.1-1.4).

– Assumptions:

∗ The investor is exclusively interested in consumption. Additional consumption is viewed

less important if the consumption level is high −→ utility function is concave

du(ct)

dct
declines in ct.

∗ Future consumption is uncertain and future expected consumption is discounted using the

discount factor β.

∗ There is one investor who lives 2 periods having utility

U(ct, ct+1) = u(ct) + βE[u(ct+1)].

∗ In each period the investor receives a fixed endowment et and et+1.

∗ The investor can invest some of his endowment in period t into an asset with price pt and

risky payoff xt+1 in period t + 1 by buying ξ items of the asset.

ct = et − ptξ
ct+1 = et+1 + xt+1ξ.
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Thus, his control variable is ξ which allows her to maximize her utility

max
ξ
U(ct, ct+1) = max

ξ
u(ct) + βE[u(ct+1)|It].

∗ There are no buying or selling restrictions.

∗ There are no trading costs, taxes, etc....

– Solving the model:

Insert the budget constraints into the utility equation

U(ct, ct+1) = u(et − ptξ) + βE[u(et+1 + xt+1ξ)|It]

and maximize with respect to ξ. The first-order condition (FOC) is

∂U(ct, ct+1)

∂ξ
= −u′(ct)pt + βE [u′(ct+1)xt+1|It]

!
= 0. (7.1)

Note that taking the derivative of the expectation works because

∂E[g(x;α)]

∂α
=

∂

∂α

∫
g(x;α)f (x)dx =

∫
∂

∂α
g(x;α)f (x)dx = E

[
∂g(x;α)

∂α

]
which can be applied here as well by defining

g(xt+1; ξ) ≡ u(c(xt+1, ξ)), c(xt+1, ξ) = et+1 + xt+1ξ.
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Rearranging the FOC and using the notation

Et[·] ≡ E[·|It]

delivers the central asset pricing formula:

• Central asset pricing formula

pt = Et

[
βu′(ct+1)

u′(ct)
xt+1

]
(7.2)

– Note that ct and ct+1 depend on ξ. Thus finding the optimal ξ requires the nonlinear solution

of the asset pricing equation.

– The theory of asset pricing can be viewed as providing specializations and manipulations of

the asset pricing equation.

– Interpretation:

The investor is willing to buy an extra unit of the asset at price pt if the marginal loss in utility

due to less consumption is lower than the expected discounted marginal gain in future utility.

The marginal gain in future utility is just the payoff times the marginal utility in consumption.

– The term in front of the future payoff has a special function and is called stochastic discount

factor. It will be discussed next.
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• Stochastic discount factor:

– Note that the random variable

mt+1 ≡
βu′(ct+1)

u′(ct)

plays the function of a discount factor of the future payoff xt+1. Since it is random, it is called

stochastic discount factor.

– Since in general β < 1 one has in general also mt+1 < 1 except if ct+1 is much smaller than

ct due to the decreasing marginal utility of consumption. In other words, given current

consumption ct, the stochastic discount factor is the smaller, the larger future

consumption ct+1 is, implying larger discounting!

– Thus, discounting depends on the uncertain level of future consumption. Therefore, the

discount factor must be stochastic.

– Small example: Imagine that there are 3 different states of the world in period 2 that imply

3 different payoffs. The larger the payoff, the larger the consumption in period 2, discounting

is largest in the state with the largest payoff. Since in period 1 it is unknown which state will

realize in period 2, the investor takes expectations. Note that by using the stochastic discount

factor, the investor already takes care about her future utility of utility/consumption.

– Thus, the stochastic discount factor does not only take into account the risk with respect to
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future payoff but directly the risk with respect to future consumption.

– The stochastic discount factor is independent of a specific asset. Its value for a current state

only depends on the consumption level of that state. The function of the stochastic

discount factor is the same for all assets!

– However, the correlation between the values of the stochastic discount factor and the payoffs

can be different among assets. It therefore provides an asset-specific risk correction w.r.t.

utility maximization, the ultimate goal of investment.

– The specific function of the stochastic discount factor changes if the utility function is changed.

– Note that future payoff is linearly correlated with future marginal utility of consumption.

In contrast, the dependence of future payoff with future consumption is in general highly

nonlinear and invokes all moments!
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– Special cases:

∗ No uncertainty: There is only one future state and

pt = mt+1xt+1 =
1

Rf
xt+1.

Thus, in a risk-free world the stochastic discount factor corresponds to the inverse of the

risk-free rate Rf .

∗ Uncertainty w.r.t. pay-off: relationship between future consumption and payoff is

ignored

pt =
1

Ri
Et[xt+1].

Here, the risk-adjustment is done by using the asset-specific discount factor 1/Ri for asset

i.

∗ Uncertainty w.r.t. consumption: relationship between future consumption and payoff

taken into account → asset pricing equation

pt = Et[mt+1xt+1]

– Other names for the stochastic discount factor: marginal rate of substitution, pricing kernel,

change of measure, state-price density.
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• Relating payoff risk and utility/consumption risk

– Since Cov(X, Y ) = E[XY ]− E[X ]E[Y ] the asset pricing equation can be rewritten as

pt = Et[mt+1]Et[xt+1] + Covt(mt+1, xt+1).

– Assume for the moment that future consumption is stochastically independent with future

payoff. Then Covt(mt+1, xt+1) = 0. Therefore, future payoff cannot help to control future

consumption but it still may improve future consumption on average. In this case one can

obtain the risk-free rate

Rf =
1

E[mt+1]

as the inverse of expected stochastic discount factor. The price of such assets is

pt =
Et[xt+1]

Rf
.

– Interpretation of the risk adjustment term Covt(mt+1, xt+1):

The asset price increases if an increase in payoff is associated with an increase in the stochastic

discount factor ∼ increase in future marginal utility ∼ decrease future consumption and vice

versa. Thus, a positive covariance helps to reduce the variation between current and future

consumption (or in the level of marginal utility). A positive covariance between the

stochastic discount factor and payoff smoothes the consumption stream. In
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contrast, if the covariance is negative, the volatility of the consumption stream is increased

and the investor wants to be payed for this by a higher return.

• Systematic and idiosyncratic risk

If Cov(mt+1, xt+1) 6= 0, then there is correlation between the fluctuations in utility and in payoff.

This joint risk is called systematic risk while the risk in payoff that is without impact on future

consumption/utility is called idiosyncratic. From the asset pricing formula it follows that only

the systematic risk influences the asset price. The idiosyncratic risk does not contribute to

smoothing/aggrevating the consumption stream and is therefore not priced.

• Important special cases of the asset pricing equation:

– The asset pricing formula (7.2) can be applied to a wide range of assets, e.g. to returns. This

delivers the mean-variance frontier.

– Be aware that the formulas resulting from the asset pricing formula (7.2) hold for an investor

that optimized her portfolio in period 1 by buying the optimal number ξ of the asset.

– A ’return’ of an asset i costs in period t one unit and pays in period t + 1 Ri units. Thus,

dropping time indices,

1 = E[mRi]

1 =
E[Ri]

Rf
+ Cov(m,Ri).
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Rewriting delivers an explanation for expected excess returns

E[Ri]−Rf︸ ︷︷ ︸
expected excess return

= −RfCov(m,Ri)︸ ︷︷ ︸
risk adjustment

. (7.3)

Note that the stochastic discount factor m depends on ct, ct+1 and thus on ξ. Interestingly,

m is the quantity that is influenced by the investor by choosing ξ. Thus, by choosing ξ one

influences the expected value or the covariance in the equation above.

• Expected return-beta representation and the mean-variance frontier

– Rewriting equation (7.3) for expected excess returns delivers the expected return-beta

representation or beta-pricing model

E[Ri]−Rf =
V ar(m)

E[m]︸ ︷︷ ︸
λm

(−1)
Cov(m,Ri)

V ar(m)︸ ︷︷ ︸
βi,m

E[Ri]−Rf = λmβi,m. (7.4)

In the representation (7.4) the coefficient λm represents the price of risk that is independent

of the specific return considered and depends exclusively on the type and volatility of the

stochastic discount factor. The beta-parameter βi,m denotes the quantity of systematic risk

associated with return i.

– Rewriting equation (7.3) for expected excess returns in a slightly different way, using Cov(X, Y ) =
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Corr(X, Y )σ(X)σ(Y ) with σ(X) =
√
V ar(X), delivers

E[Ri]−Rf = −Corr(m,R
i)σ(m)σ(Ri)

E[m]

E[Ri]−Rf

σ(Ri)
= −Corr(m,Ri)

σ(m)

E[m]
.

The expression
E[Ri]−Rf

σ(Ri)

is called Sharpe ratio. Since |Corr(m,Ri)| ≤ 1, one has∣∣∣∣E[Ri]−Rf

σ(Ri)

∣∣∣∣ ≤ σ(m)

E[m]
.

The Sharpe ratio that is the slope of the mean-volatility line of any return i cannot be larger

in absolute value than the coefficient of variation σ(m)
E[m] of the stochastic discount factor m.

The slope of the coefficient of variation is said to provide the mean-variance frontier for

all possible returns. The mean-variance frontier is also called capital market line. Note

that in the present context the capital market line depends on the decision of the investor

through ξ.

Properties of the mean-variance frontier:
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∗ all returns on the frontier are perfectly correlated with the stochastic discount factor since

|Corr(m,Ri)| = 1.

∗ all returns on the upper frontier are maximally risky since consumption is highest when

payoffs are highest and thus there is the least possible smoothing of consumption. There-

fore the investor wants to be paid for taking this risk and the expected excess return is

highest.

∗ all returns on the lower frontier are minimally risky since consumption is lowest when

payoffs are highest and thus there is the most possible smoothing of consumption. Thus,

the expected excess return is the lowest.

∗ any pair of two frontier returns are perfectly correlated and therefore spans/synthesizes

any frontier return.

∗ any mean-variance efficient return, abbreviated by Rmv carries all pricing information

since Corr(m,Rmv) = −1 and Rmv = a + bm. Then

Cov(m,Rmv) = −σ(m)σ(Rmv) = −bσ(m)σ(m).

For the expected excess return of a mean-variance efficient return the beta

pricing model delivers

E[Rmv]−Rf = λm
bσ2(m)

σ2(m)
= bλm.
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Inserting

λm =
E[Rmv]−Rf

b
into the expected return-beta representation (7.4) for return i finally produces

E[Ri]−Rf = βi,m
E[Rmv]−Rf

b
or E[Ri]−Rf = βi,mv

(
E[Rmv]−Rf

)
(7.5)

since

βi,mv ≡
Cov(Rmv, Ri)

V ar(Rmv)
=
bCov(m,Ri)

b2V ar(m)
=
Cov(Ri,m)

bV ar(m)
≡ βi,m

b
.

• Example: power utility function

– Power utility:

u(c) =
1

1− γ
c1−γ

u′(c) = c−γ.

– Stochastic discount factor:

mt+1 = β

(
ct+1

ct

)−γ
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– Case I: no uncertainty

Rf
t+1 =

1

mt+1
=

1

β

(
ct+1

ct

)γ
Real interest rates are high if

∗ people are impatient (=β low)

∗ consumption growth is high

∗ the desire for smooth consumption is large (γ large)

– Case II: uncertainty

Assumption: consumption growth is log-normally distributed

ln
ct+1

ct
= µt + ut, ut ∼ N(0, σ2

t ).

The risk-free rate is

Rf
t+1 =

1

E[mt+1]
.
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Using the assumption of log-normal consumption growth one has, e−δ ≡ β,

β

(
ct+1

ct

)−γ
= e−δ

(
eln ct+1−ln ct

)−γ
= e−δe−γ(∆ ln ct+1)

Et

[
β

(
ct+1

ct

)−γ]
= Et

[
e−δe−γ(∆ ln ct+1)

]
= e−δe−γµt+

γ2

2 σ
2
t

Rf
t+1 =

[
e−δe−γµt+

γ2

2 σ
2
t

]−1

.

Real interest rates are high if

∗ impatience δ is high

∗ mean consumption growth µt is high

∗ more smoothing γ needed

and

∗ consumption variance σ2
t is small.

Note that the parameter γ in the power utility function controls

∗ the degree of intertemporal substitution (=aversion to a consumption stream that varies

over time)
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∗ risk aversion (=aversion to a consumption stream that varies over states of nature)

∗ the degree of precautionary savings (σ2
t γ

2/2 term).

These links can be broken up by using more flexible utility functions.

– Using the power utility function one can also express the beta pricing model directly in terms

of changing consumption. Applying Taylor expansions to λm and βi,m in (7.4), one obtains

E[Ri]−Rf ≈ βi,∆c γV ar(∆ct+1)︸ ︷︷ ︸
λ∆c

.

Thus, the price of risk increases with

∗ an increase in the variance of consumption growth

∗ a larger risk aversion/degree of intertemporal substitution.

• The equity premium puzzle

– If one computes the mean-variance frontier for the power utility function, then the Sharpe

ratio of a mean-variance efficient return can be approximated by∣∣∣∣E[Rmv]−Rf

σ(Rmv)

∣∣∣∣ ≈ γσ(∆ ln ct+1)

– Over the last 100 years the real stock return of the stock market index in the US was about

9% with standard deviation 16% while the real return of treasury bills was 1%. This delivers
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a Sharpe ratio of about 0.5. For the same period consumption growth exhibited mean 1%

and standard deviation 1%. Thus the risk aversion parameter γ has to be 50! This number is

way too large given empirical evidence on risk aversion from economic experiments. Thus the

expected excess return of the market portfolio was too large given the risk-aversion of people.

This is the equity premium puzzle.

• Note that equation (7.5) is almost the capital asset pricing model. The capital asset pricing

model (CAPM) states that the mean-variance efficient return is given by return on the market

or total wealth portfolio

E[Ri]−Rf = βi,RW
(
E[RW ]−Rf

)
. (7.6)

Note that going from (7.5) to (7.6) requires additional assumptions. One of the following set of

assumptions is enough, see e.g. Cochrane (2005, section 9.1),

– quadratic utility function u(c) = (c− c∗)2, c∗ fixed, and no labor income or

– exponential utility u(c) = −e−ac, a fixed, and normally distributed returns

• Random Walks and Efficient Markets

– A wide spread hypothesis: Financial markets are efficient if prices follow a random walk

pt = Et[pt+1]

pt+1 = pt + ut, u ∼ (0, σ2).
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This says: prices tomorrow are unpredictable given prices and other information until today.

– A generalization of a random walk is a martingale

yt+1 = yt + ut, ut ∼ (0, σ2
t )

where the variance of the error term may be (conditionally) heteroskedastic.

– Consider the asset pricing formula:

pt = Et[mt+1xt+1].

This relationship only reduces to a random walk if mt+1 = 1 and xt+1 = pt+1. This implies

that

∗ one considers a short time horizon such that β ≈ 1,

∗ investors are risk neutral ⇔ u(·) linear or σ2
c = 0 and

∗ there is no dividend payment in t + 1.

– How to view the asset pricing formula as a random walk? Prices follow a random walk after

scaling and adjusting by discounted marginal utility.

– Since changes in marginal utility may not matter in the very short run, the random walk

hypothesis is likely to hold in the very short run. But in the long run?
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Reconsider the beta-pricing model (7.4) with power utility that was used to explain the equity

premium puzzle

Et[R
mv]−Rf ≈ γtσt(∆ ln ct+1)σt(R

mv).

A time index was added to each quantity since the asset pricing formula was derived conditional

on information up to time t. The expected return can vary if

∗ the risk aversion γt changes,

∗ the conditional variance of the mean-variance return changes,

∗ the conditional variance of consumption growth changes

Note that all quantities may vary in the long-run but not in the short-run. Thus, prices

should only be predictable in the long-run if at all!

• Infinite horizon models

– Imagine an investor with infinite horizon that can purchase a stream of dividends {dt+j} at

price pt. The asset pricing formula continues to hold

pt = Et[mt+1(pt+1 + dt+1)]
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with xt+1 = pt+1 + dt+1 being the payoff in period t + 1. It may also be written as

pt = Et

 ∞∑
j=0

mt,t+jdt+j

 , mt,t+j = βj
u′(ct+j)

u′(ct)

by iterating the asset pricing formula forward (=iteratively inserting) and using the assumption

(=transversatility condition) limj→∞Et[mt+jpt+j] = 0.

Thus, asset prices are expected future dividends stochastically discounted.

• Important remarks:

The asset pricing formula

1. is no equilibrium condition,

2. does not require complete markets or a representative investor,

3. does not require specific assumptions on future prices/returns,

4. does not require a specific utility function,

5. does not exclude other income sources,

6. allows for stochastic discount factors that vary across individuals,

7. makes a statement about optimal investment for a marginal investment for an individual
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investor given current price,

8. states the price given the joint distribution of the (subjective) stochastic discount factor (or

consumption) and the asset payoff or

9. states current consumption u′(ct) given the joint distribution of the (subjective) stochastic

discount factor (or consumption) and the asset payoff and today’s price

10. does not specify truly exogenous stochastic processes that drive consumption and payoffs.

See Cochrane (2005, Section 2.1). In the following some of the items above are treated in more

detail.

• Finding the individual willingness to pay for an asset using the asset pricing equation

– This amounts to finding the price for investing an extra marginal amount ξ into an asset.

This increases the investor utility from

u(ct) + βEt[u(ct+1)]

to

u(ct − ptξ) + βEt[u(ct+1 + xt+1ξ)].
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This implies the

loss :u(ct − ptξ)− u(ct)

gain :βEt[u(ct+1 + xt+1ξ)− u(ct+1)].

Using first-order Taylor expansions taken at ct and ct+1 one obtains approximatively

loss :u(ct) + u′(ct)ptξ − u(ct) = u′(ct)ptξ

gain :βE[u(ct+1) + u′(ct+1)xt+1ξ − u(ct+1)] = βE[u′(ct+1)xt+1ξ].

Comparing the loss and the gain one obtains

pt =


>

=

<


βE[u′(ct+1)xt+1ξ]

u′(ct)ξ
= E

[
β
u′(ct+1)

u′(ct)
xt+1

]
≡ vt.

On the left hand side is the market price pt. On the right hand side one has the private

valuation vt of an extra unit of the asset given everything else. Now the investor faces three

situations

∗ vt > pt (private valuation larger than market valuation) the investor buys more of the

asset. This increases future consumption on average leading to an average decline of

future marginal utility and thus a decrease in the private valuation of additional units of

the asset. The investor stops buying once vt = pt.
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∗ vt = pt nothing happens. The investor is in post-trade or in the equilibrium situation. In

the optimum for the investor loss equals gain.

∗ vt < pt (private valuation smaller than market valuation) the investor sells more of the

asset. This decreases future consumption on average leading to an average increase of

future marginal utility and thus an incrase in the private valuation of additional units of

the asset. The investor stops selling once vt = pt.

• Complete markets, the stochastic discount factor, and risk-neutral probabilities

– The stochastic discount factor can be related to the very important concept of complete

markets. First we need a class of specific assets:

– Contingent claims:

Consider a simple world with finitely many states in the future, let’s say S states. A contin-

gent claim for state s is an asset that pays exactly 1 unit in state s and nothing in any

other state. Thus, by buying a contingent claim for all S states one can ensure to always

obtain 1 unit in the future period. This certain payoff costs simply the sum of the prices of

all contingent claims.

Note that this insurance type of investment only works if there exists a contingent claim

for every state. In this case, a market is called complete. Otherwise, a market is called
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incomplete. In reality, markets are in general incomplete.

For a market to be complete it is not necessary that contingent claims themselves exist. It is

sufficient that there exist enough assets such that a contingent claim for each state can be

constructed by choosing an appropriate portfolio of available assets. One says the assets

span/synthezise all contingent claims.

– Relating complete markets with the stochastic discount factor

∗ Price of contingent claim for state s: pc(s)

∗ Recall that the price of a payment that pays x(1), . . . , x(S) units in states 1 to S in the

next period is

p(x) =

S∑
s=1

x(s)pc(s).

In order to write this as an expected value write

p(x) =

S∑
s=1

x(s)
pc(s)

π(s)
π(s)

= E

[
x(s)

pc(s)

π(s)

]
where π(s) denotes the probability that state s occurs in the next period.
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∗ Now observe that the ratio of contingent claims prices and probabilities play the role of

the stochastic discount factor! Thus, define the stochastic discount factor for state s

m(s) ≡ pc(s)

π(s)
, s = 1, . . . , S

and obtain the asset pricing equation

p(x) = E [x(s)m(s)] .

∗ Thus, if markets are complete, a stochastic discount factor exists. If the state space is

continuous a similar result can be shown but this is more difficult.

∗ Now consider the price for a certain payout of 1 unit

S∑
s=1

pc(s) =

S∑
s=1

pc(s)

π(s)︸ ︷︷ ︸
m(s)

π(s) = E [m(s)] .

Thus, the risk-free rate of return is

Rf =
1∑S

s=1 pc(s)
=

1

E [m(s)]

as shown before.

– Risk-neutral probabilities
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∗ The concept of risk-neutral probabilities is very important for pricing options or computing

term structure models for interest rates. It can be very nicely explained using the asset

pricing equation.

∗ Note that if the investor were risk-neutral, then marginal utility would be constant

and the asset pricing equation would simplify to

p(x) = βE[x(s)].

∗ Now we expand the asset pricing equation once more. This time by E[m(s)] which leads

to

p(x) = E

[
x(s)

m(s)

E[m(s)]
E[m(s)]

]
= E[m(s)]

S∑
s=1

x(s)
m(s)

E[m(s)]
π(s)︸ ︷︷ ︸

π∗(s)

.

Note that π∗(s) are also probabilities since they add up to 1 (because m(s)
E[m(s)] is a weight
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function that sums to 1). Thus, one can write in short

p(x) = E[m(s)]

S∑
s=1

x(s)π∗(s)

=
1

Rf
E∗[x(s)]

where E∗[·] denotes the expectation using the probabilities π∗(s). The probabilities π∗(s)

are called risk-neutral probabilities since now the price corresponds to the formula of

a risk-neutral investor. Thus, one was able to move the risk-aversion into the probabilities

by changing them.

∗ A few remarks:

· Agents are risk-neutral with respect to the probability distribution π∗.

· Note that π∗ gives a greater weight to states with higher than average future marginal

utility u′(c(s)), see example below.

· Risk aversion is equivalent to paying more attention to unpleasant states relative to

their actual probability of occurrence.

· The combination of π×m is the most important piece of information for many decisions!
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· There is also technical jargon (not needed in this course but for later reference)

π∗(s) =
m(s)

E[m(s)]︸ ︷︷ ︸
change of measure

π(s).

The expression m(s)
E[m(s)] is called change of measure or derivative since it allows

to switch from the measure (=probability distribution) π to the risk-neutral measure

(=probability distribution) π∗.

– Example

∗ Power utility: u(c) = 1
1−γc

1−γ with γ = 1
2. Thus, marginal utility is u′(c) = c−1/2.

∗ For simplicity, the discount rate β = 1.

∗ Consumption in period t is already chosen and ct = 9. Thus, current marginal utility is

u′(ct) = 1
3.

∗ Endowment in period t + 1 is independent of the state and is et+1 = 6. The only other

income in period t + 1 is the payoff xt+1(s) of the asset.

∗ In the table below the payoff for each of the S = 3 states is specified and the resulting

future marginal utility, the discount factor for each state, the risk-neutral probability and

the price of a contingent claim that pays 1 unit in one state.
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state probability payoff future future marginal stochastic risk-neutral price of

consumption utility discount factor probability contingent claims

s π(s) xt+1(s) ct+1(s) u′(ct+1(s)) mt+1(s) π∗(s) pc(s)

1 1
2 3 9 1

3 1 1
2

1
2

2 1
3 10 16 1

4
3
4

1
4

1
4

3 1
6 −2 4 1

2
3
2

1
4

1
4

Notice that the risk-neutral probability for the state with negative payoff is much higher

than the probability itself, indicating the risk aversion of the investor!

∗ Price of asset with payoff xt+1F

pt = E [mt+1xt+1] =

3∑
s=1

mt+1(s)xt+1(s)π(s) = 3
1

2
+

30

4

1

3
− 3

1

6
=

7

2
.

Price of asset using risk-neutral probabilities

pt = E∗ [xt+1] =

3∑
s=1

xt+1(s)π∗(s) = 3
1

2
+ 10

1

4
− 2

1

4
=

7

2
.
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7.2. Is the asset pricing equation empirically relevant?

• In order to check the asset pricing equation empirically, one has to assume something about the

stochastic discount factor and to model its joint distribution with future payoff. Moreover one

also has to assume that there exists something like an average utility function or a representative

agent.

– Simplest case: power utility function, see above. This assumption is not very well supported

by the data.

– Alternatives:

∗ Other utility functions: variables driving utility; separating intertemporal substitution

and risk aversion, etc.

∗ General equilibrium models: link consumption to other variables e.g. income, interest

rates; model covariance in beta explicitly

∗ Factor pricing models: model stochastic discount factor (ratio of marginal utilities) in

terms of other variables

mt+1 = a + bA fAt+1︸︷︷︸
factor A

+bBf
B
t+1 + · · · ,
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Special cases:

· Capital Asset Pricing Model (CAPM)

mt+1 = a + bRW
t+1

where RW
t+1 is the rate of return on a claim to total wealth.

· Arbitrage Pricing Theory (APT)

· Intertemporal Capital Asset Pricing Model (ICAPM)

· Term structure models

∗ Arbitrage or near-arbitrage pricing: use the no-arbitrage condition to determine the

price of one payoff in terms of the prices of other payoffs (most famous: Black-Scholes

option prices). Works because of the existence of the asset pricing equation and positive

marginal utility.

7.3. Factor-pricing models

• Idea: link stochastic discount factor to other (observable) data

Easiest: use a link that linearly combines several factors: linear factor pricing models. This
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is mostly used in empirical work, see below. First, we discuss its theoretical properties.

• Factor pricing models

– replace consumption-based expression for marginal utility growth version of stochastic discount

factor with a linear model

mt+1 = a + b′ft+1

where ft+1 is a vector of factors that have to be determined.

– are equivalent to the multivariate/multiple version of the expected return-beta represen-

tation or beta-pricing model

E[Ri
t+1] = γ + β′λ

where λ is a vector that captures the various prices of risks that influence expected returns.

– Main issue: which factors to choose?

∗ If one starts again from the simple consumption-based model, then the factors must proxy

aggregate marginal utility growth

β
u′(ct+1)

u′(ct)
≈ a + b′ft+1

∗ Why is this view useful?
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“the essence of asset pricing is that there are special states of the world in which

investors are especially concerned that their portfolios not do badly. They are willing

to trade off some overall performance—average return—to make sure that portfolios

do not do badly in those particular states of nature. The factors are variables that

indicate that these “bad states” have occured.” Cochrane (2005, p.149)

∗ One needs factors that

· measure the state of the economy: u′(ct)

· forecast the state of the economy: u′(ct+1)

∗ Factors that measure the state of the economy:

· returns on broad-based portfolios

· interest rates

· growth in GDP

· investment

· other macroeconomic variables

· returns to real production processes
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· etc.

∗ Factors that forecast the state of the economy must be related to news

· variables that are correlated with “changes in the investment opportunity set”

· term premium

· dividend price ratio

· stock returns

· etc.

– Should factors be predictable over time?

∗ Simple case: assume constant real interest rate

Rf =
1

Et[mt+1]
.

Then using the consumption based stochastic discount factor

mt+1 = β
u′(ct+1)

u′(ct)

one obtains

1 = RfβEt

[
u′(ct+1)

u′(ct)

]
, Et

[
u′(ct+1)

u′(ct)

]
=

1

βRf
.
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Thus
u′(ct+1)

u′(ct)
=

1

βRf
+ εt+1, E[εt+1] = 0

∗ In reality, the real interest rate varies, however, not too much. Thus, marginal utility

growth cannot be expected to be highly predictable! This carries over to all factors that

should proxy marginal utility growth!

∗ Thus, one may choose factors that represent changes themselves: GNP growth, portfolio

returns, price-dividend ratios, etc.

• Capital Asset Pricing Model (CAPM)

– Most famous asset pricing model

– A one factor model with the factor return on the “wealth portfolio”

mt+1 = a + bRW
t+1.

– how to proxy the wealth portfolio: in practice S&P500, value- or equally-weighted NYSE,

DAX(?)

• One simple derivation based on two-period quadratic utility:

Assumptions:
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– quadratic utility u(c) = −1
2(ct − c∗)2.

– one investor, living two periods, maximizing the utility

U(ct, ct+1) = −1

2
(ct − c∗)2 − 1

2
βE
[
(ct+1 − c∗)2

]
.

– Initial endowment/wealth Wt exogenously given at the beginning of period 1

– No labor income

– Investment opportunities: N assets with price pit for asset i with payoff xit+1. Thus, asset i

has return Ri
t+1.

The optimization problem is to maximize intertemporal utility given the budget constraint by

selecting the portfolio weights wi and implicitly ct, ct+1:

ct+1 = Wt+1

Wt+1 = RW
t+1 (Wt − ct)

RW
t+1 =

N∑
i=1

wiR
i
t+1,

N∑
i=1

wi = 1

where RW
t+1 and Ri

t+1 denote the rate of return on total wealth and asset i, respectively. Note
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that shortselling is allowed since wi maybe negative.

mt+1 = β
RW
t+1 (Wt − ct)− c∗

ct − c∗

=
βc∗

c∗ − ct︸ ︷︷ ︸
at

− β (Wt − ct)
c∗ − ct︸ ︷︷ ︸

bt

RW
t+1

mt+1 = at − btRW
t+1

Note that the denominator was rearranged such that at and bt are non-negative for ct ≤ c∗

which is the relevant part of the utility function. Note also that the parameters at and bt are

time-dependent since they depend on the situation at time t. Inserting mt+1 = at − btRW
t+1 into

the expected returns - beta representation results in a time-varying price of risk λW,t and beta
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βW,i,t

Et

[
Ri
t+1

]
−Rf

t+1 =
V art(mt+1)

Et[mt+1]

−Covt(mt+1, R
i
t+1)

V art(mt+1)

=
V art(R

W
t+1)b2

t

at − btEt[RW
t+1]︸ ︷︷ ︸

λW,t

(−1)2btCovt(R
W
t+1, R

i
t+1)

V art(RW
t+1)b2

t︸ ︷︷ ︸
βW,i,t

Et

[
RW
t+1

]
−Rf

t+1 = λW,t · 1
= and therefore

λW,t = Et

[
RW
t+1

]
−Rf

t+1

• Other factor models are the Intertemporal Capital Asset Pricing Model (ICAPM) or the Arbitrage

Pricing Theory (APT), see e.g. Cochrane (2005, Sections 9.2 - 9.5)

7.4. Regression based tests of linear factor models

• Using time series regressions

– Recall the linear single factor model using the notation of excess returns Rei = Ri −Rf and
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ReW = RW −Rf :

E[Rei
t ] = βi,Wλ

– Note that the excess return-beta representation is also obtained by taking expectations of

Rei
t = βi,WR

eW
t + εit, E[εit] = 0, i = 1, . . . , N, t = 1, . . . , T.

– This model is nested in the standard time series regression model (including a constant)

Rei
t = αi + βi,WR

eW
t + εit. (7.7)

In practice, all pricing errors αi should be zero.

• Estimation procedure

– Estimate price of risk λ by 1
T

∑T
t=1R

eW
t

– Run N OLS regressions of (7.7) and test for each

H0 : αi = 0 versus H1 : αi 6= 0.
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Example: Estimation of a CAPM model

– Data: monthly data January 2003 to June 2012 of DAX, Bayer, Daimler, E.ON, Deutsche Post,

Deutsche Lufthansa, SAP, Siemens and short-term interest rates; see file capm.RData.

– Computation of excess returns of stock i

Rei
t = lnPt − lnPt−1 −Rf

t /(12 ∗ 100),

since the three-month interest rates are given annualized in percent.

– Estimation of time series regressions in R

Regressing excess returns for the Bayer stock on the excess returns of the DAX yields

Call:

lm(formula = excess.stock ~ +1 + excess.market)

Residuals:

Min 1Q Median 3Q Max

-0.217861 -0.032947 -0.001235 0.030595 0.125766

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.005474 0.005143 1.065 0.289

excess.market 0.992579 0.086037 11.537 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05443 on 111 degrees of freedom

http://www-wiwi.uni-regensburg.de/images/institute/vwl/tschernig/lehre/capm.RData
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Multiple R-squared: 0.5453,Adjusted R-squared: 0.5412

F-statistic: 133.1 on 1 and 111 DF, p-value: < 2.2e-16

Hence, the constant term is not significant and beta is close to unity.

• Conclusion: Do you think that the CAPM captures most of the variation of the equity premia

for the considered period and stocks?

In general, adding additional factors play a role in explaining equity premia such as the difference

between returns of big and small companies or the difference in returns between companies with

a high book-to-market ratio and those with a low ratio. For a recent survey on the CAPM and

its extensions, see e.g.

Fama, Eugene F., French, Kenneth R. (2004). The Capital Asset Pricing Model: Theory and

Evidence, Journal of Economic Perspectives 18, 25 – 4

Perold, André F. (2004). The Capital Asset Pricing Model Source, Journal of Economic

Perspectives 18, 3 – 24

http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/fama_french_2004.pdf
http://www.wiwi.uni-regensburg.de/tschernig/Veranstaltungen/Material/perold_2004.pdf
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A. R programs for the empirical examples

Note:

The data are available from GRIPS. You need to create the subdirectory Data within the folder of

your R programs and save the data in the subdirectory. You also need to set the working directory in

R on the directory that contains your R programs.

A.1. Real Prices of the S&P 500

Used in section 1.2.

Data source: homepage of Robert Shiller: www.econ.yale.edu/~shiller/.

R program:
################################################################################

# AOE_Ch1-4_Shiller_AR1.R

https://elearning.uni-regensburg.de/course/view.php?id=42620
www.econ.yale.edu/~shiller/
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################################################################################

# Plot graph of real prices and real earnings of the Shiller S&P 500 data

# shown in the lecture notes and estimates an AR(1) model for the

# real_price data series from Shiller’s dataset ie_data.xls

#

# the dataset "ie_data_2021_04_12.xls" has to be in the subdirectory "data".

# written by Rolf Tschernig (RT)

# version: 2021_04_15, 2022_04_28, 2023_04_10 (Shiller data updated)

# ----------------------------------------------------------------------------

# Specify parameters for analysis

# ----------------------------------------------------------------------------

Shiller_series<- "RealPrice"

# available are: SPCompPrice", "Dividend", "Earnings",

# "CPI", "DateFraction", "LongInterest",

# "RealPrice", "RealDividend",

# "RealTotalReturnPrice", "RealEarnings",

# "RealScaledEarnings", "P/E10"

transformdata = "log" # must be: level, diff, log, or difflog

# ----------------------------------------------------------------------------

# load and check data, create zoo and time series objects

# ----------------------------------------------------------------------------

if (!require(zoo)) install.packages("zoo") # requires library zoo
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library(zoo)

if (!require(tseries)) install.packages("tseries") # requires library zoo

library(tseries)

if (!require(readxl)) install.packages("readxl") # for reading .xls or

#.xlsx files

library(readxl)

# if you use all available data

ie_data <- data.frame(

read_excel(path="Data/ie_data_2023_04_10.xls",

range="Data!B9:M1834",

col_names=c("SPCompPrice", "Dividend", "Earnings",

"CPI", "DateFraction", "LongInterest",

"RealPrice", "RealDividend",

"RealTotalReturnPrice", "RealEarnings",

"RealScaledEarnings", "P/E10")))

head(ie_data)

tail(ie_data)

# create ts object

# Note that ts cannot handle missing values. This requires library zoo

ie_data_ts <- ts(ie_data, start = c(1871, 1), frequency = 12)

ie_data_zoo <- zoo(ie_data_ts)

series_to_check_all_ts <- window(ie_data_ts[,Shiller_series], start=NULL, end=NULL)

series_to_check_all_zoo <- window(ie_data_zoo[,Shiller_series, drop=FALSE],

start=NULL, end=NULL)

# drop=FALSE keeps series_to_check_all_zoo as

# a matrix object and stores therefore also the

# the series name

head(series_to_check_all_zoo)
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head(series_to_check_all_ts)

tail(series_to_check_all_zoo)

tail(series_to_check_all_ts)

# transform data if desired

if (transformdata=="level"){

series_to_check_zoo <- series_to_check_all_zoo

series_to_check_ts <- series_to_check_all_ts

} else if (transformdata=="diff"){

series_to_check_zoo <- diff(series_to_check_all_zoo,lag=1)

series_to_check_ts <- diff(series_to_check_all_ts,lag=1)

} else if (transformdata=="log"){

series_to_check_zoo <- log(series_to_check_all_zoo)

series_to_check_ts <- log(series_to_check_all_ts)

} else if (transformdata=="difflog"){

series_to_check_zoo <- diff(log(series_to_check_all_zoo),lag=1)

series_to_check_ts <- diff(log(series_to_check_all_ts),lag=1)

} else {

print("transformdata has to be level, diff, log, or difflog")

}

nobs <- length(series_to_check_zoo)

# ----------------------------------------------------------------------------

# Plot time series

# ----------------------------------------------------------------------------

plot.zoo(series_to_check_zoo, xlab = "Time",

ylab = paste(names(series_to_check_zoo),
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", data transformation: ", transformdata),

main = "S&P 500 Real Prices" )

plot.ts(series_to_check_ts, xlab = "Time",

main = "S&P 500 Real Prices" )

# ----------------------------------------------------------------------------

# Estimate AR(1) model

# ----------------------------------------------------------------------------

# Method A)

RP <- series_to_check_zoo

RP_0to1 <- embed(RP, 2) # matrix containing contemporaneous and (once) lagged data

RP_t <- RP_0to1[,1] # contemporaneous series

RP_tm1 <- RP_0to1[,2] # lagged series

est_ar1 <- lm(RP_t ~ 1 + RP_tm1) # ols regression with constant

summary(est_ar1) # summary output of linear regression

# Method B) most convinient

# requires zoo object and dynlm package

est_ar1_dynlm <- dynlm(RP ~ L(RP))

summary(est_ar1_dynlm)

# Method C)

p = 1

ar.ols(series_to_check_ts, order.max = p,

aic = FALSE, deman = FALSE, intercept = TRUE)
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# Method D)

series_to_check_ar2_lm <- lm(y ~ y.l1 + y.l2, data =

ts.intersect(y = series_to_check_ts,

y.l1 = lag(series_to_check_ts,-1),

y.l2 = lag(series_to_check_ts,-2)))

#============================= End =================================================

Listing A.1: .././R code/AOE Ch1–4 Shiller AR1.R

A.2. Generate AR(1) trajectories

Used in section 2.1.1.

R program:
################################################################################

# AOE_Ch_2-1_AR1_Traj.R

################################################################################

#

# Creates a plot with R realisations of an AR(1) process, plot them, and compute

# the ensemble means.

# It allows
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# - to choose between deterministic or random presample values and

# - to add a random number to each time series value to create non-ergodic

# time series.

# German source: 12_1_Traj_RW.R of Methoden der Ökonometrie

#

# Last change: 2021_04_22, 2023_04_12 (translation to English), RT

save.pdf <- 0 # 1 = create and save PDF of plots, 0 = do not

# Parameters of the DGPs and for the Monte-Carlo simulation

n <- 200 # number of observations

alpha_0 <- 0.2 # constant of AR(1) process

alpha_1 <- 0.9 # AR parameter of AR(1) process

# 0: white noise

# 1: random walk

# 0 < |alpha| < 1: stationary process

y_0_type <- "random" # "null" = use zero, "determ" = value chosen by y_0_value,

# "random" = normally distributed with mean y_0_value and sd = 1

y_0_value<- -2 # if y_0_type = "deterministic": presample value

# if y_0_type = "random": mean of for y_0 ~ N(y_0_value, 1)

R <- 1000 # number of trajectories / realisations

var_z <- 0 # variance of z to illustrate non-ergodicity:

# 0 => ergodic

# >0 => non-ergodic

# Parameters for plots

lwd <- 3

cexmu <- 2
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set.seed(42) # seed value

# Initialize output matrices

u <- matrix(rnorm(n*R), nrow = n) # generate Gaussian white noise

y <- matrix(NA, nrow = n, ncol=R) # initialize matrix to contain time series

# using NAs

z <- rnorm(R) * var_z # Draw random number which is the same for all t

# Initialize presample values

if (y_0_type == "null") {

y_0 = rep(0, R)

} else if (y_0_type == "deterministic") {

y_0 = rep(y_0_value, R)

} else if (y_0_type == "random") {

y_0 = rnorm(R, mean = y_0_value, sd = 1)

}

# Create all R trajectories of the AR(1) process

for (i in 1:R) y[,i] <- filter(u[,i] + alpha_0, alpha_1,

method = "recursive", init = y_0[i])

# Simuated ensemble mean

(y_means_ensemble <- rowMeans(y) + mean(z))

# Plot of all R time series showing ensemble means

if (save.pdf) pdf("Traj_AR1_points.pdf")

# first trajectory

plot(y[,1] + z[1], cex.lab = cexmu, cex.axis = cexmu, lwd = lwd,

ylim = c(min(y+min(z)), max(y) + max(z)),
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ylab = expression(y[t]), xlab = "t", main =paste(R, "Time Series with their ensemble means"))

# 2nd to R-th trajectories

for (i in 2:R) points(y[,i] + z[i], col = i, lwd = lwd)

# plot the simulated ensemble mean

lines(y_means_ensemble, col = "black", lwd = lwd)

if (save.pdf) dev.off()

# Plot of all R time series as trajectories

if (save.pdf) pdf("Traj_AR1_lines.pdf")

# first trajectory

plot(y[,1] + z[1], cex.lab = cexmu, cex.axis = cexmu, lwd = lwd,

type = "l", ylim = c(min(y), max(y)),

ylab = expression(x[t]), xlab = "t")

# 2nd to R-th trajectories

for (i in 2:R) lines(y[,i] + z[i], col = i, lwd = lwd)

# plot the simulated ensemble mean

lines(y_means_ensemble, col = "black", lwd = 2*lwd)

if (save.pdf) dev.off()

# ========================= End ==============================================

Listing A.2: .././R code/AOE Ch2–1 AR1 Traj.R

A.3. Generate ARMA(1,1) trajectories

Used in sections 2.2.1 and 2.3.
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R program:
################################################################################

# AOE_Ch2-3_ARMA11_SIM.R

################################################################################

# Program for generating one realisation of an ARMA(1,1) process.

# created by: RT, 2020_05_09, 2023_04_13 correection and arima.sim added

graphics.off() # close all graphic windows

# Determine parameters of ARMA(1,1) model and of simulation study

set.seed(42) # random seed

n <- 500 # sample size

n_burn <- 100 # burn-in phase

alpha_0 <- 0

alpha_1 <- 0.8 # parameter for autoregressive polynomial for AR(1)

m_1 <- 0.9 # parameter for moving average polynomial for MA(1)

sigma <- 1 # standard deviation of the innovations

y0 <- 0 # presample value for of AR(1) process

# First method: for loop

u <- rnorm(n + n_burn, mean = 0, sd = sigma) # generate one time series of innovations

y <- rep(1, n + n_burn) * y0 # initialize time series of y

for (t in (2:(n + n_burn))) # compute y_t via iteration

{

y[t] <- alpha_0 + y[t-1] * alpha_1 + u[t] + m_1 * u[t-1]

}

y <- y[(n_burn + 1):(n + n_burn)]

plot(y, type = "l", main = "Realisation of an ARMA(1,1) process", xlab = "Time")
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# Second method: arima.sim()

# using arima.sim()

yy <- arima.sim(model = list( ar = c(alpha_1), ma = c(m_1)),

n = n, innov = u[(n_burn + 1):(n_burn + n)], n.start = n_burn, start.innov = u[1:n_burn])

# plot(yy, type = "l", main = "Realisation of an ARMA(1,1) process", xlab = "Time")

lines(yy, col = "blue")

# Third method: filter():

e <- filter(u, c(1, m_1), method = "convolution", sides = 1)

yyy <- filter(e[2:length(e)], c(alpha_1), method = "recursive") # apply AR filter

yyy <- yyy[(length(yyy)-n+1): length(yyy)]

lines(yyy, col = "red")

head(cbind(y, yy, yyy))

tail(cbind(y,yy, yyy))

# ========================= End =================================================

Listing A.3: .././R code/AOE Ch2–3 ARMA11 SIM.R

A.4. Useful commands for ARMA(p, q) processes

Used in section 2.3 and before.
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R program:
################################################################################

# AOE_Ch2-3_ARMA_commands.R

################################################################################

#

# Examples for useful commands for AR, MA and ARMA processes

# 2022_05_12, RT

# The commands are illustrated for a stationary AR(2) process with parameters

alpha_0 <- 2

alpha_1 <- 0.5

alpha_2 <- 0.3

sigma_u <- 2

# Compute infinite moving average representation of a stationary AR(2) process

# command ARMAtoMA - get help by ?ARMAtoMA

AR2_rep_MA <- ARMAtoMA(ar = c(alpha_1, alpha_2), ma = 0, lag.max = 20 )

AR2_rep_MA

# Compute autocorrelation function of a stationary AR(2) process

AR2_corr <- ARMAacf(ar = c(alpha_1, alpha_2), ma = 0, lag.max = 20 )

AR2_corr

# Compute partial autocorrelation function of a stationary AR(2) process

AR2_pacf <- ARMAacf(ar = c(alpha_1, alpha_2), ma = 0, lag.max = 20, pacf = TRUE )

AR2_pacf

# Simulate / generate realzation of the AR(2) process with Gaussian white noise and 100 observations

# Alternatives to simulations: the filter command or a for loop as in AOE_Ch2_ARMA11_SIM

set.seed(131411)
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y <- arima.sim(model = list(ar = c(alpha_1, alpha_2), ma = 0), n = 100, rand.gen = rnorm, sd = sigma_u)

plot(y)

Listing A.4: .././R code/AOE Ch2–3 ARMA commands.R

A.5. Generate finite-sample distribution of OLS estimator

for a stationary AR(1) process

Used in section 2.5.1

R program:
################################################################################

# AOE_Ch2-5_bias_skewness_ar1.R

################################################################################

# Simulate 10000 replications of an AR(1) process with alpha and

# n observations to show how the density of the OLS estimator is skewed and

# biased given a small sample size.

alpha <- 0.8 # AR parameter

n <- 30 # sample size

n_burn <- 120 # burn-in observations

set.seed(424) # seed value

print_pdf <- 0 # 1 = save plot as PDF, 0 = no
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# Generate all AR realisations at once

Y <- replicate(10000, filter( rnorm(n + n_burn), alpha, "recursive"))

# Extract sample

Y <- Y[(n_burn + 1):(n_burn + n),]

# Estimate alpha by ols

alpha_hat <- apply(Y, 2, function(x) ar.ols(x,

aic = FALSE, order.max = 1, demean = FALSE)$ar)

# Compute densities and highest value of density

dens <- density(alpha_hat)

dens.max <- max(dens$y)

# Produce plots of densities

if (print_pdf) pdf(file = "Density_OLS_AR1_08.pdf", width = 16, height = 9)

plot(dens, xlim = c(0, 1.1), ylim = c(0, dens.max),

main = "Density of OLS estimator (true alpha = 0.8) and normal density",

xlab = "alpha_hat", bty = "l")

x = seq(0, 1.1, length = 2000)

y = dnorm(x, mean = mean(alpha_hat), sd=sd(alpha_hat))

points(x, y, type = "l", lwd = 2, col = "red")

legend("topright", lty = 1, lwd = 3, bty = "n",

legend = c("Finite-sample distribution", "Normal distribution" ),

cex = 1.5, col = c(1,2))

text(x = 0, y = dens.max, labels = paste("Sample Size = ", n,

"\nMean = ", mean(alpha_hat),

"\nVariance = ", var(alpha_hat),

sep = ""), adj = c(0,1), cex = 1.5)
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if (print_pdf) dev.off()

# ========================= End ==============================================

Listing A.5: .././R code/AOE Ch2–5 bias skewness AR1.R

A.6. Generate Dickey-Fuller distribution

Used in section 2.5.1.

R program:
################################################################################

# AOE_Ch2-5_df_distribution

################################################################################

# Finite-sample distribution of the OLS estimator for an AR1 process

# in case of a random walk vs. normal distribution.

# Simulate 10000 replications of an AR(1) process with alpha = 1 and

# 100 observations.

# 2023_04_12, RT

n <- 100 # sample size

# generate all AR(1) realisation at once

set.seed(424)

print_pdf <- 0 # 1 = save plot as PDF, 0 = no

Y <- replicate(10000, filter( rnorm(n), 1, "recursive"))
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# Estimate alpha by ols

alpha_hat <- apply(Y, 2, function(x) ar.ols(x, aic = FALSE,

order.max = 1, demean = FALSE)$ar)

# Compute density and highest value of density

alpha_hat.std <- (alpha_hat - 1 ) * n

dens <- density(alpha_hat.std)

dens.max <- max(dens$y)

if (print_pdf) pdf(file = "Density_OLS_AR1_1.pdf", width = 16, height = 9)

plot(dens, xlim = c(-10, 10), ylim = c(0, dens.max),

main = paste0("Density of standardized of ", n,

" *(hat alpha - 1) and normal density"),

xlab = paste0(n, " *(hat alpha - 1)"), bty = "l")

x = seq(-10, +10, length = 2000)

y = dnorm(x, mean = 0, sd = sd(alpha_hat.std))

points(x, y, type = "l", lwd = 2, col = "red")

legend("topright", lty = 1, lwd = 3, bty = "n",

legend = c("standardized and scaled \nOLS estimator",

"Normal distribution" ), cex = 1.5, col = c(1,2))

text(x = -10, y = dens.max, labels = paste("True alpha = 1 \nSample size = ", n,

"\nMean of hat alpha = ", mean(alpha_hat),

"\nVariance of hat alpha = ", var(alpha_hat),

sep = ""),

adj = c(0,1), cex = 1.5)

if (print_pdf) dev.off()

# ========================= End ==============================================
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Listing A.6: .././R code/AOE Ch2–5 df distribution.R

A.7. Power of ADF test

Used in section 4.1.2.

R program:
# ======================== AOE_Ch4_MC_DF_H_0_H_1.R ==============================

# Program for conducting Monte Carlo simulation to obtain densities of

# t statistic that is used in the Augmented Dickey-Fuller test where

# a AR(2) process is used as DGP:

# Under H_0 the AR(2) process has a unit root.

# Under H_1 the AR(2) process is stable where a specific DGP is used,

# see below.

# No deterministic terms are included.

# If one chooses T_obs, the sample size, large, then the Dickey-Fuller

# distribution under H_0 is well approximated. This can be seen by

# comparing the critical value obtained from the Monte Carlo distribution

# and the asymptotic critical value delivered by the ur.df() command.

# Furthermore, the size under H_0 and the power under the specific H_1

# is reported.

#

# Note: under H_0, the density is always skewed while

# under H_1 it is (asymptotically) symmetric as it is asymptotically
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# normal

# created by: RT, 2022_06_23, 2023_04_12 (added: library(urca))

# rm(list = ls()) # clear workspace

dev.off() # close all open graphic windows

if (!require(urca)) install.packages("urca")

library(urca)

print_pdf <- 1 # 1 = save plot as PDF, 0 = no

set.seed(26062011)

ar2_H0 <- c(0.6, 0.4) # AR(2) parameters under H_0

ar2_H1 <- c(0.6, 0.3) # AR(2) parameters under H_1

sigma_sq <- 5 # white noise variance

T_obs <- 50 # number of observations

# specify ADF equation

df_type <- "none" # kind of deterministic terms

# "none", "drift", "trend"

df_lags <- 1 # lag order in ADF equation

# therefore an AR(df_lags + 1)

# is modelled for the level series

reps <- 10000 # number of replications in Monte Carlo simulation

# ---- distribution of t statistic under H_0:

# generate AR(2) with unit root and without drift

# generate reps realizations of AR(2) under H_0
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Y.obs.H0 <- replicate(reps,

filter( rnorm(T_obs, mean = 0, sd = sqrt( sigma_sq )),

filter = ar2_H0, method = "recursive" ))

# compute t statistic for each realization using correct lag specification

# ur.df estimates ADF test equation and returns t statistic for y_{t-1}

ADF.A.obs.H0 <- apply(Y.obs.H0, 2, function(x) ur.df(x, type = df_type,

lags = df_lags, selectlags = "Fixed")@teststat[1])

# obtain critical value for given sample size

crit_val_H0_T <- quantile(ADF.A.obs.H0, probs = c(0.01, 0.05, 0.1))

# obtain asymptotic critical values

crit_val_H0_as <- ur.df(Y.obs.H0[ ,1], type = df_type, lags = df_lags,

selectlags = "Fixed")@cval[1,]

# ---- distribution of t statistic under one possible H_1:

# generate stable AR(2)

# generate reps realizations of AR(2) under H_1

Y.obs.H1 <- replicate(reps,

filter( rnorm(T_obs, mean = 0, sd = sqrt( sigma_sq )),

filter = ar2_H1, method = "recursive" ))

# compute t statistic for each realization using correct lag specification

# ur.df estimates ADF test equation and returns t statistic for y_{t-1}

ADF.A.obs.H1 <- apply(Y.obs.H1, 2, function(x) ur.df(x, type = df_type,

lags = df_lags, selectlags = "Fixed")@teststat[1])

# plot densities based on reps realizations under H_0 and specific coice of H_1

# use default density estimator R

ADF.A.obs.H0.den <- density(ADF.A.obs.H0)

ADF.A.obs.H1.den <- density(ADF.A.obs.H1)
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# obtain ranges of x and density values

xlim <- range(ADF.A.obs.H0.den$x, ADF.A.obs.H1.den$x)
ylim <- range(ADF.A.obs.H0.den$y, ADF.A.obs.H1.den$y)

# plot densities

if (print_pdf) pdf(paste0("ADF_dens_H_0_H_1_T", T_obs,"_", df_type, ".pdf"))

plot(ADF.A.obs.H0.den, xlim = xlim, ylim = ylim,

main = paste0("DGP: AR(2) processes, sample size: ", T_obs),

ylab = "Densities",

xlab = paste0("t statistic of ADF test, type = ", df_type,

", lag order in levels = ", df_lags + 1))

lines(density(ADF.A.obs.H1), col = "blue")

abline(v = 0)

# draw vertical line without arrow heads to indicate

# finite sample 5%-critical value

arrows(x0 = crit_val_H0_T[2], y0 = -1, x1 = crit_val_H0_T[2], y1 = 0.6*ylim[2],

length = 0, col = "green")

text(crit_val_H0_T[2], 0.7*ylim[2],

labels = paste0("crit. value for T = ", T_obs), col = "green")

# asymptotic 5%-critical value

arrows(x0 = crit_val_H0_as[2], y0 = -1, x1 = crit_val_H0_as[2], y1 = 0.6*ylim[2],

length = 0, col = "red")

text(crit_val_H0_as[2], 0.5*ylim[2],

labels = "asym. crit. value", col = "red")

# power under specific H_1

text(xlim[1], 0.3*ylim[2], pos = 4,

labels = paste0("Power for specific H_1 (asym.crit.val.): ", mean(ADF.A.obs.H1 < crit_val_H0_as[2])

))

# legend with AR(2) parameters
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legend("topright", legend = c(bquote(under ~ H[0]: ~ alpha[1] ~ "=" ~ .(ar2_H0[1]) ~

"," ~ alpha[2] ~ "=" ~ .(ar2_H0[2])),

bquote(under ~ H[1]: ~ alpha[1] ~ "=" ~ .(ar2_H1[1]) ~

"," ~ alpha[2] ~ "=" ~ .(ar2_H1[2]))),

lty = 1,

col = c("black", "blue"),

bty = "n")

if (print_pdf) dev.off()

# 5% critical value

crit_val_H0_as[2]

# compute size of ADF test using asymptotic critical value

mean(ADF.A.obs.H0 < crit_val_H0_as[2])

# compute power for given DGP under H_1

mean(ADF.A.obs.H1 < crit_val_H0_as[2])

Listing A.7: .././R code/AOE Ch4 MC DF H 0 H 1.R

A.8. AR(1)-GARCH(1,1) process: generation and

estimation

Used in section 5.1.

R program:
################################################################################



Applied Financial Econometrics — A.8. AR(1)-GARCH(1,1) process: generation and estimation — U Regensburg — April

2023 — 241

# AOE_Ch5-8_R-Code_AR_GARCH_block_sim.R

################################################################################

# Simulation of one realizsation of

# AR(1)-(G)ARCH processes and one-step and two-step estimation

# to compare standard errors for conditional mean estimation

# RT, 2022_07_10

library(dynlm)

library(rugarch)

set.seed(1414132)

T <- 1e3 # number of observations for 1e6 it takes quite long

ar.1 <- 0.3 # AR_1 parameter

gamma.0 <- 2

gamma.1 <- 0.3

beta.1 <- 0.6

m <- 1

n <- 1

plot.yes <-0

### Generate GARCH errors

# for ARCH processes fourth moment exists up to gamma.1 < sqrt(1/3) = 0.577

# for GARCH processes fourth moment exists up to e.g. gamma.1 <= 0.3,

# beta.1 <= 0.6

# unconditional variance (under the assumption of stationarity)

sigma.sq <- gamma.0 / (1 - gamma.1 - beta.1)

sigma.t.sq <- numeric(T)

xi <- rnorm(T)

u <- numeric(T)
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# starting value of process u (variance set to unconditional variance)

u.0 <- sqrt( sigma.sq ) * rnorm(1)

# computing conditional variance and realization of u for period 1

sigma.t.sq[1] <- gamma.0 + gamma.1 * u.0^2 + beta.1 * sigma.sq

u[1] <- sqrt( sigma.t.sq[1] ) * xi[1]

# computing conditional variance and u for all following periods

for(t in 2:T){

sigma.t.sq[t] <- gamma.0 + gamma.1 * u[t-1]^2 + beta.1 * sigma.t.sq[t-1]

u[t] <- sqrt( sigma.t.sq[t] ) * xi[t]

}

# plot u and its conditional variance

# par( mfrow =c(2,1))

if (plot.yes) ts.plot(u)

if (plot.yes) ts.plot(sigma.t.sq)

# theoretical fourth moment

if (plot.yes) ts.plot(u^4)

( m.4 <- (3 * gamma.0^2 * (1 + gamma.1 + beta.1)) /

((1 - gamma.1 - beta.1) * (1 - beta.1^2 - 2 * gamma.1 * beta.1 - 3 * gamma.1^2)) )

# compute fourth moment by mean estimator

# this, however, does not seem to work well if fourth moment is very large.

mean(u^4)

### Generate AR1-GARCH process

y <- filter(u, filter = ar.1, method = "recursive")

## Two-step estimation

# 1. OLS estimator of AR(1) model
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if (plot.yes) ts.plot(y)

y_ar1_lm <- dynlm(y ~ L(y))

summary(y_ar1_lm)

# 2 GARCH estimation based on residuals

u_hat <- residuals(y_ar1_lm)

mean <- FALSE # since residuals are used and constant in AR(1) model

res_ugarch_spec <- ugarchspec(variance.model = list(garchOrder = c(m,n)),

mean.model = list(armaOrder = c(0,0),

include.mean = mean ))

res_ugarch_fit <- ugarchfit(spec = res_ugarch_spec, # specification

data = u_hat, # time series

solver.control=list(trace = 0),

solver = "hybrid")

res_ugarch_fit

## One-step estimation using ML

# specify ARMA(p,q)-GARCH(m,n) model for series_to_check assuming normality

print("Estimate AR(1)-GARCH model using normal errors")

mean <- TRUE # since residuals are used

ugarch_spec <- ugarchspec(variance.model = list(garchOrder = c(m,n)),

mean.model = list(armaOrder = c(1,0),

include.mean = mean ))

ugarch_fit <- ugarchfit(spec = ugarch_spec, # specification

data = y, # time series
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solver.control=list(trace = 0),

solver = "hybrid")

ugarch_fit

### Comparison

# one-step

ugarch_fit@fit$coef
ugarch_fit@fit$se.coef

# two-step

summary(y_ar1_lm)

res_ugarch_fit@fit$coef
res_ugarch_fit@fit$se.coef

### ARCH-LM test

u_hat_sq <- u_hat^2

u_hat_sq_lm <- dynlm(u_hat_sq ~ L(u_hat_sq, 1:5))

summary(u_hat_sq_lm)

Listing A.8: .././R code/AOE Ch5–8 R–Code AR GARCH block sim.R

A.9. Empirical example

Used in sections 2.5.1, 5.8 and throughout the course.
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R program:
################################################################################

# Series_to_check_complete_2023.R

################################################################################

# R program accompanying the course "Applied Financial Econometrics"

# at the Universität Regensburg

# Task: Analysis of univariate time series data using two examples:

# - monthly data of the S&P 500 index of Robert Shiller

# - daily stock prices taken from Yahoo - Finance

# and possible transformations.

# Modelling steps:

# 1) Unit root testing and specifying deterministic trends,

# 2) Specifying and estimating the conditional mean function

# 3) Residual diagnostics

# 4) Specifying and estimating the conditional volatility function if needed

# 5) Diagnostics of standardized residuals if needed

# 6) Out-of-sample predictions

#

# written by Rolf Tschernig (RT) with parts by Stefan Rameseder (SR)

# Version: 2017-08-02, 2017-08-04 (kurtosis() corrected in lines 406 and 431),

# 2018-04-19, 2020-05-09 (corrections in text), 2021-04-15 (Shiller data as of 2021),

# 2022-04-28 (Shiller data as of 2022)

# 2022-06-19 predictions corrected: ar() replaced by ar.ols() and n_pred adjusted

# 2023-04-13 Shiller data updated, AR lags set to 5

#

# Notes:

# Mac-User have to install XQuartz if the package rugarch is used, see

# https://ftp.gwdg.de/pub/misc/cran/

# and

# https://www.xquartz.org/
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################################################################################

# Function SelectCritEviews

################################################################################

# Function to compute model selection criteria like in EViews

# RT, 2011_01_26, 2017_05_18

SelectCritEviews <- function(model)

{

n <- length(model$residuals)
k <- length(model$coefficients)
fitmeasure <- -2*logLik(model)/n

aic <- fitmeasure + k * 2/n

hq <- fitmeasure + k * 2*log(log(n))/n

sc <- fitmeasure + k * log(n)/n

sellist <- list(aic=aic[1],hq=hq[1],sc=sc[1])

return(t(sellist))

}

################################################################################

# End Function SelectCritEviews

################################################################################

################################################################################

# Function ARCH.LM

################################################################################

# Function to compute ARCH-LM Test

# SR, RT, 2017_07_26
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ARCH.LM <- function(residuals,q_ARCH){

res_sq <- ts(residuals)^2

r_squared <- summary(dynlm(res_sq ~ 1 + L(res_sq, 1:q_ARCH)))$r.squared
test_stat <- length(res_sq) * r_squared # T * R^2 which is chi^2(q_ARCH) distributed

p_value <- 1 - pchisq(test_stat, df=q_ARCH)

print(paste0("ARCH-LM test statistic: ",round(test_stat,4), ", p value: ", p_value))

result_list <- list(test_stat=test_stat, p_value=p_value)

return(result_list)

}

################################################################################

# End Function ARCH.LM

################################################################################

################################################################################

# Main program

################################################################################

# ----------------------------------------------------------------------------

# Specify parameters for analysis

# ----------------------------------------------------------------------------

# set working directory

#setwd("....") # fill in .... or use in RStudio:

# Session -> Set Working Directory

data_source <- "yahoo" # must be: "Shiller", "yahoo"

# Notes:

# for "yahoo" you need an internet connection;
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# for "Shiller" you need to set the working

# directoryto the directory where the Excel data are

inst_yahoo <- "bmw.de" # see finance.yahoo.de

start_yahoo <- "2001-01-13" # date on which series starts

series_yahoo <- "Close" # name of series to analyse; note Adj.Close not always avaialble

Shiller_series<- "RealPrice"

# available are: SPCompPrice", "Dividend", "Earnings",

# "CPI", "DateFraction", "LongInterest",

# "RealPrice", "RealDividend",

# "RealTotalReturnPrice", "RealEarnings",

# "RealScaledEarnings", "P/E10"

transformdata = "log" # must be: level, diff, log, or difflog

# used in ur.df (urca package):

adf_determ <- "trend" # choose: "none", "drift", "trend"

adf_maxlags <- 10 # maximal number of lags in lag selction in ADF testing

adf_selcrit <- "BIC" # lag selection criterion: "AIC", "BIC"

# if "Fixed" adf_maxlags determines AR order of test equation

p <- 5 # AR order

q <- 0 # MA order - currently only 0 allowed

# except for ARMA(p,q)-GARCH(m,n) model

ACF_num_lags <- 35 # number of lags for Box-Pierce / Ljung/Box statistic

q_ARCH <- 5 # order for ARCH-LM test

m <- 1 # ARCH order

n <- 1 # GARCH order
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# parameters for prediction

# for Shiller data

# subperiod for estimation

subperest_beg <- NULL # used for ts object with window comannd, e.g. c(2010,1)

subperest_end <- c(2015,11) # used for ts object with window comannd, e.g. c(2017,1)

# subperiod for prediction

subperfor_end <- c(2023,2)

# for yahoo data

n_est_ratio <- 0.99 # ratio of number of observations used for estimation

# for out-of-sample prediction, 0<. < 1

h_pred <- 12 # number of horizons for prediction

# ----------------------------------------------------------------------------

# load and check data, create zoo and time series objects

# ----------------------------------------------------------------------------

if (!require(zoo)) install.packages("zoo") # requires library zoo

library(zoo)

if (!require(tseries)) install.packages("tseries") # requires library zoo

library(tseries)

# ------------ Shiller data

if (data_source=="Shiller"){
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# use pacakge "readxl" that does not need Java

# it returns a data format "tibble" that the command

# "data.frame" turns into a dataframe

if (!require(readxl)) install.packages("readxl")

library(readxl)

ie_data <- data.frame(

read_excel(path="Data/ie_data_2023_04_10.xls",

range="Data!B9:M1834",

col_names=c("SPCompPrice", "Dividend", "Earnings",

"CPI", "DateFraction", "LongInterest",

"RealPrice", "RealDividend",

"RealTotalReturnPrice", "RealEarnings",

"RealScaledEarnings", "P/E10")))

# ie_data <- data.frame(

# read_excel(path="Data/ie_data_2021_04_12.xls",

# range="Data!B9:M1812",

# col_names=c("SPCompPrice", "Dividend", "Earnings",

# "CPI", "DateFraction", "LongInterest",

# "RealPrice", "RealDividend",

# "RealTotalReturnPrice", "RealEarnings",

# "RealScaledEarnings", "P/E10")))

#ie_data <- data.frame(read_excel(path="ie_data_2017_05_04.xls",

# range="Data!H9:K1764",col_names=FALSE))

#names(ie_data) <- c("REAL_PRICE","REAL_DIV","REAL_EARN","P/E10")

head(ie_data)

tail(ie_data)
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# create ts object

# Note that ts cannot handle missing values. This requires library zoo

ie_data_ts <- ts(ie_data, start = c(1871, 1), frequency = 12)

ie_data_zoo <- zoo(ie_data_ts)

series_to_check_all_ts <- window(ie_data_ts[,Shiller_series], start=NULL, end=NULL)

series_to_check_all_zoo <- window(ie_data_zoo[,Shiller_series, drop=FALSE],

start=NULL, end=NULL)

# drop=FALSE keeps series_to_check_all_zoo as

# a matrix object and stores therefore also the

# the series name

# write data in ascii file that can be read by JMulTi

write("/* Shiller S&P 500 data, downloaded from http://www.econ.yale.edu/~shiller/ */", file="Data/data_

Shiller_jmulti.dat")

write("<1871 Q1>", file="data_Shiller_jmulti.dat", append=TRUE)

write(Shiller_series, file="data_Shiller_jmulti.dat", append=TRUE)

write(as.vector(series_to_check_all_zoo), file="data_Shiller_jmulti.dat", ncolumns=1, append=TRUE )

} else if (data_source=="yahoo"){

# ------------ daily stock price data

# if from yahoo: one may use get.hist.quote from library(tseries)

stock_data_zoo <- get.hist.quote(instrument = inst_yahoo, start = start_yahoo) # note help for choice of

instrument

# alternatively via downloaded xls-File

## stock_data <- data.frame(read_excel(path="bmw.de.xlsx",range="Tabelle1!A1:F4095",na="null",col_

names=TRUE))

# NA are coded as null in the excel sheet
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# create zoo object; requires to change date format from POSIX to Date such that

# extraction of subperiods in prediction section works

## stock_data_zoo <- zoo(x=stock_data[,-1],order.by=as.Date(stock_data[,1]))

head(stock_data_zoo)

tail(stock_data_zoo)

stock_data_naomit_zoo <- na.omit(stock_data_zoo) # eliminate all rows which contain NAs

# select univariate series that does not contain missing values

series_to_check_all_zoo <- stock_data_naomit_zoo[,series_yahoo]

# write data in ascii file that can be read by JMulTi

write("/* daily stock data from yahoo finance ", file="data_yahoo_jmulti.dat")

write(paste0("Beginn: ", time(series_to_check_all_zoo)[1],

", End: ", time(series_to_check_all_zoo)[length(series_to_check_all_zoo)], " */"),

file="data_yahoo_jmulti.dat", append=TRUE)

write("<1>", file="data_yahoo_jmulti.dat", append=TRUE)

write("Close", file="data_yahoo_jmulti.dat", append=TRUE)

write(as.vector(series_to_check_all_zoo), file="data_yahoo_jmulti.dat", ncolumns=1, append=TRUE )

# compute ts object that is occasionally needed

series_to_check_all_ts <- ts(series_to_check_all_zoo)

}

print("Check data before your analysis\n")

head(series_to_check_all_zoo)

head(series_to_check_all_ts)

tail(series_to_check_all_zoo)

tail(series_to_check_all_ts)
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# transform data if desired

if (transformdata=="level"){

series_to_check_zoo <- series_to_check_all_zoo

series_to_check_ts <- series_to_check_all_ts

} else if (transformdata=="diff"){

series_to_check_zoo <- diff(series_to_check_all_zoo,lag=1)

series_to_check_ts <- diff(series_to_check_all_ts,lag=1)

} else if (transformdata=="log"){

series_to_check_zoo <- log(series_to_check_all_zoo)

series_to_check_ts <- log(series_to_check_all_ts)

} else if (transformdata=="difflog"){

series_to_check_zoo <- diff(log(series_to_check_all_zoo),lag=1)

series_to_check_ts <- diff(log(series_to_check_all_ts),lag=1)

} else {

print("transformdata has to be level, diff, log, or difflog")

}

nobs <- length(series_to_check_zoo)

# ----------------------------------------------------------------------------

# Plot time series

# ----------------------------------------------------------------------------

plot.zoo(series_to_check_zoo, xlab = "Time",

ylab = paste(names(series_to_check_zoo),

", data transformation: ", transformdata),

main = paste0("Data source: ",data_source) )

plot.ts(series_to_check_ts, xlab = "Time",

main = paste0("Data source: ",data_source) )
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# ----------------------------------------------------------------------------

# 1. Unit Root Tests

# ----------------------------------------------------------------------------

# There are several R packages for conducting unit root tests, among them:

# urca, tseries, aTSA

# In the following the ADF test is carried out with all three packages as they

# differ with respect to the output they provide.

# All three packages also contain commands for the Phillips-Perron test

# (urca::ur.pp, tseries::pp.test, aTSA::pp.test)

# and the Kwiatkowski-Phillips-Schmidt-Shin test

# (urca::ur.kpss, tseries::kpss.test, aTSA:: kpss.test )

# but the urca package also contains further unit root tests

# ADF test

# 1) using package urca

if (!require(urca)) install.packages("urca")

library(urca)

# note that for all estimations only n-lags (=lag.max) observations are used.

# Thus, changing lags typically changes the test statistic due to changing DF.

series_to_check.adf <- ur.df(series_to_check_zoo, type = adf_determ,

lags = adf_maxlags, selectlags = adf_selcrit)

summary(series_to_check.adf)

length(series_to_check.adf@testreg$aliased) # number of estimated parameters in test reqression

# 2) using package tseries

# provides p-value, only available for det+trend!

# alternative = "stationary" corresponds to alpha<1,
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# "explosive" corresponds to H_1: alpha>1

# also note: if test statistics differs from ur.df, then this is because a

# differing number of observations used in the estimation due to lag selection

# in the ur.df case.

if (adf_determ=="trend"){

# compute p value using different package

print("Note that test statistic may slightly differ from the one that includes lag selection

due to different number of initial values used in test regression")

print(summary(ur.df(series_to_check_zoo, type = adf_determ, lags = p-1, selectlags = "Fixed")))

tseries::adf.test(series_to_check_zoo, alternative="stationary",k=p-1)

}

# 3) using package aTSA

# includes adf.test() which provides p-values

# for all combinations of lag and trend specifications up to

# maximum lag either computed by default or given by the user

# added 2020_05_09, RT

if (!require(aTSA)) install.packages("aTSA")

library(aTSA)

aTSA::adf.test(as.vector(series_to_check_zoo)) #, nlag = adf_maxlags, output = TRUE)

# ----------------------------------------------------------------------------

# AR estimation with different methods

# ----------------------------------------------------------------------------

# ------------------------ autoregressions with ts objects ------------------
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# A) with standard lm command with ts object and ts.intersect

# ts.intersect does not work for zoo object

# 1) using lm command illustrated for an AR(2)

series_to_check_ar2_lm <- lm(y ~ y.l1 + y.l2, data =

ts.intersect(y = series_to_check_ts,

y.l1 = lag(series_to_check_ts,-1),

y.l2 = lag(series_to_check_ts,-2)))

summary(series_to_check_ar2_lm)

series_to_check_ar2_res <- series_to_check_ar2_lm$residuals
plot(series_to_check_ar2_res, type = "l", main = "Residuals of AR(2) model")

# 2) with ar or ar.ols or arma command - requires ts object,

# zoo object does not work

# AR(p)

(series_to_check_ar <- ar.ols(series_to_check_ts, order.max = p,

aic = FALSE, deman = FALSE, intercept = TRUE))

sqrt(series_to_check_ar$var.pred) # shows standard error of AR regression

sort(abs( polyroot(c(1, - series_to_check_ar$ar)) )) # check roots

series_to_check_ar_res <- series_to_check_ar$resid
# define residuals of autoregression

# ------------------------ autoregressions with zoo or ts objects ------------------

# B) with dynlm library

# Note (from help of dynlm):

# d(x, k) is diff(x, lag = k) and L(x, k) is lag(x, lag = -k),

# note the difference in sign.
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# The default for k is in both cases 1.

# For L(), it can also be vector-valued, e.g., y ~ L(y, 1:4).

if (!require(dynlm)) install.packages("dynlm")

library(dynlm)

series_to_check_dynlm <- dynlm(series_to_check_zoo ~ L(series_to_check_zoo,1:p) )

summary(series_to_check_dynlm)

# compute model selection criteria

# equation numbers below refer to handout "Methoden der Ökonometrie"

extractAIC(series_to_check_dynlm) # uses (10.4) multiplied by n

if (!require(MASS)) install.packages("MASS") # required for stepAiC

stepAIC(series_to_check_dynlm) # as extractAIC

AIC(series_to_check_dynlm) # uses (10.10)

SelectCritEviews(series_to_check_dynlm) # uses (10.4)

# check stability of AR polynomial

abs( polyroot(c(1, - coef(series_to_check_dynlm)[2:(p+1)])) )

# plot residuals

series_to_check_dynlm_res <- series_to_check_dynlm$residuals
plot(series_to_check_dynlm_res, xlab = "Time")

# ----------------------------------------------------------------------------

# Diagnostics of residuals

# ----------------------------------------------------------------------------

# Residuals
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# plot standardized residuals

plot((series_to_check_dynlm_res - mean(series_to_check_dynlm_res)) /

sd(series_to_check_dynlm_res) , xlab = "Time")

abline(h = 1.96, col = "gray", lty = 2)

abline(h = -1.96, col = "gray", lty = 2)

# plot autocorrelation funcion

acf(ts(series_to_check_dynlm_res), type = "correlation",

na.action = na.omit) # acf() requires ts object,

# missing values are excluded

if (ACF_num_lags <= (p + q)){

print("Number of lags for ACF tests has to be larger than (p+q)")

} else {

# compute Box-Pierce statistic

print(Box.test(series_to_check_dynlm_res, lag = ACF_num_lags, type = "Box-Pierce",

fitdf = p+q))

# print() needed since command Box.test within else condition

# compute Ljung-Box statistics

print(Box.test(series_to_check_dynlm_res, lag = ACF_num_lags, type = "Ljung-Box",

fitdf = p+q))

# compute LM test

dynlm_res_lm_test <- dynlm(series_to_check_dynlm_res ~

L(series_to_check_zoo, 1:5)

+ L(series_to_check_dynlm_res, 1:ACF_num_lags ))

print(paste("LM statistic: ",

LM_statistic <- summary(dynlm_res_lm_test)$r.squared * nobs) )
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print(paste("p-value: ",1-pchisq(LM_statistic, df = ACF_num_lags)) )

print(paste("critical value at 5%: ", qchisq(0.95, df = ACF_num_lags)) )

# compute Lomnicki-Jarque-Bera test, requires package moments

if (!require(moments)) install.packages("moments")

library(moments)

jarque.test(na.omit(as.vector(series_to_check_dynlm_res)))

# alternative package for using Jarque-Bera test

# if (!require(fBasics)) install.packages("fBasics")

# library(fBasics)

# jarqueberaTest(na.omit(ts(series_to_check_dynlm_res)))

}

# RESET test

# Note resettest() of package lmtest only works with standard lm objects,

# with dynlm objects

# Squared residuals

# plot acf of squared residuals

plot(series_to_check_dynlm_res^2, xlab = "Time")

# plot autocorrelation funcion of squared residuals

acf(ts(series_to_check_dynlm_res)^2, na.action = na.omit)

# ARCH-LM test

result_ARCH_LM <- ARCH.LM(series_to_check_dynlm_res, q_ARCH)

# ----------------------------------------------------------------------------
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# Dynamic Regression Models

# ----------------------------------------------------------------------------

# estimate time series with deterministic trend if level/log data

if ((transformdata == "level") || (transformdata == "log")){

dyn_reg_mod_dynlm <- dynlm(series_to_check_zoo

~ 1 + trend(series_to_check_zoo)

+ L(series_to_check_zoo,1:p)

)

summary(dyn_reg_mod_dynlm)

# check stability of AR polynomial

abs( polyroot(c(1, - coef(dyn_reg_mod_dynlm)[3:(p+2)])) )

# plot residuals

dyn_reg_mod_dynlm_res <- dyn_reg_mod_dynlm$residuals
plot(dyn_reg_mod_dynlm_res, xlab = "Time")

"how do you interpret the results? "

"Take into account your results of the unit root tests."

}

# ----------------------------------------------------------------------------

# GARCH models

# ----------------------------------------------------------------------------

# estimation methods in libraries:

# - rugarch (encompasses many different GARCH variants),

# - fGarch (more restricted, so code commented out)
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# if (!require(fGarch)) install.packages("fGarch")

# library(fGarch)

# # run GARCH(1,1) for residuals

# garchFit(~garch(1,1), data=na.omit(series_to_check_dynlm_res))

#

# # run AR(p)-GARCH(m,n) for levels

# AR_GARCH <- garchFit(AR2GARCH11 ~arma(2,0)+garch(1,1),data=series_to_check_zoo)

# res_stand_AR_GARCH <- AR_GARCH@residuals / sqrt(AR_GARCH@h.t)

# plot( res_stand_AR_GARCH ,type="l") # plot standardized residuals

#

# jarqueberaTest(res_stand_AR_GARCH) # for using Jarque-Bera-Test

#

# plot(rnorm(length(res_stand_AR_GARCH)),type="l")

# plot standard normal noise for comparison

if (!require(rugarch)) install.packages("rugarch")

library(rugarch)

# specify ARMA(0,0)-GARCH(m,n) model for residuals

mean <- FALSE # since residuals are used

res_ugarch_spec <- ugarchspec(variance.model = list(garchOrder = c(m,n)),

mean.model = list(armaOrder = c(0,0),

include.mean = mean ))

res_ugarch_fit <- ugarchfit(spec = res_ugarch_spec, # specification

data = series_to_check_dynlm_res, # time series

solver.control=list(trace = 0),

solver = "hybrid")
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res_ugarch_fit

# specify ARMA(p,q)-GARCH(m,n) model for series_to_check assuming normality

print("Estimate ARMA-GARCH model using normal errors")

mean <- TRUE # since residuals are used

ugarch_spec <- ugarchspec(variance.model = list(garchOrder = c(m,n)),

mean.model = list(armaOrder = c(p,q),

include.mean = mean ))

ugarch_fit <- ugarchfit(spec = ugarch_spec, # specification

data = series_to_check_zoo, # time series

solver.control=list(trace = 0),

solver = "hybrid")

ugarch_fit

GARCH_res_std <- ugarch_fit@fit$z
# identical to ugarch_fit@fit$residuals/ugarch_fit@fit$sigma

plot(GARCH_res_std, type = "l")

plot(density(GARCH_res_std))

plot.function(dnorm, from = -6, to = 6, col = "red")

lines(density(GARCH_res_std))

print( paste("Estimated kurtosis", kurtosis(GARCH_res_std)) )

# kurtosis() of package moments

# specify ARMA(p,q)-GARCH(m,n) model for series_to_check assuming t-distributed errors

print("Estimate ARMA-GARCH model with t-distributed errors")

mean <- TRUE # since residuals are used

tdist_ugarch_spec <- ugarchspec(variance.model = list(garchOrder = c(m,n)),
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mean.model = list(armaOrder = c(p,q), include.mean = mean ),

distribution.model = "std")

tdist_ugarch_fit <- ugarchfit(spec = tdist_ugarch_spec, # specification

data = series_to_check_zoo, # time series

solver.control=list(trace = 0),

solver = "hybrid")

tdist_ugarch_fit

# compute and plot standardized residuals

GARCH_tdist_res_std <- tdist_ugarch_fit@fit$residuals/tdist_ugarch_fit@fit$sigma
# identical to std_ugarch_fit@fit$z

plot(GARCH_tdist_res_std,type="l", xlab = "Time", main = "Standardized Residuals")

# plot standard normal noise for comparison

plot(rnorm(length(GARCH_tdist_res_std)), type = "l",

main = "Standardized Normal Variables")

# compute kurtosis of standardized residuals

kap <- kurtosis(GARCH_tdist_res_std) # kurtosis() of package moments

# compute kurtosis implied by t distribution using estimated deg. of freedom

shape <- tdist_ugarch_fit@fit$coef[length(tdist_ugarch_fit@fit$coef)]
kap_t_dist <- 3*(shape-2)/(shape-4)

print(paste("Estimated kurtosis",kap))

print(paste0("Kurtosis implied by t distr.: ",kap_t_dist))

print(paste0("Est. degrees of freedom of t distr.: ",shape))

# ----------------------------------------------------------------------------
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# Diagnostics of standardized GARCH residuals with assumed t distribution

# ----------------------------------------------------------------------------

# Residuals

print("Check standardized residuals of ARMA-GARCH model with t-distributed errors:")

if (ACF_num_lags<=(p+q)){

print("Number of lags for ACF tests has to be larger than (p+q)")

}

# plot autocorrelation funcion

acf(ts(GARCH_tdist_res_std), na.action = na.omit) # requires ts object,

# compute Box-Pierce statistic

Box.test(GARCH_tdist_res_std, lag = ACF_num_lags, type = "Box-Pierce",

fitdf = p+q)

# Compute Ljung-Box statistics

Box.test(GARCH_tdist_res_std, lag = ACF_num_lags, type = "Ljung-Box", fitdf = p+q)

# Lomnicki-Jarque-Bera test

jarque.test(na.omit(as.vector(GARCH_tdist_res_std))) # for using Jarque-Bera test

print("Note: Jarque-Bera test should reject when shape parameter is small")

# Squared residuals

# plot acf of squared residuals

plot(GARCH_tdist_res_std^2, type = "l")

# plot autocorrelation funcion of squared residuals
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acf(ts(GARCH_tdist_res_std)^2, na.action = na.omit)

# compute ARCH-LM test

GARCH_tdist_results_ARCH_LM <- ARCH.LM(GARCH_tdist_res_std, q_ARCH)

# ----------------------------------------------------------------------------

# Prediction with AR and ARIMA models

# ----------------------------------------------------------------------------

if (data_source=="Shiller"){

# compute first month for prediction horizon

if (subperest_end[2]<12) {

subperfor_beg <- subperest_end+c(0,1)

} else {

subperfor_beg <- c(subperest_end[1]+1,1)

}

# compute largest prediction horizon

n_pred <- (subperfor_end[1] - subperfor_beg[1])*12 +

(subperfor_end[2] - subperfor_beg[2]) + 1

# RT 2022_06_19 "+ 1 " added

# estimate AR model for subperiod

series_to_check_ar_sub <- ar.ols(window(series_to_check_ts, start = NULL,

end = subperest_end),

order.max = p, aic = FALSE, deman = FALSE,

intercept = TRUE)

# RT 2022_06_19 correction:

# ar.ols needed (or ar(..., method = "ols",))

# otherwise Yule-Walker estimator is used by default which ignores
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# the parameter intercept and attempts to estimate a stationary series

# Then predictions go awry if the data contain a unit root componet

# geschätzte Konstante

series_to_check_ar_sub$x.intercept
(series_to_check_ar_sub)

# check stability of AR polynomial

sort(abs( polyroot(c(1, - series_to_check_ar_sub$ar)) ))

mean(series_to_check_ts)

str(series_to_check_ar_sub)

# compute predictions

series_to_check_ar_predict <- predict(series_to_check_ar_sub, n.ahead = n_pred)

# plot observed and predicted values

plot.ts( cbind(window(series_to_check_ts, start = subperfor_beg,

end = subperfor_end),

series_to_check_ar_predict$pred), plot.type = "single", lty = 1:2,

ylab = "observed values (solid), predictions (dotted)" )

# plot observed and predicted values for full period

plot.ts( cbind(window(series_to_check_ts, start = NULL,

end = subperfor_end),

c(window(series_to_check_ts, start = NULL,

end = subperest_end),

series_to_check_ar_predict$pred)),
plot.type = "single", lty = 1:2,

ylab = "observed values (solid), predictions (dotted)" )

} else if (data_source=="yahoo"){
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# get dates for estimation sample

dates_of_obs <- index(series_to_check_zoo) # get dates of time series in object zoo

numb_of_obs <- length(dates_of_obs) # number of available observations

numb_for_est <- round(numb_of_obs*n_est_ratio) # number of observations for estimation

# depends on n_est_ratio

# selects all observations for estimation

series_to_check_est_zoo <- series_to_check_zoo[as.Date(dates_of_obs[1:numb_for_est])]

# selects all observations that will be predicted used for comparison

series_to_check_pred_zoo <- series_to_check_zoo[

as.Date(dates_of_obs[(numb_for_est+1):(numb_for_est+h_pred)]) ]

# estimate AR model for subperiod using ar command and ts object

series_to_check_ar_sub <- ar.ols(ts(series_to_check_est_zoo),

order.max = p, aic = FALSE, deman = FALSE,

intercept = TRUE)

# RT 2022_06_19 correction: ar.ols instead of ar as

(series_to_check_ar_sub)

# compute predictions

series_to_check_ar_predict <- predict(series_to_check_ar_sub, n.ahead = h_pred)

# put the predicted values back into a zoo object

series_to_check_pred_hat_zoo <- zoo(series_to_check_ar_predict$pred,
as.Date(index(series_to_check_pred_zoo)))

# plot observed and predicted values using zoo objects

plot.zoo(cbind(series_to_check_pred_zoo,series_to_check_pred_hat_zoo),

plot.type = "single" , lty = c(1,2),
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ylab="observed values (solid), predictions (dotted)" )

}

#============================= End =================================================

Listing A.9: .././R code/AOE series to check complete 2023.R
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