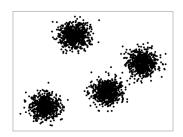
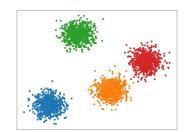
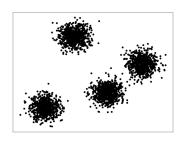


Institute for Parallel and Distributed Systems (IPVS) Applications of Parallel and Distributed Systems

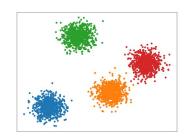
Towards Automated Data Preprocessing for Clustering: Challenges and Future Directions


Leonard Labes
36th GI-Workshop on Foundations of Databases





- Various organizations rely on data to gain insights and knowledge
 - Customer segmentation in E-Commerce
 - Social network recommendations
 - Fraud detection in finance
 - ...
- One option to gain insights from data is clustering (unsupervised machine learning task)



Insights through clustering (e.g., K-Means)

Insights through clustering

- Which clustering algorithm should I use?
- What are the parameter values?
- How should I evaluate it?

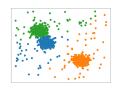

Solution: AutoML for Clustering:

- Automatically find good algorithms, parameters, and evaluation scores.
- ML2DAC [7], AutoClust [9], TPE-AutoClust [17],...

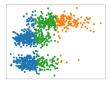
- However, data often have quality problems like:
- Outlier

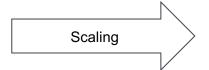
Skewed Data

Clustering (K-Means)


Missing Values

Clustering (K-Means)


- One possibility to use is preprocessing
- Outlier



Outlier Removal

Skewed Data

Missing Values

Missing Value Imputation

5

Missing Values

Identifying data characteristics can range from easy to very difficult

Column A	Column B	Column C	Column D
45	120000	Red	4.5
10	1		-100
	450000	Green	
13	790000	Yellow	1.3

University of Stuttgart 29/09/2025

Identifying data characteristics can range from easy to very difficult

	Column A	Column B	Column C	Column D		
	45	120000	Red	4.5		
	10	1		-100		
		450000	Green			
	13	790000	Yellow	1.3		
Missing Values Features						

• Identifying data characteristics can range from easy to very difficult

	Column A	Column B	Column C	Column D		
	45	120000	Red	4.5		
	10	1		-100 ?		
		450000	Green			
	13	790000\	Yellow	1.3		
Missing Values	Categorical Features	Ou ⁻	tlier			

• Identifying data characteristics can range from easy to very difficult

	Column A	Column B	Column C	Column D	
	45	120000	Red	4.5	
	10	1		-100	
		450000	Green		
	13	790000	Yellow	1.3	'
				1	
Missing Values	Categorical Features	Ou	tlier	Duplicate Features	

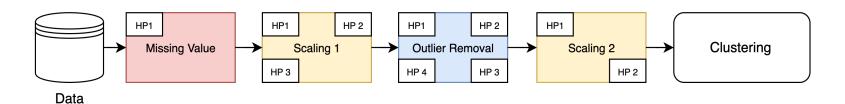
Identifying data characteristics can range from easy to very difficult

Column A	Column B	Column C	Column D
45	120000	Red	4.5
10	1		-100
	450000	Green	
13	790000	Yellow	1.3

University of Stuttgart 29/09/2025

Identifying data characteristics can range from easy to very difficult

Column A Column B Column C Column D


Identifying all relevant characteristics is **hard**

Fixing them requires not only a single preprocessing method but a whole **pipeline**

A pipeline raises more questions

Which Methods? Interdependency? Order of Methods? Evaluation?

Which Parameter Values? Runtime and Scalability? Repetition of Methods?

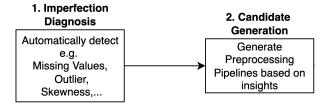
University of Stuttgart 29/09/2025

Contribution

To guide and support data analysts, an automated approach is needed

To make the described problems more explicit, this work contributes:

- A five-step conceptual process
- Five derived challenges from this process
- A systematic comparison of related work
- Hints to possible future directions

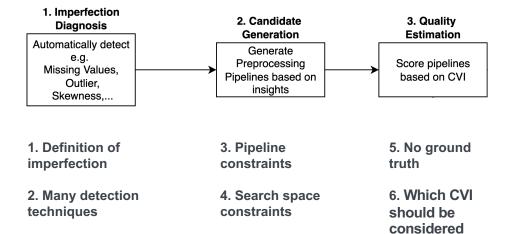

University of Stuttgart 29/09/2025

1. Imperfection Diagnosis

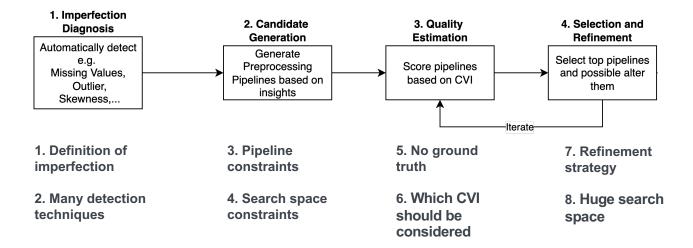
Automatically detect e.g. Missing Values, Outlier, Skewness,...

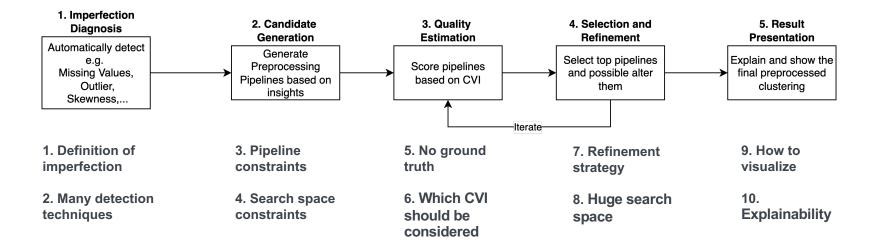
- 1. Definition of imperfection
- 2. Many detection techniques

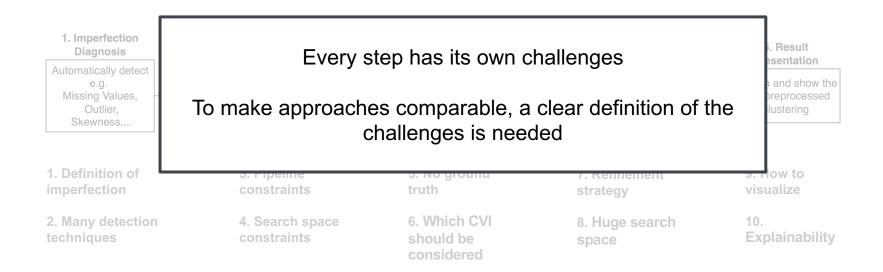
University of Stuttgart 29/09/2025

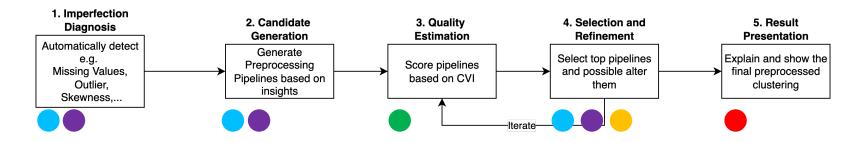

1. Definition of imperfection

3. Pipeline constraints


2. Many detection techniques


4. Search space constraints


University of Stuttgart 29/09/2025


University of Stuttgart 29/09/2025

University of Stuttgart 29/09/2025

- C1: Diverse Techniques: Many different detection mechanisms and preprocessing techniques are needed
- C2: Search Space Explosion: Availability of techniques, their parameters, etc., leads to a vast search space
- C3: Evaluation Metric: In unsupervised machine learning, the evaluation technique is not clear
- C4: Refinement Strategy: A robust and scalable strategy for improving the pipelines is needed
- C5: Visualization & Explainability: A data analyst must understand why and how the data is preprocessed

- Existing work is grouped into:
 - Unsupervised AutoML Approaches
 - Data Preprocessing for Supervised Machine Learning
 - Libraries
 - Semi Automated Visualization Tools

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
	Not addressed	Part I addre		Completely addressed	

- Unsupervised AutoML Approaches
 - Focus on the machine learning part
 - Finding the best clustering algorithm
 - Finding the best evaluation metric
 - If preprocessing is addressed, only partially

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
ML2DAC [7]	0	0	•	0	\circ
AutoClust [9]	\bigcirc	\bigcirc		\bigcirc	\bigcirc
TPE-AutoClust [17]	•				\bigcirc

- Data Preprocessing for Supervised Machine Learning
 - Solutions with more extensive preprocessing exist
 - By design, all require class labels
 - Various strategies and focuses exist

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
Saga [18]		•		•	
CtxPipe [19]		•	\bigcirc		\bigcirc
LLMClean [20]		\bigcirc	\bigcirc	\bigcirc	

- Libraries
 - Research has matured into widely used libraries
 - Most of them only do static preprocessing
 - TPOT optimizes preprocessing pipelines
 - · Only supports supervised learning

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
Auto-Weka [21, 22]	0	•	0	0	0
Auto-Sklearn [23, 24]	0	•	Ō	Ō	
AutoGluon [25]	Ó	•	Ó	Ô	Ó
TPOT [26]	•	•	O	•	0

- Semi Automated Visualization Tools
 - Most of the focus is on visualization and explainability of the data
 - Some suggest preprocessing steps
 - Some highlight the difference after a preprocessing operation has been applied

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
Wrangler [27]	Ö				
Vizier [28]	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•

- Much research with a focus on preprocessing exists
- None can fulfill all the defined challenges
- Combining approaches is not easily achievable.

Paper	C1 Diverse Techniques	C2 Search Space Explosion	C3 Evaluation Metric	C4 Refinement Strategy	C5 Visualization & Explainability
ML2DAC [7]	0	0	•	0	\circ
AutoClust [9]	\bigcirc	\bigcirc		\bigcirc	\bigcirc
TPE-AutoClust [17]					\bigcirc
Saga [18]			\bigcirc		\bigcirc
CtxPipe [19]			\bigcirc		\bigcirc
LLMClean [20]		\bigcirc	\bigcirc	\bigcirc	•
Auto-Weka [21, 22]	\bigcirc		\bigcirc	\bigcirc	\bigcirc
Auto-Sklearn [23, 24]	\bigcirc		\bigcirc	\bigcirc	\bigcirc
AutoGluon [25]	\bigcirc		\bigcirc	\bigcirc	\bigcirc
TPOT [26]			\bigcirc		\bigcirc
Wrangler [27]	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•
Vizier [28]	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•

Future Directions

- Detecting data characteristics
 - Rule-based, Meta Learning, utilizing embeddings
- Creating and refining pipelines
 - Optimization techniques are needed: Bayesian Optimization, Genetic Optimization, Reinforcement Learning.
 - LLMs: Still a focus on small datasets and domain knowledge
 - A good representation of the data is needed
- Visualization and Explainability
 - Depends on the approach
 - Many tools provide good visualization,
 - Often require human input or are user-focused

Summary & Conclusion

- This work
 - Defines a conceptual process
 - Identifies challenges
 - Compares existing work
 - Shows what potential solutions may consider
- Preprocessing is essential, but automated preprocessing for clustering does not exist.
- Existing solutions show bits and pieces that could be adapted or point in a specific direction.

A thorough assessment of methods, techniques, and unresolved options is necessary to develop a solution that addresses all challenges.

Thank you!

Leonard Labes

E-Mail leonard.labes@ipvs.uni-stuttgart.de

Phone +49 711 685 88298

www.ipvs.uni-stuttgart.de/de/institut/team/Labes/

University of Stuttgart Institute for Parallel and Distributed Systems (IPVS) Applications of Parallel and Distributed Systems

References

- [7] D. Treder-Tschechlov, M. Fritz, H. Schwarz, B. Mitschang, Ml2dac: Meta-learning to democratize automl for clustering analysis, Proceedings of the ACM on Management of Data 1 (2023) 1–26.
- [9] Y. Poulakis, C. Doulkeridis, D. Kyriazis, Autoclust: A framework for automated clustering based on cluster validity indices, in: 2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020, pp. 1220– 1225.
- [17] R. ElShawi, S. Sakr, Tpe-autoclust: A tree-based pipline ensemble framework for automated clustering, in: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), IEEE, 2022, pp. 1144–1153.
- [18] S. Siddiqi, R. Kern, M. Boehm, Saga: a scalable framework for optimizing data cleaning pipelines for machine learning applications, Proceedings of the ACM on Management of Data 1 (2023) 1–26.
- [19] H. Gao, S. Cai, T. T. A. Dinh, Z. Huang, B. C. Ooi, Ctx-pipe: Context-aware data preparation pipeline construction for machine learning, Proceedings of the ACM on Management of Data 2 (2024) 1–27.
- [20] F. Biester, M. Abdelaal, D. Del Gaudio, Llmclean: Context-aware tabular data cleaning via llm-generated ofds, in: European Conference on Advances in Databases and Information Systems, Springer, 2024, pp. 68–78.
- [21] C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown, Auto-weka: Combined selection and hyperparameter optimization of classification algorithms, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp. 847–855.

- [22] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, K. Leyton-Brown, Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka, Journal of Machine Learning Research 18 (2017) 1–5.
- [23] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine learning, in: Advances in Neural Information Processing Systems 28 (2015), 2015, pp. 2962–2970.
- [24] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter, Auto-sklearn 2.0: Hands-free automl via meta-learning, arXiv:2007.04074 [cs.LG] (2020).
- [25] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, A. Smola, Autogluon-tabular: Robust and accurate automl for structured data, arXiv preprint arXiv:2003.06505 (2020).
- [26] R. S. Olson, J. H. Moore, Tpot: A tree-based pipeline optimization tool for automating machine learning, in: Workshop on automatic machine learning, PMLR, 2016, pp. 66–74.
- [27] S. Kandel, A. Paepcke, J. Hellerstein, J. Heer, Wrangler: Interactive visual specification of data transformation scripts, in: Proceedings of the sigchi conference on human factors in computing systems, 2011, pp. 3363– 3372.
- [28] M. Brachmann, C. Bautista, S. Castelo, S. Feng, J. Freire, B. Glavic, O. Kennedy, H. Müeller, R. Rampin, W. Spoth, et al., Data debugging and exploration with vizier, in: Proceedings of the 2019 International Conference on Management of Data, 2019, pp. 1877–1880.