
Multi-Perspective Ontology Alignment: Bridging Epistemic Differences in a Water Knowledge Case Study

Divyasha Sunil Naik Prof. Dr. Birgitta König-Ries

Toc	lay's
Age	enda

O1 Introduction & Motivation

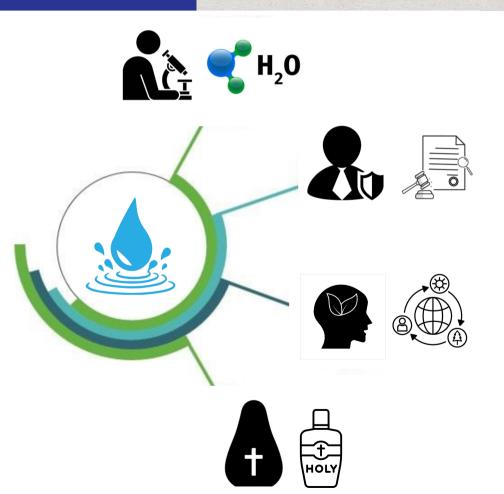
O2 Problem Statement

03 Existing Research

05 Conceptual Methodology

Baseline Trials

Conclusion


Introduction & Motivation

- Meanings shift with context and perspective.
- Ontologies capture these choices → shaped by worldviews.
- Different communities create divergent ontologies for the same phenomenon.

Same phenomenon – different perspectives

Introduction & Motivation

There is no single definition of water.

Different communities describe water in divergent ways.

Each ontology encodes conceptual commitments, reflecting only one epistemic standpoint.

- → For a chemist: H₂O, a molecular substance.
- → For policymakers: a regulated resource linked to governance and rights.
- → For ecologists: rivers, habitats, and sustainability.
- → For communities: symbolic, part of rituals and cultural values.

Without bridging perspectives → fragmentation and limited intervention/ interdisciplinary understanding.

Problem Statement

- → Existing ontologies capture single disciplinary perspectives.
- → No single ontology can handle the full semantic breadth.
- → Current ontology alignment methods often fail to represent perspectival diversity → focus mainly on lexical/ semantic similarity.
- → Bringing together water ontologies is time-consuming, expertise-intensive, and error-prone.
- → No methodology exists to systematically relate diverse water ontologies without suppressing their unique perspectives.
- → Need for general method to systematically identify, relate, and query diverse conceptualizations without forcing convergence.

How to connect different perspectives without erasing their differences?

Existing Research

Gentner's SMT

Álvarez's Standpoint EL

Gentner's structure-mapping theory / LISA [1]

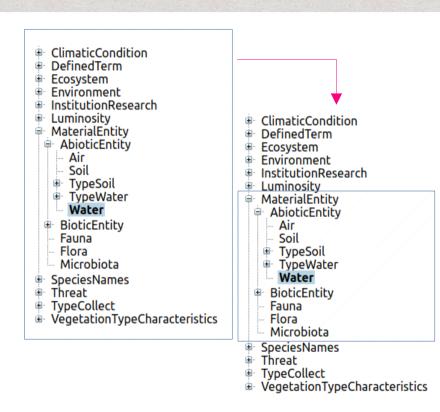
- Aligning relational structure between two domains, not just surface features.
- One-to-one mapping, Focus on relational structure, not isolated terms.
- Eg: "the atom is like the solar system"

Algebraic framework [2]

Kachroudi's

Indirect

Alignment


- Link ontologies via an intermediate ontology, not just pairwise.
- Algebraic framework to formalize composition of alignments.
- $O_1 \leftrightarrow O_3 \leftrightarrow O_2$ then $O_1 \leftrightarrow O_2$

- Extends Description Logic (EL): axioms tagged with standpoints [3].
- Supports conflicting, hierarchical perspectives in a unified logic.
- Representation layer for multiperspective knowledge without conflicting views.
- Preserves tractable reasoning (efficient and scalable).

Baseline Trials

Ontology Survey, Selection, and Preprocessing

- → Surveyed ontologies: 5 core water ontologies (hydrology, governance, monitoring, quality, interoperability).
- → Extended search: 27 additional ontologies from BioPortal with "water" term.
- → Extracted water-centric subgraphs: localized fragments centered on water (instead of full ontologies).
- → Preprocessing: OWL format, automated ID extraction, loaded into Protégé.
- → Standard alignment methods: produced mainly lexical matches, missing deeper cross-perspective relations.

Extraction of water-centric subgraphs rather than using complete ontologies in BioPortal. [4]

Baseline Trials

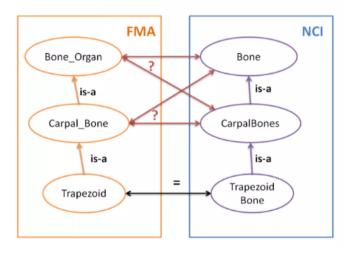
→ Applied **LogMap** (lexical + logic-based reasoning):

Very few alignments (limited lexical overlap)

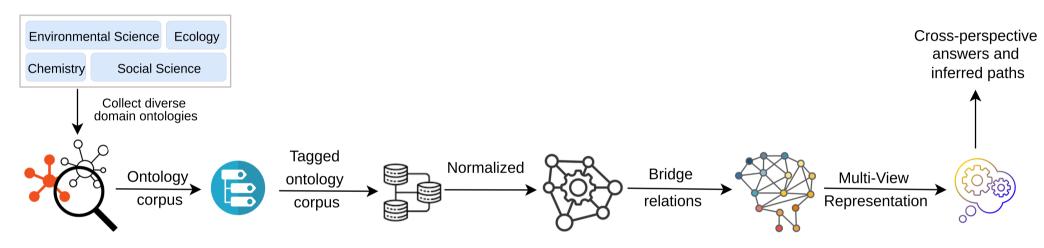
Generated unsatisfiable classes, no stable anchors.

→ Manual test (Protégé + ELK/HermiT):

conflicts: subclass inconsistencies, misaligned constraints, and overlapping hierarchies.


→ COMA++ (interactive tool):

allowed to adjust alignments manually, partially reduce inconsistencies.


COMA 3.0 only supports schema standards such as OWL-Lite and XSD [6].

Mapping discovery

Exploiting initial anchors

Mapping discovery stage in Logic-based and Scalable Ontology Matching (LogMap) [5]

Ontology Acquisition

Search & select relevant ontologies water-centric

Standpoint Tagging

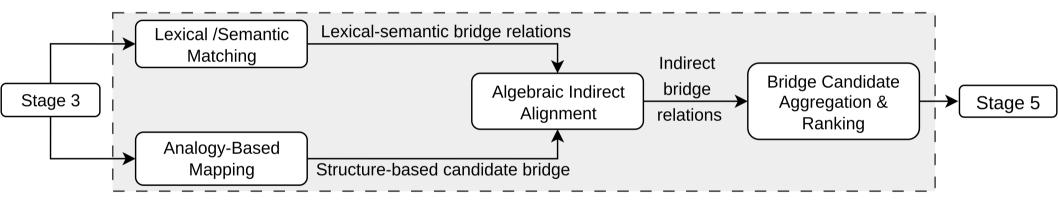
Inspect ontology structure,Infer perspective, Assign tags

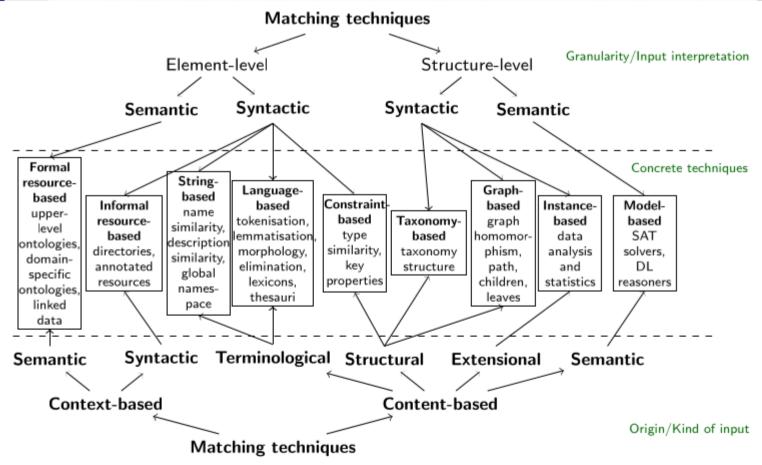
Ontology Normalization

Standardize labels, detect & cluster synonyms, prepare for alignment

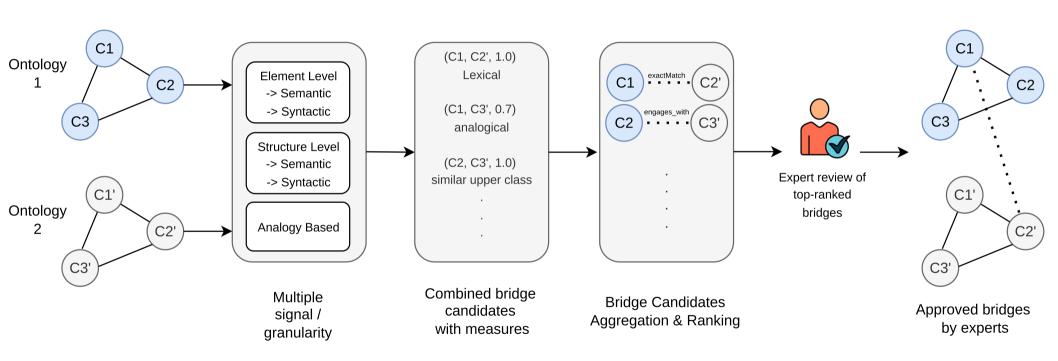
Bridge Discovery

Lexical match, indirect link discovery, structural/analogical mapping

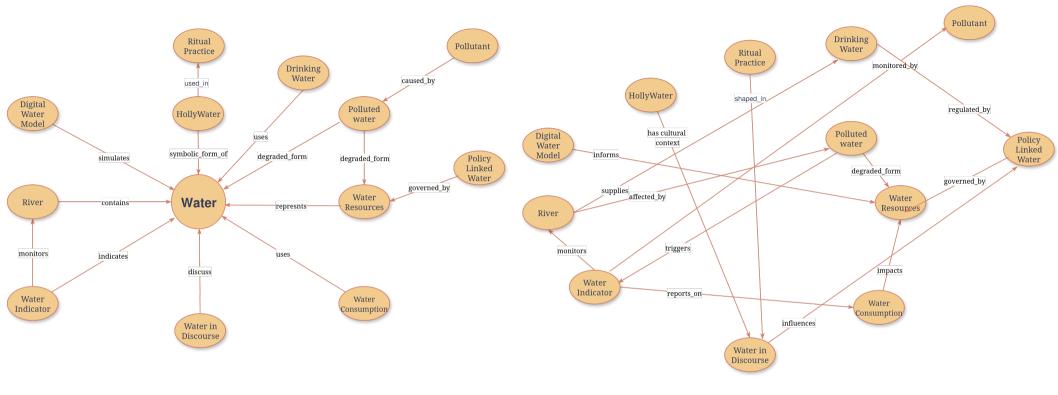

Bridge Representation


Integrate bridges, Build multi-view representation

Reasoning & Querying


Query across standpoints, reason over bridges, infer links

Workflow of the proposed multi-perspective ontology alignment approach, showing the sequential stages and intermediate artifacts.



Ontology Matching Techniques Classified by Granularity and Signal Type [7]

Proposed Multi-Signal Ontology Bridging Pipeline.

Figure 1: Shows the initial ontology modules, each from different disciplinary standpoints. Nodes like HolyWater, PolicyLinkedWater, or DigitalWaterModel represent how 'Water' is understood across domains.

Figure 2: Illustrates the result of applying bridge discovery methodology. New edges represent relationships between concepts across different standpoints

As an outcome, the system will be able to address questions such as:

- How does cultural perception of water influence ritual use?
- Trace the impact of pollution on governance.

Conclusion

- → Existing ontology alignment methods are insufficient for domains like water.
- → They often fail to capture perspectival diversity, focusing mainly on lexical similarity.
- → Our baseline trials (LogMap, Protégé reasoning, COMA++) show that standard methods are insufficient for complex scenarios.
- → We developed a conceptual methodology for bridge discovery across multiple perspectives.
- Combines: standpoint tagging, cross-ontology normalization, bridge discovery, candidate scoring & expert validation, formal multi-view representation, and AI-agent support.
- → Provides a formal multi-view representation to preserve perspectival differences.
- → Supports cross-disciplinary queries and reasoning over diverse views.

References

- [1] Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine: Algorithm and examples. Artificial intelligence, 41(1), 1-63.
- [2] Kachroudi, M. (2021). Revisiting indirect ontology alignment: New challenging issues in cross-lingual context. arXiv preprint arXiv:2104.01628.
- [3] Álvarez, L. G., Rudolph, S., & Strass, H. (2023). Tractable diversity: Scalable multiperspective ontology management via standpoint EL. arXiv preprint arXiv:2302.13187.
- [4] https://bioportal.bioontology.org/
- [5] Jiménez-Ruiz, E., & Cuenca Grau, B. (2011, October). Logmap: Logic-based and scalable ontology matching. In International Semantic Web Conference (pp. 273-288). Berlin, Heidelberg: Springer Berlin Heidelberg.
- [6] https://dbs.uni-leipzig.de/research/projects/coma
- [7] van Damme, P., Fernández-Breis, J. T., Benis, N., Miñarro-Gimenez, J. A., de Keizer, N. F., & Cornet, R. (2022). Performance assessment of ontology matching systems for FAIR data. Journal of Biomedical Semantics, 13(1), 19.

Thank you for your Attention!