Zu Hauptinhalt springen
Startseite UR

Open Positions

Doctoral position (Regensburg University)


PhD position, salary according to 50-66% TVL-E13, for 3 years, starting Dez 2021/Januar 2022 or later.


Your task:

• work on innovative and demanding scientific project (see below)

Your qualifications:

• a MSc degree in biology or physics or related subjects, with grade ≥ 2.5

• broad interests, analytical thinking, independent problem-solving

• interest in method development/refinement; ideally, prior experience in electrophysiology

• very good skills in English (both in speaking and writing)


We offer:

• an interdisciplinary environment within a motivated team

• access to modern methods of cellular neurobiology (e.g. two-photon imaging/uncaging)

• further career development via structured graduate program RIGeL www.rigel-regensburg.de and DFG-priority program (scientific meetings, workshops etc.)


The project is funded by the new priority program 2205 ‘Evolutionary optmisation of neuronal circuits’ of the DFG (German Research Foundation). In tandem with the lab of Dr. Silke Sachse, MPI for chemical ecology Jena, the project aims to unravel the cellular basis of anisotropic lateral inhibition in the rat olfactory bulb and fly antennal lobe, a feature that is highly relevant for olfactory coding. In the olfactory system, complex inhibitory circuits modulate the impact of sensory neuron input and mediate interactions between second order principal neurons. These pathways are assumed to regulate olfactory sensitivity depending on behavioural state, synchronize neural subnetworks, and enhance the spatial contrast of representations via decorrelation of similar response patterns. The architecture of the underlying network anatomy is astonishingly similar across insects and vertebrates - a prime example of convergent evolution.

We aim to clarify the cellular basis of defined inhibitory interactions across phylae, based on predictions inspired by findings in the respective tandem lab. More specifically, we will investigate anisotropic lateral inhibition which allows for directed interactions between individual glomerular channels that in the fly might be even hard-wired. In the rat the main candidates for the cellular substrate of anisotropic inhibition are long-range interneurons in the glomerular layer which feature intriguing so far unknown circuit motifs (Bywalez, Ona-Jodar... Egger 2017) and whose synaptic interactions will be studied in detail with whole-cell recordings, high-resolution imaging and uncaging techniques. We will establish imaging of binary mixture coding in our semi-intact nose brain preparation similar to the fly, and reduce ansiotropic interactions via laser ablation. We ultimately aim to assign specific inhibitory interactions to defined interneuron types in both rat and fly and integrate the these result into a new generic network model of the convergent olfactory system, in  collaboration with other members of the priority program with computational/circuits expertise.


Further inquiries, application documents: Please send to Veronica.Egger@ur.de

Master Theses available

If you are interested in doing your master thesis in in our lab, please directly contact Prof. Veronica Egger (Topic: Neurophysiology of granule cells in the olfactory bulb) or Dr. Michael Lukas (Topic: Vasopressin in the olfactory bulb).

Download flyer for further information.

  1. Fakultäten
  2. Fakultät für Biologie und Vorklinische Medizin

Prof. Dr. Veronica Egger


Egger-veronica 2


Tel. +49-941-943-3118