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Abstract

According to the Ramsey Test, conditionals reflect changes of beliefs: α > β is
accepted in a belief state iff β is accepted in the minimal revision of it that is
necessary to accommodate α. Since Gärdenfors’s seminal paper of 1986, a series
of impossibility theorems (“triviality theorems”) has seemed to show that the
Ramsey test is not a viable analysis of conditionals if it is combined with AGM-
type belief revision models. I argue that it is possible to endorse that Ramsey
test for conditionals while staying true to the spirit of AGM. A main focus
lies on AGM’s condition of Preservation according to which the original belief
set should be fully retained after a revision by information that is consistent
with it. I use concrete representations of belief states and (iterated) revisions
of belief states as semantic models for (nested) conditionals. Among the four
most natural qualitative models for iterated belief change, two are identified that
indeed allow us to combine the Ramsey test with Preservation in the language
containing only flat conditionals of the form α > β. It is shown, however, that
Preservation for this simple language enforces a violation of Preservation for
nested conditionals of the form α > (β > γ). In such languages, no two belief
sets are ordered by strict subset inclusion. I argue that it has been wrong right
from the start to expect that Preservation holds in languages containing nested
conditionals.

1 Introduction: Remarks on the history of the AGM
program

The AGM program of belief revision sprang from two sources. Peter Gärdenfors
(1978) offered a semantics for Lewis’s (1973) logic of conditionals in terms of
belief revision models. Carlos Alchourrón and David Makinson (1981; 1982)
studied the dynamics of normative systems. The three authors then discovered
that the structures they used for these different purposes had much in common
and jointly authored their celebrated paper “On the logic of theory change:
Partial meet contraction and revision functions” (Alchourrón, Gärdenfors and
Makinson, “AGM” 1985). In the present paper, I want to focus on the former
strand of research which initiated belief revision research and seemed to be, with
the appearance of AGM’s paper, one of its most striking success stories. The
epistemic or, as we will more precisely say, doxastic analysis suggested by Frank

1



Ramsey was used as the basis for a logic of conditionals by Robert Stalnaker.1

Gärdenfors, however, did not want to accept the objective possible-worlds anal-
ysis given by Stalnaker and later elaborated by Lewis (1973), but attempted to
found conditional logic on an alternative, purely doxastic semantics.2

The Ramsey test idea seemed to have come to its perfection in 1985, when
AGM supplied a sophisticated model for belief change that was just what was
needed in order to make full sense of Ramsey’s idea. But only one year later,
it was Gärdenfors (1986) himself who discovered that things were much more
problematic. In a paper that became almost as famous as the seminal AGM
piece, he seemed to establish that Ramsey’s test for the acceptability of condi-
tionals and AGM-style belief revision do not go together. His impossibility or
trivialization theorem put everything in question again.

The reactions to Gärdenfors’s result were mixed, and no consensus has emerged
so far. First, there were people who thought that the right reaction is to say
that conditionals should not be analyzed by AGM-style revisions, but rather by
updates in the style of Katsuno and Mendelzon (1992). Members of this party
include Ryan and Schobbens (1997), Grahne (1998) and Crocco and Herzig
(2002).3

Another group of researchers suggested to adapt or restrict the Ramsey test. So-
lutions of this kind were discussed, amongst others, by Rott (1986), Gärdenfors
(1987; 1988), Levi (1996, chapter 2), Lindström and Rabinowicz (1998) and
Nute and Cross (2001). None of these adaptations of the Ramsey test has
maintained the intuitive appeal of the original idea, and none of them has
gained a large number of followers.

My plan for the present paper is to follow neither of these groups. The first
group gives a solution for a certain class of conditionals, but the solution departs
essentially from the doxastic intentions of AGM. The second group gives up a
principle that seems just too intuitive to be of any harm. In the place of a
conditional, one could imagine an assertive sentence like “On the supposition
that α is true I believe that β is true.” How should this sentence engender a
trivialization? It is just a description of the result of a hypothetical assumption.
According to the Ramsey test, a conditional is an expression of the same thing,
but the difference between description and expression does not seem to create

1“Epistemic” means “relating to knowledge”, “doxastic” means “relating to belief”. –
Ramsey (1931, p. 247): “If two people are arguing ‘If p will q?’ and are both in doubt as
to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis
about q”. Stalnaker (1968, p. 102): “This is how to evaluate a conditional: First, add the
antecedent (hypothetically) to your stock of beliefs; second, make whatever adjustments are
required to maintain consistency (without modifying the hypothetical belief in the antecedent);
finally, consider whether or not the consequent is then true.” Both authors use the concept
of hypothetical addition. Our task may thus be seen as one of finding out whether AGM offer
the right sort of model for hypothetical addition.

2That it is a good idea to base just Lewis’s (1973) logic VC on such a semantics is disputable.
The idea was vigorously criticized by Isaac Levi (1996, Ch. 4).

3Updates in this sense are closely related to David Lewis’s (1976) imaging. These oper-
ations blatantly violate all AGM-style Preservation conditions, but are very friendly to the
Monotonicity condition. These conditions will be discussed below.
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any special dangers. In the present paper I shall always take the Ramsey test
for granted and see how it can be fit into the AGM paradigm. My claim will be
that the problem of reconciling Ramsey with the spirit of AGM has a unique,
intuitive solution.

The argument for this claim is based on a particular interpretation of the AGM
program of belief change. With the benefit of hindsight, I think it is justified
to describe the AGM theory as an essentially semantic one. AGM may have
offered their theory without being aware of this, but their insistence on the
logical closure of “belief sets” and the syntax-independence of the effects of
new information indicated right from the beginning that it is the content and
not the form of the sentences expressing beliefs that matters. However, it was
only after Grove (1988) and Katsuno and Mendelzon (1991) had shown the
equivalence of the AGM theory with a semantics using Lewis-style systems of
spheres or pre-orderings of possible worlds that the essentially semantic nature
of the AGM project became widely recognized. I will embrace this semantic
reinterpretation of AGM, use possible worlds models as representations of belief
states and consider a few (to be more precise: four) constructive models for the
revision of such states. They will allow us to deal with iterated belief changes
which are necessary for a Ramsey test interpretation of nested (to be more
precise: right-nested) conditionals. Much of the plausibility of my argument
will hinge on the plausibility of the claim that these four constructions are in
fact the canonical ways of extending the original AGM approach to the problem
of iterated belief change (about which AGM themselves said very little).

I believe that the focus on semantic structures and constructions for their trans-
formation provides a solid kind of understanding that cannot easily be gained
from the more postulational approaches that have dominated research in the
AGM paradigm. The AGM postulates entail a condition of Preservation of
accepted sentences on the acquisition or assumption of a sentence that is con-
sistent with the prior beliefs. As we shall see, it is indeed possible to combine
the Ramsey test with an AGM-style Preservation condition, if the language is
restricted to non-nested conditionals. This combination, however, forces a vio-
lation of Preservation for more complex conditionals. I will argue that this is
not a defect of the constructions, but rather shows that the idea that Preserva-
tion (should) be obeyed in languages admitting nested conditionals has simply
been misguided. Even the preservation of flat (i.e., non-nested) conditionals has
a rather weak intuitive basis. A general appeal to considerations of minimum
mutilation of informational economy turns out to be too airy to bear up against
the challenges presented by the reasoning with conditionals.

2 Belief states and belief revision models in general

Following the tradition of Darwiche and Pearl (1997), we use the concept of
a belief state as a primitive. Belief states will be denoted by the letter B ,
possibly decorated with primes and subscripts. We assume that there is a
designated belief state O representing the “blank slate”. O is the state of
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complete ignorance or of doxastic emptiness.4

A sentence α is either accepted or rejected in a belief state B , or else a person in
B suspends judgement with respect to α. For a conditional, it is not determined
by the current belief state alone whether or not it is accepted, rejected or
neither. By the Ramsey test, this depends on a hypothetical change of the
belief state.

Now let B be a set of belief states, and let ∗ : B×L → B be a revision function
assigning to a pair consisting of a (“prior”) belief state B and a sentence α from
a language L another (“posterior”) belief state. α is a new piece of information
or a hypothetical assumption.

A belief state B in a belief revision model 〈B,O, ∗〉 validates or supports a set of
sentences. We write pBq∗L for the set of sentences so supported. These are the
L-sentences that are believed to be true, or accepted, in the belief state B . The
asterisk in the superscript signals the dependence on the belief revision model’s
revision function, the L in the subscript points to the fact that the claim is
always to be restricted to a certain language. α ∈ pBq∗L is read as follows:
α ∈ L is accepted in belief state B in B with respect to revision method ∗ ;
or alternatively, B in B supports α of L with respect to ∗ . Having made this
clear, we shall drop subscripts and superscripts in contexts in which they are
not immediately relevant.

Here are the famous AGM postulates, translated into a language that allows us
to talk about belief states rather than just sets of belief (expressed by sentences):

(AGM*1) pB ∗ αq is closed under Cn
(AGM*2) α ∈ pB ∗ αq

(AGM*3) pB ∗ αq ⊆ Cn( pBq ∪ {α})
(AGM*4) If α is consistent with pBq, then Cn( pBq ∪ {α}) ⊆ pB ∗ αq

(AGM*5) If α is consistent under Cn, so is pB ∗ αq

(AGM*6) If Cn(α) = Cn(β), then pB ∗ αq = pB ∗ βq

(AGM*7) pB ∗ (α ∧ β)q ⊆ Cn( pB ∗ αq ∪ {β})
(AGM*8) If β is consistent with pB∗αq, then Cn( pB∗αq∪{β}) ⊆ pB∗(α∧β)q

Common names for these conditions are Closure, Success, Inclusion, Vacuity,
Consistency, Extensionality, Superexpansion and Subexpansion (Hansson 1999,
pp. 212, 216). Notice that in all postulates except Success, reference is made to
some background logic or consequence operation Cn.5 It is evident that for the
proper appreciation of the AGM program much depends on the understanding
of the background logic.

4The notion that the human mind is initially like a blank slate has had a long history in
philosophy. It was most famously advocated, in varying versions, by Aristotle (De anima III,
4, 429b29-430a2) and Locke (Essay Concerning Human Understanding, I.2.15 and II.1.2).

5Cn takes sets of sentences as arguments. We will abbreviate Cn({α}) by Cn(α).
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3 The impossibility result

Gärdenfors’s theorem in effect says that the Ramsey test is incompatible with
a condition of Preservation regarding the case in which the input is consistent
with the prior beliefs held by the person.

(RT) α > β is in pBq iff β is in pB ∗ αq

(Pres) If α is consistent with pBq, then pBq ⊆ pB ∗ αq

Both principles have very strong intuitions speaking in their favour. The Ram-
sey test (RT) is not offered here as an analysis of natural language conditionals,
but as the defining acceptance condition for Ramsey test conditionals. Why
shouldn’t it be possible to record potential or hypothetical changes of belief by
means of sentences in our language? There is no threat of self-reference here,
and no constraint of assertibility that gets in our way. So (RT) seems fine. On
the other hand, (Pres) looks like a plausible condition, too. If a piece of new
information or a hypothetical assumption is consistent with one’s beliefs, why
should one give up any of them? There simply seems to be no reason to do so.

It is surprising that (RT) and (Pres) are not compatible. For the incompatibility
result two additional background assumptions are needed that we do not want to
challenge in this paper: The Success and the Consistency condition, (AGM*2)
and (AGM*5).

Two other conditions are worth mentioning in the present context. First, the
AGM condition (AGM*4) is clearly a strengthening of (Pres).6 Second, (RT)
entails a version of the following Monotonicity condition

(Mon) If pBq ⊆ pB ′q, then pB ∗ αq ⊆ pB ′ ∗ αq

(Mon) has been frequently used in proofs of the impossibility theorem, and it
is advantageous to their elegance. Still I think that from a heuristic point of
view, the common shift in the attention from the Ramsey test to Monotonicity
has been a mistake. It tends to cover up the fact that all the motivation for
(Mon) derives from the Ramsey test for conditionals, and that it is really the
behaviour of conditionals that should be studied. It also hides one level of the
nesting of conditionals. In order to assess (Mon) properly, we have to have
a closer look at the languages involved (see section 5 below). Finally, while
(RT) is an interesting condition, (Mon) will turn out to be uninteresting in the
context of languages permitting nested conditionals, because it is satisfied only
vacuously in such contexts.

4 Proving the result

4.1 Existing literature. The crucial assumption in Gärdenfors’s original
proof (1986, 1988) relates revisions by a sentence α that is consistent with pBq

6Conversely, (AGM*4) follows from (Pres) in conjunction with Success and Closure. From
an aesthetic point of view, (Pres) would be nicer as an AGM postulate than (AGM*4).
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to revisions by disjunctions of α with some other sentence. Gärdenfors took the
following to be self-evident:

Cn(K ∪ {α ∨ β}) ⊆ Cn(K ∪ {α})

But what is Cn in the context of Gärdenfors’s powerful conditional language
that allows for unrestricted embeddings of conditionals? Are we entitled to use
the sort of monotonicity expressed in this condition?

Makinson (1990) shows that allowing the logic to be non-monotonic does not
necessarily block triviality. A variant of Gärdenfors’s triviality theorem carries
over to certain non-monotonic contexts. A closer inspection of Makinson’s
proof, however, reveals a crucial assumption that may, and indeed should, be
questioned. Makinson makes it part of the meaning of the notion of “non-
triviality” that for two classically unrelated factual sentences α and β, Cn(α)
is consistent with Cn(β). But the problem is again that we do not know what
Cn looks like in the context of languages having conditionals. Would it be
implausible to expect that ¬(α ∧ β) > α is in Cn(α), but ¬(α ∧ β) > ¬α is in
Cn(β)? And, as Ramsey himself suggested, these conditionals can be regarded
as “contradictories”. In sum, it seems that Makinson imposed unduly heavy
demands on non-triviality and that his paper, though explicitly attending to
the idea of non-monotonicity, proceeds still very much in the spirit of monotonic
logic.

Lindström and Rabinowicz (1998, p. 151) discuss a possible way of finding two
belief sets that are related by strict subset inclusion. They consider an agent
who at first “has no opinion about” some α and β and then comes to learn α in
one scenario and alternatively α ∧ β in another scenario, where by “learning”
they appear to mean consistent learning. Lindström and Rabinowicz take it for
granted that the belief set resulting from the former is a subset of the belief set
resulting from the latter information. This again may be doubted for reasons
similar to the one we met above. We expect that ¬(α ∧ β) > α is in Cn(α),
but not in Cn(α ∧ β).7

In a recent paper on the Ramsey test, Bradley (2007, p. 8) considers

a consistent belief set K that contains the sentence α and two sub-
sets L and M of K respectively containing the sentences α ∨ β and
α ∨ ¬β. Then by K*4 and K*2 (the Preservation and Success con-
ditions), α ∨ β, ¬α ∈ L ∗ ¬α and α ∨ ¬β, ¬α ∈ M ∗ ¬α. Hence
β ∈ L∗¬α and ¬β ∈ M ∗¬α. Then if belief revision is monotonic
K ∗¬α will contain both β and ¬β. Since it should not, either RT
or CDR [i.e., the Ramsey test] must be rejected.

7In the footnote on p. 151, Lindström and Rabinowicz warn us that appearances are de-
ceptive here. In fact, later in the paper they claim to have presented a “reductio proof” of the
negation of a Non-triviality condition requiring the subset condition mentioned in the text,
and that “we have no reasons to believe [this sort of] Non-Triviality to be true” (p. 181).
Although they reach this conclusion by the different route of an indexical interpretation of
conditionals, their findings are consonant with the message of the present paper.
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Bradley gives a diagnosis which is meant to defend the Ramsey test against
Gärdenfors’s attack. He criticizes this analysis, rightly I think, for failing “to
consider whether the postulated subsets L and M really meet the conditions
for epistemic states.” (2007, p. 8) But Bradley says very little about what
conditions for epistemic states he has in mind. The only logical principle he
mentions is “Conditional Contradiction”

(CC) If K, β, γ ` ⊥, then K, α > β, α > γ ` ⊥

(CC), however, can hardly be valid. Consider, for instance, the case α = β =
γ = p and the consistent belief set K = Cn(¬p). It seems clear that this is not
a limiting-case problem, because β and γ may well be “counterfactual” from
the point of view of K, but perfectly acceptable under the (counterfactual)
assumption α. Bradley argues that

[t]he real source of the impossibility result would seem thus to lie
not with RT or CDR [i.e., the Ramsey test] but PRES. For the fact
is that PRES alone pretty much rules out any interpretation of the
conditional connective > other than the material conditional one ...
(2007, p. 8, my emphasis)

Why “thus”, why “for”? Why exactly does Preservation alone “pretty much”
rule out anything but material conditionals? Bradley’s (2007, pp. 8–9) argu-
ment appeals to the invalid principle (CC) and to Modus Ponens for nested
conditionals, which has been called into question by McGee (1985). We will
have a closer look on the postulate of Preservation below.

This short overview is certainly not exhaustive, but it does not seem unfair to
conclude that the existing proofs in the literature are based on questionable
assumptions and do not yield the kind of insight into the nature of the problem
that one would like to gain.

4.2 Two other attempts. We have seen in our review of the proofs pre-
sented by Gärdenfors, Makinson, Lindström and Rabinowicz, and Bradley that
it is not easy to make the idea of the trivialization theorem transparent. Let
us try to do this on our own account. In both of the following proof sketches,
we start from the blank slate O. The first version compares two situations in
which two factual sentences α and β that are learned (or added hypothetically)
in different order. α and β are supposed to be independent in terms of classical
propositional logic. At the end the results are used for checking the acceptance
of two conditionals with the common antecedent ¬(α ∧ β). Given the Ramsey
test, a simultaneous acceptance of both ¬(α ∧ β) > α and ¬(α ∧ β) > β would
contradict the principle of Consistency, (AGM*5) (see Fig. 1).

Without going into details, it seems plausible to assume that ¬(α ∧ β) > α is
accepted in O ∗ α and ¬(α ∧ β) > β is accepted in O ∗ β. Let us also suppose
for the sake of argument that the steps from O∗α to (O∗α)∗β and from O∗β
to (O ∗ β) ∗ α are preservative, i.e., that nothing of the prior belief sets O ∗ α
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If ¬(α ∧ β), then α If ¬(α ∧ β), then β

pO ∗ αq pO ∗ βq

p(O ∗ α) ∗ βq p(O ∗ β) ∗ αq

∈ ∈

⊆ ⊆

Fig. 1: First attempt

and O ∗ β gets lost in these transitions. Then still, if this proof sketch is to
work, one has to assume that p(O ∗ α) ∗ βq = p(O ∗ β) ∗ αq. I find it hard to
see any strong arguments that might support this assumption. So this attempt
at trivializing the Ramsey test does not work.

We can try to circumvent the problem of a potential order-dependence in (O ∗
α) ∗ β and (O ∗ β) ∗α by working with O ∗ (α∧ β) instead for both branches of
the proof (see Fig. 2).

If ¬(α ∧ β), then α If ¬(α ∧ β), then β

pO ∗ αq pO ∗ βq

pO ∗ (α ∧ β)q

∈ ∈

⊆ ⊆

Fig. 2: Second attempt

This proof sketch solves the identity problem in the bottom line.8 However,
there is a new problem now: How can we be sure that pO ∗ αq and pO ∗ βq
are subsets of pO ∗ (α ∧ β)q? It seems that we cannot. Our second attempt at
trivializing the Ramsey test does not seem to work either.

So we still lack an instructive proof for Gärdenfors’s notorious result. Too much
has remained unclear about the attempts of proving the triviality theorem. We

8The following variant of the proof sketch in Fig. 2 may be even more illuminating:

If α, then β If α, then ¬β

pO ∗ (¬α ∨ β)q pO ∗ (¬α ∨ ¬β)q

pO ∗ ¬α)q

∈ ∈

⊆ ⊆
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need to find a more principled approach to attack the problem. My proposal is
to turn to constructive semantic modellings of potential changes of belief states
rather than to continue focussing on postulates about which our intuitions have
turned out to be shaky. Before doing that (in Section 7), a few preparatory
distinctions between languages (Section 5) and logics (Section 6) are in order.

5 Languages

So far I have avoided an explicit specification of the languages involved. But
for a finer analysis of the situation, we need to distinguish several layers of
complexity in conditionals. Languages will be identified with the set of sentences
that can be formed in them. Let L0 be a propositional language capable of
building factual sentences from atoms with the help of the usual connectives ¬,
∧, ∨ and →. The languages we are going to consider are extensions of L0 by
one extra rule for conditionals:

L1 if α and β are in L0, then α > β is in L1 (flat conditionals)
L2 if α is in L0 and β is in L1, then α > β is in L2

L3 if α is in L0 and β is in L3, then α > β is in L3 (right-nested conditionals)
L4 unrestricted embedding of conditionals (free combinations of ¬, ∧, ∨, →

and >)

Clearly, L0 ⊆ L1 ⊆ L2 ⊆ L3 ⊆ L4. Gärdenfors used the strongest language L4.
We will stay clear of this language, because negated conditionals or conditionals
embedded in material conditionals are very difficult to understand, and the
important phenomena occur at the levels of L1 and L2. Using conditionals
within the scope of a truth-functional connective seems to presuppose that
conditionals (Ramsey test conditionals) express propositions, and I do not want
to commit myself to such a position. Left-nested conditionals could also be
considered if we possessed a good way of revising belief states by conditionals
of the form α > β with α and β from L0. Unfortunately, there is little consensus
on how such revisions should be performed,9 so we are not going to talk about
them.

In the following, we sometimes continue to use “ pBq” even though our notation
should now really be extended to “ pBqLi”, with i appropriately replaced by
some numeral. I will use the abbreviated notation only in contexts in which no
confusion can arise.

We can now distinguish various levels of Preservation. That an L0-sentence α is
consistent with a belief state B is taken to mean that ¬α is not in pBqL0 . The
following conditions are possible precisifications of the unqualified Preservation
condition.

(L0-Pres) If α ∈ L0 is consistent with B , then pBqL0 ⊆ pB ∗ αqL0

9But see the interesting accounts of Boutilier and Goldszmidt (1995), Nayak et al. (1996)
and Kern-Isberner (1999).
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(L1-Pres) If α ∈ L0 is consistent with B , then pBqL1 ⊆ pB ∗ αqL1

(L2-Pres) If α ∈ L0 is consistent with B , then pBqL2 ⊆ pB ∗ αqL2

We will not have to go further than (L2-Pres).

Strictly speaking, the Ramsey test involves a shift in the levels of our language
hierarchy. This is indicated by the following scheme.

(RTi) α > β is in pBqLi+1 iff β is in pB ∗ αqLi

Similarly, we can now reconsider Monotonicity. The formulation of (Mon) in
Section 3 is impeccable if the sets of sentences considered are from L3 or L4.
In the restricted contexts of L1 and L2, we have to pay more attention. All we
can derive from the Ramsey test is

(L1-L0-Mon) If pBqL1 ⊆ pB ′qL1 , then pB ∗ αqL0 ⊆ pB ′ ∗ αqL0

(L2-L1-Mon) If pBqL2 ⊆ pB ′qL2 , then pB ∗ αqL1 ⊆ pB ′ ∗ αqL1

and so on for more complex conditional nestings. The inclusion in the an-
tecedent has always to be one level of nesting higher in order to guarantee
the inclusion in the consequent. The proof of each of these variants from the
Ramsey test is extremely simple: Let β ∈ pB ∗ αqLi (i = 0, 1, . . .). Then
α > β ∈ pBqLi+1 by (RTi), so α > β ∈ pB ′qLi+1 by the antecedent of Mono-
tonicity, thus β ∈ pB ′ ∗ αqLi by (RTi) again.

In Section 8.1, we shall also have a brief look at the extension of L0 by a doxastic
modal ♦.

L♦ if α is in L♦, so is ♦α

Here ♦α should be read as “for all I believe, it is possible that α” or “for all I
believe, it might be the case that α”.

6 Logics

The mutual relationship between logic and belief revision is troubled by a cir-
cularity problem. On the one hand, almost all of the belief revision postulates
refer to some background logic Cn, and in this sense logic seems to be prior to
belief revision. On the other hand, Gärdenfors used the Ramsey test for deriv-
ing some logic of conditionals from the systematic behaviour of belief revision
models. In this sense, belief revision appears to be prior to logic. In any case, if
our language has conditionals, then the logic should presumably include some
logical principles involving conditionals to begin with.

Possible worlds are semantic items that are logically closed, by the semantic
definition of logical entailment. I suggest exactly the same for belief states.
The set pBq of the sentences that are supported by a given belief state B is
closed.10

10The set of sentences satisfied at a possible world is also consistent by definition. The
same might be said for “good” belief states, but I don’t want to restrict the concept of a belief
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Belief states are always parts of belief revision models. As mentioned above,
a belief state doesn’t support sentences per se, if the language used contains
conditionals. A reference to other belief states is essential. Given such a doxastic
semantics, different definitions of logical consequence are conceivable.11 Let us
first introduce a belief state logic:

(Def Cn−) α ∈ Cn−(M) iff for all BRMs 〈B,O, ∗〉 and all B in B ,
if β ∈ pBq for all β in M , then α ∈ pBq.

Here, α and M may be from any language Li as specified above. This definition
is less determinate than it looks, because in various contexts one will want
to place various constraints on B, O and ∗. We will not pursue this topic
systematically in this paper, but we will soon propose special formats for B
(Section 7.1) and particular instantiations of ∗ (Section 7.2).

The belief change logic is defined only for single premises β from L0:

(Def Cn+) α ∈ Cn+(β) iff for all BRMs 〈B,O, ∗〉, α ∈ pO ∗ βq.

The belief change logic makes reference to the distinguished belief state O. It
is a lot bolder than the belief state logic that quantifies over all belief states.
Due to the Success condition (AGM*2), Cn−(β) ⊆ Cn+(β) for every β in L0.
The latter set only requires its elements to be in pO ∗ βq (which contains β),
the former that its elements be in all pBq containing β.

As the following example bears out, it is intuitively quite plausible that the logic
of conditionals should be non-monotonic in the sense that a strengthening of
the premise(s) of an inference may well lead to the loss of some conclusions. The
following inference seems paradigmatically desirable for doxastic conditionals:

β ∨ γ |∼ ¬β > γ

If all we believe is a disjunction then the conditional with a negated disjunct
in the antecedent and the other disjunct unnegated in the consequent is very
hard to deny. But the next inference seems paradigmatically undesirable:

β |∼ ¬β > γ

Although logically stronger according to the canons of propositional logic, the
premise here gives no reason whatsoever for accepting the conclusion. How is
this possible?12 It is Cn+ which is to account for these aspects of reasoning
with conditionals. But as we also need the monotonic notion of Cn−, we keep

state to consistent states here. On the other hand, the postulation of closure indicates that
we are not talking about occurrent or professed beliefs here, but rather about ascribed beliefs
or beliefs as commitments. In the context of the present paper, closure is guaranteed by the
integrity of the semantic models. They represent belief states in equilibrium.

11Compare Veltman (1996, pp. 224–225) for more and more general notions of logical con-
sequence (‘validity of arguments’ in his terminology).

12Notice how important it is that β ∨ γ is all one believes in the first inference pattern.
Only-believing is of course not closed under any Cn. If α logically entails β and I only-
believe that α, it does not follow that I only-believe that β. On the logic of only-believing,
compare Levesque (1990), the title of which mentions, somewhat confusingly, only-knowing.
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both as we move along. We now turn to more specific modellings of belief states
and their changes.

7 Belief states and belief revision models: Specific
representations

7.1 Particular modellings of belief states. In AGM’s theory, doxastic
states were identified with sets of sentences of the propositional language L0,
so-called belief sets, that is, sets of sentences of a propositional language. But
it was soon noticed that for iterated belief changes one needs changes of more
complex belief states. We will follow a tradition in the belief revision literature
and represent a doxastic state or belief state B by a preordering of possible
worlds, where a possible world is an interpretation of L0.13 We shall use a
strict relation < between possible worlds and require that it be asymmetric
(w < w′ implies w′ 6< w) and modular (w < w′ implies w < w′′ or w′′ < w′).14

Asymmetry and modularity taken together imply transitivity. Intuitively, <
represents comparative plausibility as seen from the person’s doxastic point of
view. w < w′ expresses the fact that w is more plausible or, in a pretheoretical
sense, more likely to be the real world than w′.15 As a second component of a
belief state, we include an explicit specification of the field W of <. We do not
require W to be the universal set Wall of all interpretations of L0.16 Intuitively,
W denotes the set of worlds that are doxastically possible for (i.e., considered
possible by) a person in belief state B = 〈W,<〉. A sentence α from L0 is called
doxastically possible with respect to 〈W,<〉 iff [α] ∩W is non-empty, where [α]
is the set of interpretations that evaluate α as true. For w,w′ ∈ W , we write
w ∼ w′ iff neither w < w′ nor w′ < w, and w ≤ w′ iff either w < w′ or w ∼ w′.
By the asymmetry of <, w ≤ w′ is equivalent with w′ 6< w. Notice that both
∼ and ≤ are transitive, due to the modularity of <. With a slight abuse of
the notation, we will sometimes write w � w′ if w ∈ W and w′ /∈ W . To keep
things mathematically simple, we assume throughout this paper that all sets
involved are finite.

Alternatively and equivalently, we can represent a belief state by a Lewis-Grove
style system of spheres of possible worlds for L0. A system of spheres $ is a
non-empty set of non-empty sets of possible worlds that is linearly ordered by
the subset relation, i.e., for all S and S′ in $, either S ⊆ S′ or S′ ⊆ S.17

The soft |∼ in the place of the hard ` is supposed to indicate that the inferences are of a
defeasible kind. The same paradigmatic pair of defeasible inferences was the starting point
of the foundationalist approach of Rott (1991). Due to its focus on semantics, the present
approach is a coherentist one. For the application of the epistemological distinction between
coherentism and foundationalism to problems of belief change, see Rott (2001, chapter 3).

13See, for instance, Katsuno and Mendelzon (1991).
14Modularity is also called virtual connectedness or negative transitivity.
15Notice the slightly counter-intuitive reversal of the relation here. Traditionally, ‘more

plausible’ has been read as ‘less far-fetched’ or ‘less deviating from one’s beliefs and expecta-
tions’.

16This is in order to make room for the model of ‘radical revision’ below, but it is in tension
with (AGM*5).

17See Lewis (1973) and Grove (1988). The connection between preorderings and systems of
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We say that a world w is doxastically preferred in the state represented by
〈W,<〉 if w is minimal in W under <, or if w ∈

⋂
$ in the system of spheres

modelling. The set of sentences that are true at all doxastically preferred worlds
is the set of sentences supported by the belief state, p〈W,<〉q or p$q. Let us
call a belief state < opinionated or dogmatic if it has only one doxastically
preferred world. Call it undogmatic if it has at least two doxastically preferred
worlds, i.e., if for all w ∈ W there is a w′ 6= w such that w′ ≤ w.18 Only
notorious know-it-alls have an opinion about every single proposition. Every
reasonable person should suspend judgment about some atom p. We can think
of non-dogmatism as a condition of non-triviality.

A belief state B ′ is a refinement of another belief state B if it keeps all the
doxastic distinctions recognized by the latter. A proper refinement B ′ of B
keeps all of B ’s distinctions and adds new ones, so that B is not a refinement
of B ′. Refinements can elegantly be defined in terms of strict preorderings and
systems of spheres. The preordering <′ is a refinement of the preordering <
(within the subfield V ⊆ W ) iff for all worlds w and w′ (in V ), if w < w′ then
w <′ w′ (since the preorderings are assumed to be modular, this is equivalent
to saying that if w′ ≤′ w then w′ ≤ w). The system of spheres $′ is a refinement
of the system of spheres $ iff all the spheres S in $ are contained in $′. $′ is a
refinement of $ within the subfield V ⊆ W iff all the spheres SV in $ ∩ V =
{S ∩ V : S is in $} are contained in $′ ∩ V .

There is another, more genearal relationship between systems of spheres we will
have reason to consider. The preordering <′ is a nonreversal of the preordering
< (within the field V ⊆ W ) iff for all worlds w and w′ (in V ), if w < w′ then
w ≤′ w′ (this is equivalent to saying that not both w < w′ and w′ <′ w). The
system of spheres $′ is a nonreversal of the system of spheres $ iff $ and $′ have
a common refinement, or more succinctly, if $∪$′ is a system of spheres. $′ is a
nonreversal of $ within the field V ⊆ W iff $ and $′ have a common refinement
within V , or more succinctly, if ($ ∩ V ) ∪ ($′ ∩ V ) is a system of spheres.

The blank slate O knows of no distinctions. In our particular modellings, it is
represented by the empty strict preordering 〈Wall, ∅〉 or the singleton system of
spheres $ = {Wall}.
Preorderings of possible worlds and systems of spheres can be considered as
projections of possible belief states. Belief sets clearly don’t capture everything

spheres is as follows: An ordering < is obtained from a system of spheres $ by defining w < w′

iff there is an S ∈ $ such that w ∈ S but w′ /∈ S; the field W of < is
S

$. Conversely, a
system of spheres $ = {S0, . . . , Sn} is obtained from a preordering < of W ⊆ Wall by defining
S0 := {w ∈ W : w is <-minimal in W} and Si+1 := Si ∪ {w ∈ W : w is <-minimal in W− Si}.
Because we assume that Wall is finite, this process is guaranteed to finish. What is called
the universality of a system of spheres $ by Lewis (1973),

S
$ = Wall, cannot be expressed

by a preordering alone. This is why we need to specify the field W of <. One may wonder
if we also need to make room for inconsistent belief states $ containing the empty sphere ∅
as an element. If a sphere in $ is empty, we can just drop it, with the same preordering <
corresponding, in the sense just explained, to $ and to $−{∅}. I neglect this case in the present
paper and require all spheres to be non-empty.

18Compare this with Gärdenfors’s (1986, p. 85) original non-triviality condition, which es-
sentially required three worlds in min< for some belief state < in a belief revision model.
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that is relevant in belief states. It is evident that even the more complex
structures < and $ do not capture all important features of real belief states.19

The only thing we need for our purposes, however, is that these structures
capture the aspects that are relevant for the analysis of conditionals. Given
that we have restricted our attention to Ramsey test conditionals and have
not discussed whether Ramsey test conditionals come anywhere close to the
conditionals used in ordinary language, this seems to be a very modest aim.
Still the task we have set us is not completely trivial.

7.2 Particular belief revision models. The famous paper by AGM used
the method of partial meet contraction and revision which refers to intersections
of some maximal subsets of a belief set that don’t imply a given sentence. It
was only Adam Grove who highlighted the fact that the AGM theory can be
more graphically presented in terms of changes of systems of spheres. Since the
publication of Grove’s insight, it has been justified, I think, to conceive of the
AGM theory as a semantic modelling. We can describe the work of a revision
function in two equivalent ways, as effecting transitions between preorderings,
from 〈W,<〉 to 〈W∗α , <∗

α〉, or between systems of spheres, from $ to $∗α. Here
and in the following, the input α is always a factual sentence from L0.

Grove’s result essentially said that every revision function that satisfies the eight
AGM postulates can be represented as a revision function based on a system
of spheres. The crucial fact is that if the prior belief state is represented by $,
then the set of models of the revised belief set p$ ∗ αq is precisely the set of
most plausible α-models according to $, that is, the intersection of [α] with the
smallest sphere in $ that has a non-empty intersection with [α]. It is easy to
rephrase this constraint in terms of strict preorderings of possible worlds.

(AGM) If the prior belief state is represented by 〈W,<〉, then for every
doxastically possible sentence α ∈ L0, the revised belief set is deter-
mined by min<∗

α
(W ∗α) = min<([α]).

We may call belief state revision functions satisfying the constraint that (AGM)
places on 〈W ∗α , <∗

α〉 AGM-style revision functions. In AGM’s own theory, W
always equals Wall, a fact that is essentially mirrored by (AGM*5). While we
do not want (AGM) to depend on this, we shall allow ourselves to speak briefly
of a ‘belief state <’ rather than of a ‘belief state 〈W,<〉’.
(AGM) is essentially a constraint on the kinds of changes of the prior belief state
$ or < that may be effected by an input or assumption α. But (AGM) does not
fully determine the shape of the posterior belief state $∗α or <∗

α, since there
are many different change operations that satisfy (AGM). This is illustrated
with the help of the system of spheres model in Fig. 3. Here the numeral ‘1’
indicates the set of doxastically preferred worlds after an AGM-style revision.
AGM made no commitment regarding the ordering of worlds outside min<([α]).
Notice that (AGM) entails

19For the diversity of problems pertinent to the philosophy of belief, see Schwitzgebel (2006).
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α

1 ? ? ?

?
?

?
? ?

?

Fig. 3: AGM revision(in system of sphere representation)

(L0-expansion) If α is consistent with 〈W,<〉, that is, if [α] ∩ min<(W ) 6= ∅,
then
min<∗

α
(W ∗α) = min<(W ) ∩ [α]

The theory of AGM thus determines a revised belief set on the basis of the
prior belief state. This serves well for one-shot belief revision, and there has
in fact been no controversy revolving around the (AGM) constraint. However,
if iterated changes of belief are to be effected, the AGM theory is not enough.
Metaphorically speaking, a belief set is not capable of guiding its own revisions.
The more inclusive structure of a belief state is necessary for performing this
task. What was needed was a theory that determined a revised belief state on
the basis of the prior belief state. This was no longer the business of AGM
themselves.

Within the qualitative framework based on orderings or systems of spheres of
possible worlds, four canonical constructions have been advocated since the
1990s: Radical revision (Rad), moderate revision (Mod), restrained revision
(Rest) and conservative revision (Cons).20 I list them in order of increasing
conservatism, as measured by the “weight” given to (the contents of) the prior
belief state in relation to (the contents of) the input.21

Radical belief revision (also known as “irrevocable” belief revision, Fig. 4):

(Rad)22 W ∗α = W ∩ [α]
v <∗

α w iff v < w , i.e., <∗
α = < |[α]

20With the exception of (Rest), the names of these constructions are mine. Here is a short
list of the most relevant literature: For (Rad), see Segerberg (1998); for (Mod), see Nayak
(1994); for (Rest), see Booth and Meyer (2006); for (Cons), see Boutilier (1996). A more
general approach to iterated belief revision is taken in the seminal paper of Darwiche and
Pearl (1997). Also compare Konieczny and Pino Pérez (2000), Rott (2003; 2009) and, for a
recent more philosophical discussion, Stalnaker (2009).

21It is worth pointing out that even though everything is qualitative here, the four methods
can be meaningfully ordered in terms of their conservatism. For quantitative parameters of
conservativeness and boldness, cf. Carnap’s (1952) λ and Levi’s (1967, p. 107) α.

22Notation: In the following definitions, vertical strokes denote domain restrictions of func-
tions, horizontal strokes denote set complements. – (Rad) is slightly deviant because it does
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Fig. 4: Radical revision
(= “irrevocable revision”)

α

1 2
4

5

ω

3

6
7

8
9

Fig. 5: Moderate revision
(= “lexicographic revision”)

Moderate belief revision (also known as “lexicographic” belief revision, Fig. 5):

(Mod) W ∗α = W

v <∗
α w iff

{
v < w and (v, w ∈ [α] or v, w /∈ [α]) or
v ∈ [α] and w /∈ [α]

i.e., <∗
α = < |[α] ∪ < |[¬α] ∪ ([α]× [¬α])

Note that this model makes previously unaccessible α-worlds accessible.

Restrained belief revision (Fig. 6):

(Rest) W ∗α = W

v <∗
α w iff


v < w and v, w /∈ min<([α]) or
v ∼ w and v ∈ [α] and w /∈ [α] or
v ∈ min<([α]) and w /∈ min<([α])

i.e., <∗
α = < |

min<([α])
∪ (∼ ∩ ([α]× [¬α])) ∪

(min<([α])×min<([α]))

Conservative belief revision (also known as “natural” belief revision, Fig. 7):

(Cons) W ∗α = W

v <∗
α w iff

{
v < w and v, w /∈ min<([α]) or
v ∈ min<([α]) and w /∈ min<([α])

i.e., <∗
α = < |

min<([α])
∪ (min<([α])×min<([α]))

not square with the Consistency condition (AGM*5). Alternatively, we could put W ∗α = W
for (Rad). This would spare us the mentioning of the field W , because we could invariably
stick with the set Wall of all logically possible worlds, in accordance with (AGM*5). Then we
could define radical revision by

v <∗
α w iff


v < w and v, w ∈ [α] or
v ∈ [α] and w /∈ [α]

i.e., <∗
α = < |[α] ∪ ([α]×[¬α]). This is all fine, but it is not truly radical (and not truly suited

for hypothetical reasoning).
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Fig. 6: Restrained revision

α

1 5
2

ω

6

3
4

5
6

ω

Fig. 7: Conservative revision
(= “natural revision”)

Using the equivalent systems of spheres model again, Figures 4–7 show what
happens according to the four canonical methods of revising belief states. The
numbers indicate the relative position of the relevant possible worlds in the
posterior strict preordering or system of spheres. Intuitively speaking, lower
numbers mean smaller distances from the person’s actual beliefs, i.e., higher
plausibility. These numbers do not indicate any distances, and they are not
suitable for addition, subtraction and multiplication. The symbol ‘ω’ indicates
inaccessibility, i.e., exclusion from

⋃
($∗α).

If the belief revision function ∗ is fixed as one of the canonical methods, we
assume that the field B in a belief revision model 〈B,O, ∗〉 is closed under the
relevant transformations. A foolproof way of guaranteeing such closure is to
take B as the class of all possible belief states 〈W,<〉 or $.

If α is a contradiction, all canonical constructions except (Rad) result in <∗
α

= <.23 So contradictory inputs have no effects at all. While reasonable in
itself, this does not conform with the unrestricted Success condition (AGM*2).
We neglect this limiting case problem here. More importantly, all canonical
constructions except (Rad) satisfy the postulates of Darwiche-Pearl (1997) for
iterated revisions. Rather than delving into this topic, we will have a look at
an illustration of how these constructions work.

Example 1 We reconsider the attempted proofs of Section 4.2 and substitute
the atoms p and q for the schematic letters α and β. Since we are interested only
in the language with these two propositional atoms, we restrict our attention to
the four interpretations (“possible worlds”) pq, pq, pq and pq. When an atom is
mentioned in the name of a possible world, this means that the atom is true at
this world; when an atom occurs overlined, the atom is false at this world. As
already mentioned, the blank slate O can be represented by the empty strict
preordering pq ∼ pq ∼ pq ∼ pq. Table 1 shows what happens if the revisions
are guided by one of the four canonical methods.

Each of the canonical revision methods (Mod), (Rest) and (Cons) leads to the
result that pO ∗ p ∗ qqL1 , pO ∗ q ∗ pqL1 and pO ∗ (p ∧ q)qL1 are three distinct

23(Rad) gives the absurd belief state 〈W ∗⊥, <∗
⊥〉 = 〈∅, ∅〉.
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sets.24 Inspecting what the canonical models do, we can now understand why
our attempted proofs in Section 4.2 are not successful. And this is, I think, just
as it ought to be.25

8 The subset problem

8.1 Doxastic possibility. For AGM it was easy to say when a person be-
lieves more than another person: Just when the first person’s belief set is a
superset of the second person’s belief set. When belief states came to be per-
ceived as more fundamental than belief sets in the 1990s, there was no need
to change anything on the level of L0. In semantical terms, believing more
just means having a smaller set of doxastically preferred worlds. To say that
pBqL0 ⊆ pB ′qL0 means, in the modelling using a strict preordering of possible
worlds, that min<′(W ) ⊆ min<(W ) or, in the system of spheres modelling, that⋂

$′ ⊆
⋂

$.

Can this idea of capturing an increase in beliefs by a subset relation be upheld
in more complex languages? A hint that there may be a serious subset problem
here comes from the possibility operator. The operator ♦ in ♦α, read as “for all
I believe, it might be the case that α”, is a negative static (categorical) doxastic
modal.26 In contrast to the usual accounts in modal logic, possibility is here
viewed from a first-person perspective: The point of reference is the agent’s
own current set of beliefs. Here is the doxastic possibility test, or simply, the
might test :

(♦T) ♦α is in pBq iff ¬α is not in pBq

Since there are no negations of might-sentences in L♦, let us suppose that
(♦T) applies only to L0-sentences α. The following simple observation serves
as a motivation for looking for analogous problems in languages containing
conditionals.

Observation 1 Given (♦T), there are no belief states B and B ′ such that their
belief sets pBqL♦ and pB ′qL♦ are related by strict subset inclusion.

Proof. Suppose that the L♦-belief set pBq is a proper subset of the L♦-belief
set pB ′q. Take some sentence α in L♦ that is in pB ′q but not in pBq. Suppose
first that α is in L0. Then ¬¬α is in pB ′q but not in pBq, and by (♦T) we

24(Rad) is special. After a number of revision steps it tends to produce belief states that
validate very many conditionals vacuously, just because the antecedent is not doxastically
possible. Recall that this is not in line with (AGM*5).

25As noted before, trivially pO ∗ pqL1 = Cn−( pO ∗ pqL1), and similarly for all other belief
states. – We identify pO ∗ (p ∧ q)qL1 with Cn+(p ∧ q)|L1 , i.e., Cn+(p ∧ q) restricted to L1.
But it is doubtful, to say the least, whether we can identify pO ∗ p ∗ qqL1 with any Cn+-set
at all.

26The term ‘doxastic modal’ is etymologically more precise than the more common term
‘epistemic modal’. That the operator is static means that it does not refer to any belief
changes. That it is negative means that its test (♦T) below makes essential use of a negation.
That it is categorical means that it does not involve hypothetical assumptions or conditionals.
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get that ♦¬α is in pBq but not in pB ′q. Suppose secondly that α is not in L0.
Then it is of the form ♦β. Then by (♦T) we get that ¬β is in pBq but not
in pB ′q. So either way we get that pBq is not a subset of pB ′q, and we have
found a contradiction. �

It can immediately be understood why there are no proper subsets, if a possi-
bility operator ♦ governed by (♦T) is available. For any factual sentence α one
gains, one loses ♦¬α, and for any sentence ♦α one gains, one loses ¬α. Proper
expansions do not exist in L♦. There is nothing wrong or even paradoxical
about this, it is just a consequence of the meaning of the diamond ♦.

8.2 Conditional doxastic necessity. The conditional α > β may be read
as “for all I believe, if α, it is necessary that β”. In the same sense in which ♦
is a negative static modal, the conditional connective > can be understood as
a positive dynamic (conditional) doxastic modal. Having become suspicious by
the observation concerning doxastic possibility, we may wonder whether similar
problems might arise in the context of conditional necessity. No negation is
present here that causes any trouble, but perhaps the (iterable) reference to
other belief states may create similar problems? So we ask the same question
for this sort of modal as we asked in the previous section: Are there any belief
states B and B ′ such that their L1-belief sets pBq and pB ′q are related by
strict subset inclusion? We shall show that the answer is positive, and confirm
that in L1, we can indeed have the Ramsey test and Preservation at the same
time.

But can we go any further? Are there any belief states B and B ′ such that
their L2-belief sets pBq and pB ′q are related by strict subset inclusion? As
we shall see, the answer here is negative. In L2, we cannot have Preservation
together with the Ramsey test, on pain of triviality. I try to show where exactly
Preservation fails if we continue to use the Ramsey test. Let us put the following

Questions Given (RT), are there any belief states B and B ′ such that their
belief sets
(i) pBqL1 and pB ′qL1

(ii) pBqL2 and pB ′qL2

are related by strict subset inclusion?

As we will see, a positive answer can be given on the basis of the constraint
(AGM) alone on the level of L1. For pBqLi with i ≥ 2, however, the AGM
context is not rich enough. We will have recourse to specific properties of the
relevant revision functions ∗ for an informative answer.

Let us collect the basic assumptions that we need in order to proceed. We
start with three rather unproblematic conditions: a condition concerning the
acceptance of conditionals in general belief states, a condition concerning the
acceptance of L0-sentences in particular belief states, and a condition on the
revision of particular belief states:

(RT) For α ∈ L0, α > β ∈ pBq iff β ∈ pB ∗ αq

(L0-Bel) For α ∈ L0, α ∈ p<q iff min<(W ) ⊆ [α]
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(AGM) For doxastically possible α ∈ L0, min<∗
α
(W ∗α) = min<([α])

From this basis we can derive a condition concerning the acceptance of condi-
tionals in particular belief states.

Lemma 2 Given (RT), ((L0-Bel)) and (AGM), the acceptance condition for
conditionals with a doxastically possible antecedent in a belief state 〈W,<〉
is

(L1-Bel) For α, β ∈ L0, α > β ∈ p<q iff min<([α]) ⊆ [β]

Proof. Let α and β be in L0 and α be doxastically possible in 〈W,<〉. Then we
get

α > β ∈ p<q iff (by (RT))
β ∈ p<∗

αq iff (by (L0-Bel))
min<∗

α
(W ∗α) ⊆ [β] iff (by (AGM))

min<([α]) ⊆ [β] �

Now we can clarify what it means that two belief sets in L1 are related by
subset inclusion. In order to keep things reasonably simple, we will from now
on assume, for the remainder of this section, that the field of all the preorderings
< of possible worlds is the universal set Wall.

Observation 3 Let (L1-Bel) be given and let L0 be finite, so that every set
of possible worlds can be expressed by a single sentence. Then the following
conditions are equivalent: 27

(i) p<qL1 ⊆ p<′qL1

(ii) < ⊆ <′, that is, <′ is a refinement of <.

Proof. As always in this paper, we consider only the finite case. Assume (L1-
Bel) as given. Then we get the following equivalences:

p<qL1 ⊆ p<′qL1 iff (by (L1-Bel))
for all α, β ∈ L0, if min<([α]) ⊆ [β], then min<′([α]) ⊆ [β] iff

(finite case, see remark (i) below)
for all α ∈ L0, if min<′([α]) ⊆ min<([α]) iff

(finite case, see remark (ii) below)
for all sets {w,w′}, w < w′ implies w <′ w′ iff
< ⊆ <′

Two remarks on the finite case: (i) In the finite case, min<([α]) is expressible
by a single sentence β. (ii) For all worlds w and w′, the set {w,w′} is expressible
by a single sentence γ. So if w < w′ but w ∼′ w′, then w′ ∈ min<′([γ]) but not
w′ ∈ min<([γ]). �

27A similar observation was made independently by Hannes Leitgeb (2010, pp. 29–30). An
analogous result for doxastic states that are represented by entrenchment orderings is given
in Rott (1991, Observation 5).
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We now turn to the context of revision functions for belief states. The following
observations are immediate consequences of Observation 3.

Corollary 4 Let (RT), (L0-Bel) and (AGM) be given.

(i) If p<qL1 = p<′qL1, then < = <′

(ii) If p<qL1 = p<′qL1 and a function ∗ for the revision of belief states is fixed,
then p<qL3 = p<′qL3

(iii) The following two conditions are equivalent

(L1-Pres) If α ∈ L0 is consistent with < , then p<qL1 ⊆ p<∗
αqL1

(Refine) If α ∈ L0 is consistent with <, then <∗
α is a refinement of < .

Thus Preservation within L1 is equivalent with a refinement operation for fac-
tual assumptions consistent with the prior beliefs. The condition (Refine) will
play a central role in what follows. Let us also consider three variants of it.
First, it can be weakened to

(NoReverse) If α ∈ L0 is consistent with <, then <∗
α does not reverse <:

w ≤∗
α w′ holds whenever w < w′ 28

Second, both the constraints (Refine) and (NoReverse) can be generalized to
the case where α is inconsistent with <. In this case, due to the shifting of the
worlds in min<([α]) prescribed by (AGM), the posterior preordering cannot
be a refinement of the prior preordering. However, apart from these minimal
α-worlds, the ideas of Refinement and Nonreversal can be upheld.

(GenRefine) Within the subfield W−min<([α]) of W , <∗
α is a refinement of <

29

(GenNoReverse) Within the subfield W−min<([α]) of W , <∗
α does not reverse

<

Let us comment on the pair (GenRefine)/(Refine), the relevant comments on
(GenNoReverse)/(NoReverse) are similar. Taken together with (AGM), (Gen-
Refine) implies (Refine). Intuitively it is quite a lot stronger than the latter.
On the one hand, (GenRefine) seems to derive all its motivation from (Refine)
which is in turn motivated by L1-Preservation. It is hard to think of anything
else that might come to its support. On the other hand, (GenRefine) is not
much less plausible than (Refine), and any principled justification for (Refine)
appears to carry over to (GenRefine). If it is desirable to preserve all condition-
als in the consistent case (i.e., where the input or assumption α is consistent
with one’s beliefs), then there should be similar reasons for preserving condi-
tionals “as far as possible” in the belief-contravening case as well.

28The corresponding condition for conditionals is this: If ¬α /∈ p<qL0 and β > γ ∈ p<qL1 ,
then β > ¬γ /∈ p<∗

αqL1 . — If joined with (AGM*5) for L0-sentences, (L1-Pres) implies this
condition.

29The corresponding condition for conditionals is this: If α > ¬β ∈ p<qL1 and β > γ ∈ p<
qL1 , then β > γ ∈ p<∗

αqL1 . — If joined with (AGM*3) and (AGM*4) for L0-sentences, this
condition implies (L1-Pres).
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Of our four canonical constructions, exactly two, namely conservative and re-
strained revision, (Cons) and (Rest), satisfy (Refine). They also satisfy (Gen-
Refine), (NoReverse) and (GenNoReverse). The other two canonical construc-
tions, (Mod) and (Rad) satisfy none of these conditions. In my opinion, the
canonical constructions, as operations on semantic models of belief states, carry
much more conviction themselves than the less intuitive postulates of (Gener-
alized) Refinement and (Generalized) Non-reversal. Nevertheless, for the sake
of generality, we will work with these postul

While Observation 3 is good news for the supporters of both the Ramsey test
and the idea of Preservation, bad news is bound to come. Here is the result
that sets the limits.

Observation 5 Let (RT), (L0-Bel) and (AGM) be given, and let p<qL1 be a
proper subset of p<′qL1, i.e. let <′ be an proper refinement of <. If either

(i) p<qL0 is a proper subset of p<′qL0, the latter set is undogmatic and ∗
satisfies (NoReverse),

or
(ii) p<qL0 is identical with p<′qL0 and ∗ satisfies (GenNoReverse),

then p<qL2 is not a subset of p<′qL2.

Proof. We talk only about the finite case in which every proposition is express-
ible by some sentence from L0. For the sake of simplicity, we identify propo-
sitions (sets of possible worlds) with sentences in the following proof, trusting
that this does not cause any confusion. Let <′ be a proper refinement of <,
i.e., for all w and w′, if w < w′ then w <′ w′, and there are w1 and w2 such
that w1 <′ w2 but not w1 < w2. Since <′ refines < and <′ is asymmetric, we
can conclude that w1 ∼ w2.

(i) Let <′ be undogmatic, and suppose that p<qL0 is a proper subset of p<′

qL0 . The latter means that min<′(W ′) is a proper subset of min<(W ). The
set min<′(W ′) is non-empty. So we can choose w1 ∈ min<′(W ′) and w2 ∈
min<(W )−min<′(W ′). Given such w1 and w2, we can pick a world w3 6= w1
with w3 ≤′ w1. Such a w3 exists, because <′ is undogmatic. Since <′ is a
refinement of <, w3 ≤ w1. In short, we have w3 ≤ w1 ∼ w2 and w3 ≤′ w1 <′

w2.

Provided that the worlds w1, w2 and w3 satisfy these constraints, we consider
the conditional

(+) {w1, w2} > ({w2, w3} > {w2})

We show that the conditional (+) is accepted in the belief state represented by
<, but not in that represented by <′.

Let ∗ satisfy the nonreversal condition (NoReverse).

The revision of < by {w1, w2} gives w1 ∼∗
{w1,w2} w2 <∗

{w1,w2} w3, by (AGM).
Further revision by {w2, w3} gives min<∗

{w1,w2}
∗
{w2,w3}

(W ∗{w1, w2}∗{w2, w3}) =
{w2}, by (AGM) again. Hence (+) is accepted in <, by (RT).
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The revision of <′ by {w1, w2} gives w1 <′∗
{w1,w2} w3 by (AGM). Now notice

that {w1, w2} is consistent with p<′q, because w1 ∈ min<′(W ′). Thus we can
use (NoReverse) and get that w3 ≤′∗

{w1,w2} w2. Further revision by {w2, w3}
yields w3 ∈ min<′∗

{w1,w2}
∗
{w2,w3}

(W ′ ∗ {w1, w2} ∗ {w2, w3}), by (AGM) again.
Hence this latter set is not a subset of the proposition {w2}, and (+) is not
accepted in <′, by (RT).

Case (ii). Suppose that p<qL0 is identical with p<′qL0 . This means that
min<′(W ′) = min<(W ). So neither w1 nor w2 as defined above are in min<(W ).
Given w1 and w2, we can pick a world w3 from min<(W ) with w3 < w1 and
w3 <′ w1. In short, we have w3 < w1 ∼ w2 and w3 <′ w1 <′ w2.

We again consider the conditional (+) above and show that it is accepted in
the belief state represented by <, but not in that represented by <′.

Let ∗ satisfy the generalized nonreversal condition (GenNoReverse).

The revision of < by {w1, w2} and then by {w2, w3} has exactly the same
effects as in case (i), so (+) is again accepted in <, by (RT).

The revision of <′ by {w1, w2} gives w1 <′∗
{w1,w2} w3 by (AGM). Now notice

that this time {w1, w2} is not consistent with p<′q, so we need to use (Gen-
NoReverse) rather than the weaker condition (NoReverse) in order to get that
w3 ≤′∗

{w1,w2} w2. The rest is exactly as in case (i), hence again (+) is not
accepted in <′, by (RT).

We have seen that both in case (i) and in case (ii), the conditional (+) is ac-
cepted in the belief state represented by < but not in the belief state represented
by <′. Since (+) is in L2, we can conclude that p<qL2 is not a subset of p<′qL2 .

�

Corollary 6 Let (RT), (L0-Bel) and (AGM) be given. If ∗ produces some
undogmatic belief states for an assumption consistent with, but not already ac-
cepted in a prior belief state <, then (L1-Pres) implies a violation of (L2-Pres).

Proof. Let (RT), (L0-Bel), (AGM) and (L1-Pres) be given. Take a belief state
< and an α ∈ L0 that is consistent with, but not supported by <, and for
which <∗

α is undogmatic. We have ∅ 6= min<(W ) ∩ [α] ⊂ min<(W ), so by
(AGM), we can conclude that min<∗

α
(W ∗ α) is a proper subset of min<(W ).

Since the minima of < and <∗
α are different, we know that < 6= <∗

α. By (L1-
Pres), p<qL1 ⊆ p<∗

αqL1 . Thus by Observation 3, < ⊆ <∗
α. So < ⊂ <∗

α. By
(L1-Pres) and Observation 3, we get (Refine) which implies (NoReverse). So
by Observation 5, part (i), not p<qL2 ⊆ p<∗

αqL2 , which finishes the proof. �

The corollary tells us that Preservation on the level of L1 forces a violation
of Preservation of L2. This result is not a bug, it is a feature of belief revi-
sion modellings in the spirit of AGM. The violation of L2-Preservation is at
least as plausible as the canonical methods (Rest) and (Cons) are. These are
conservative methods that are designed to retain many conditionals. On the
other hand, in so far as (Mod) is a reasonable method, it is doubtful whether
L1-Preservation should be adopted as a rationality assumption for belief change.
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We now also see that the shift of attention from the Ramsey test (RT) to
the Monotonicity condition (Mon) in much of the relevant literature was an
infelicitous move. (L2-L1-Mon), which is the version of Monotonicity one needs
for the triviality proofs, is correct, but only vacuously so: It is correct just
because its antecedent is satisfied only in trivial cases. So the problem with
(Mon) is not just that it does not have all that much to recommend itself
intuitively. In contrast to the Ramsey test, the Monotonicity condition is itself
trivial.

Let us illustrate the message of Observation 5 with the help of an example.
In order to make the case more conspicuous, let us assume that the revision
function satisfies the stronger conditions (Refine) and (GenRefine), as notably
the canonical constructions (Cons) and (Rest) do.

Example 2 We consider two belief states B and B ′ for which pBqL1 ⊆
pB ′qL1 , but not pBqL2 ⊆ pB ′qL2 .

Let B be pq ∼ pq ∼ pq ∼ pq and B ′ be pq ∼ pq < pq ∼ pq. Intuitively the belief
sets involved are pBq = pOq = Cn+(>) and pB ′q = pO ∗ (p

.
∨ q)q = Cn+(p

.
∨

q), where
.
∨ is the exclusive disjunction. Clearly, B ′ is a (proper) refinement

of B , whence pBqL1 ⊆ pB ′qL1 , by Observation 3. Applying (L1-Bel), we can
verify that B ′ satisfies the conditional p > ¬q which B does not satisfy. So we
have pBqL1 ⊂ pB ′qL1 .

With the question mark ‘?’ indicating that the relation between the adjacent
worlds is open, we get

B ∗ p = pq ∼ pq < pq ? pq , by (AGM), and
B ∗ p ∗ q = pq < pq < pq ? pq , again by (AGM) and (Refine).
B ′ ∗ p = pq < pq < pq ? pq , by (AGM) and (Refine), and
B ′ ∗ p ∗ q = pq < pq < pq ? pq , by (AGM) and (GenRefine).

Notice that the conditional q > ¬p accepted in B ′ is preserved in B ′ ∗ p and
B ′ ∗ p ∗ q. Intuitively speaking, the exclusive disjunction of the initial belief
state retains its force throughout the iterated revision process. In B ∗ p and
B ∗ p ∗ q, the contrary conditional q > p is accepted. Since B supports, but B ′

does not support p > (q > p), we see that not pBqL2 ⊆ pB ′qL2 . While one
may certainly wonder whether (Refine) and (GenRefine) are too conservative,
there is nothing unnatural involved here.

Can we elaborate on the result contained in Observation 5? We recall from
section 8.1 that in the presence of the doxastic possibility operator ♦ it was
particularly easy to show that there are no two belief sets in L♦ that are related
by proper subset inclusion (see Observation 1). The point was basically that for
every α in pB ′q− pBq it is very easy to find a sentence that is in pBq− pB ′q,
namely ♦¬α. It is natural to ask whether a sentence can be found in the
language using only the positive dynamic modal > (instead of negative static
modal ♦) that similarly witnesses the non-elementship in the belief set. The
answer is positive, provided that the belief state in question is undogmatic.

Observation 7 Let (RT), (L0-Bel) and (AGM) be given. Let the belief state
< be undogmatic, and choose a propositional atom p such that neither p nor ¬p
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is in p<q. Then for all L0-sentences α,

(i) If α is not in p<q, then (¬α∨p) > ((¬α∨¬p) > ¬α) is in p<q

If in addition ∗ satisfies the condition (NoReverse), we get:

(ii) If α is in p<q, then (¬α∨p) > ((¬α∨¬p) > ¬α) is not in p<q

If in addition ∗ satisfies (Refine), we get:

(iii) If α is in p<q, then (¬α∨p) > ((¬α∨¬p) > α) is in p<q

Proof. Let < be undogmatic. Then there is a propositional atom p such that
min<(W ) is neither a subset of [p] nor of [¬p], so one can indeed find an atom
as required by the observation.

If we are interested in the nested conditional (¬α∨p) > ((¬α∨¬p) > ¬α) for a
given L0-sentence α, then (RT) tells us that we should be interested in the set

min(<∗
¬α∨p)∗¬α∨¬p

(W )

By (AGM),
min(<∗

¬α∨p)∗¬α∨¬p
(W ) = min<∗

¬α∨p
([¬α ∨ ¬p])

We first determine min<∗
¬α∨p

(W ), which by (AGM) is identical with min<([¬α∨
p]). Since min<(W ) intersects with [p], it does so with [¬α ∨ p], and we get
that

min<∗
¬α∨p

(W ) = min<([¬α ∨ p]) = min<(W ) ∩ [¬α ∨ p] 6= ∅

Now we start with the crucial case distinction.

Case (i). Suppose that α is not believed in <, that is α /∈ p<q, or equivalently,
min<(W ) intersects [¬α].

Then min<∗
¬α∨p

(W ) = min<(W ) ∩ [¬α ∨ p] intersects [¬α ∨ ¬p], and we get

min(<∗
¬α∨p)∗¬α∨¬p

(W ) = min<∗
¬α∨p

([¬α ∨ ¬p])

= min<∗
¬α∨p

(W ) ∩ [¬α ∨ ¬p]

= min<(W ) ∩ [¬α ∨ p] ∩ [¬α ∨ ¬p]

= min<(W ) ∩ [¬α]

⊆ [¬α]

Cases (ii) and (iii). Suppose that α is believed in <, that is α ∈ p<q, or
equivalently min<(W ) is a subset of [α].

Since min<(W ) intersects with [p], it does so with [¬α∨p]. Thus min<∗
¬α∨p

(W ) =
min<([¬α∨ p]) = min<(W )∩ [¬α∨ p] is a subset of [α∧ p], and we know that
min<∗

¬α∨p
([¬α ∨ ¬p]) is not a subset of min<∗

¬α∨p
(W ).

Since min<(W ) intersects with [¬p], it does so with [¬α∨¬p]. And clearly, for
all worlds w1 in the non-empty set [¬α∨¬p]∩min<(W ) and all worlds w2 not
in min<(W ), w1 < w2.
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Case (ii). Suppose that ∗ satisfies (NoReverse). Since ¬α∨ p is consistent with
<, we can conclude by (NoReverse) that for all worlds w1 in the non-empty set
[¬α ∨ ¬p] ∩ min<(W ) and all worlds w2 not in min<(W ), w1 ≤∗

¬α∨p w2. So
we get

∅ 6= min<∗
¬α∨p

([¬α ∨ ¬p]) ∩ min<(W ) ⊆ [α]

Thus min<∗
¬α∨p

([¬α ∨ ¬p] is not a subset of [¬α].

Case (iii). Suppose that ∗ satisfies (Refine). Since ¬α ∨ p is consistent with
<, we can conclude by (Refine) that for all worlds w1 in the non-empty set
[¬α∨¬p]∩min<(W ) and all worlds w2 not in min<(W ), w1 <∗

¬α∨p w2. Hence
we get

min<∗
¬α∨p

([¬α ∨ ¬p]) ⊆ min<(W ) ⊆ [α]

In sum, what we have demonstrated is that the non-empty set min(<∗
¬α∨p)∗¬α∨¬p

(W )
is a subset of [¬α] in case (i), no subset of [¬α] in case (ii), and a subset of [α]
in case (iii). Therefore, we have:

Given (AGM) alone,
(i) if α is not in p<q, then (¬α∨p) > ((¬α∨¬p) > ¬α) is in p<q

Given in addition (NoReverse),
(ii) if α is in p<q, then (¬α∨p) > ((¬α∨¬p) > ¬α) is not in p<q

Given in addition (Refine),
(iii) if α is in p<q, then (¬α∨p) > ((¬α∨¬p) > α) is in p<q �

Notice that the converse of (iii) follows from (i) and the fact that (¬α∨p) >
((¬α∨¬p) > ¬α) and (¬α∨p) > ((¬α∨¬p) > α) are not both in p<q, due to
(RT) and the consistency of the belief set p(<∗

¬α∨p)
∗
¬α∨¬pq.

Parts (i) and (ii) of Observation 7 specify a (somewhat complex) L2-sentence the
presence of which can serve as an indicator of the absence of an L0-sentence α
in a belief state <, provided the state revision function ∗ obeys the conservative
idea of (NoReverse). Are there similar indicators for the absence of L1-sentences
of the form α > β? It turns out that there are.

Observation 8 Let (RT), (L0-Bel) and (AGM) be given, and consider the
unnested conditional α > β with α and β from L0.

(i) Suppose the conditional is open in the sense that its antecedent α is consis-
tent with the belief state <. If < is undogmatic, and the propositional atom p
is such that neither p nor ¬p is in p<q, then

If α > β is not in p<q, then ((α∧¬β)∨p) > (((α∧¬β)∨¬p) > (α∧¬β))
is in p<q

If in addition ∗ satisfies the condition (NoReverse), we get:

If α > β is in p<q, then ((α∧¬β)∨p) > (((α∧¬β)∨¬p) > (α∧¬β)) is
not in p<q
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(ii) Suppose the conditional is belief-contravening in the sense that its an-
tecedent α is inconsistent with the belief state <. Then

If α > β is not in p<q, then α > ((¬α ∨ ¬β) > α) is in p<q

If in addition ∗ satisfies the condition (GenNoReverse), we get:

If α > β is in p<q, then α > ((¬α ∨ ¬β) > α) is not in p<q

Proof. (i) Note that a conditional α > β that is open in belief state <, i.e.,
one for which min<(W ) ∩ [α] 6= ∅, is equivalent with respect to its acceptance
in < to the L0-sentence ¬α ∨ β. This follows from (AGM), since min<∗

α
(W ) =

min<([α]) = min<(W ) ∩ [α] ⊆ [β] if and only if min<(W ) ⊆ [¬α ∨ β]. This
means that we can simply apply parts (i) and (ii) of Observation 7.

(ii) Let the conditional α > β now be belief-contravening, i.e., min<(W )∩ [α] =
∅. If we are interested in the nested conditional α > ((¬α∨¬β) > α), then (RT)
tells us that we should be interested in the set

min(<∗
α)∗¬α∨¬β

(W )

By (AGM),
min(<∗

α)∗¬α∨¬β
(W ) = min<∗

α
([¬α∨¬β])

Suppose first that α > β is not in p<q. Then [¬β] intersects min<∗
α
(W ),

and so does [¬α ∨ ¬β]. Hence min<∗
α
([¬α∨¬β]) = min<∗

α
(W ) ∩ [¬α∨¬β] =

min<([α]) ∩ [¬α∨¬β], by (AGM) again. But this latter set is a subset of [α].
So α > ((¬α ∨ ¬β) > α) is in p<q.

Suppose second that α > β is in p<q, and that ∗ satisfies (GenNoReverse).
Then min<∗

α
(W ), which is equal to min<([α]) by (AGM), is a subset of [β],

and so [¬α∨¬β] does not intersect it. Trivially, for all worlds w1 in min<(W )
and all worlds w2 not in min<(W ), w1 < w2. By (GenNoReverse), <∗

α does not
reverse < in W−min<([α]). Hence for all worlds w1 in min<(W ) and all worlds
w2 not in min<(W )∪min<([α]), w1 ≤∗

α w2, or more simply, for all worlds w1
in min<(W ) and all worlds w2 not in min<([α]), w1 ≤∗

α w2. Because we have
already shown that [¬α ∨ ¬β] does not intersect min<∗

α
(W ) = min<([α]), but

it does intersect min<(W ), we can conclude that all elements of min<(W ) are
included in min<∗

α
([¬α∨¬β]). But since no element of min<(W ) is in [α], we

get that min<∗
α
([¬α∨¬β]) is not a subset of [α]. So we have finally found that

α > ((¬α ∨ ¬β) > α) is not in p<q. �

As the proof shows, open conditionals with antecedents that are not in conflict
with the current belief state can already be taken care of by parts (i) and (ii) of
Observation 7. For belief-contravening conditionals, we needed a new argument,
but the indicator clause for their absence is simpler than the one mentioned in
rule (>>T) for factual sentences.

We can now take down analogues to the might test in the language L2 and have
more direct proofs of the existence of our subset problems.
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Corollary 9 Let (RT), (L0-Bel), (AGM) and (NoReverse) be given.

(i) Let the belief state < be undogmatic, and choose a propositional atom p such
that neither p nor ¬p is in p<q. Then for all L0-sentences α,

(>>T0) α is not in p<q iff (¬α∨p) > ((¬α∨¬p) > ¬α) is in p<q

(ii) For all belief states < and <′, if p<qL0 is a proper subset of p<′qL0 and
<′ is undogmatic, then p<qL2 is not a subset of p<′qL2.

(iii) For any L0-sentence α that is not in p<q, there is no undogmatic belief
state <′ that satisfies p<qL2 ∪ {α}.
Let in addition (GenNoReverse) be given. Then

(iv) For all L0-sentences α inconsistent with < and all L0-sentences β,

(>>T1) α > β is not in p<q iff α > ((¬α∨¬β) > α) is in p<q

(v) For all belief states < and <′, if p<qL1 is a proper subset of p<′qL1 then
p<qL2 is not a subset of p<′qL2.

Proof. (i) just summarizes parts (i) and (ii) of Observation 7. For (ii), suppose
that the belief set p<qL0 is a proper subset of the belief set p<qL0 and <′ is
undogmatic. Take some sentence α in L0 that is in p<′q but not in p<q. Notice
that neither p nor ¬p is in p<q. So by (>>T0), we get that (¬α∨p) > ((¬α∨¬p) >
¬α) is in p<q but not in p<′q. Since this sentence belongs to L2, we have a
counterexample to p<qL2 ⊆ p<′qL2 , as desired. For (iii), let α be not in p<q.
Notice that if an undogmatic belief state <′ satisfied p<qL2 ∪{α}, then p<′qL2

would be a superset of p<qL2 which is excluded by (ii). (iv) just summarizes
part (ii) of Observation 8. For (v) suppose that the belief set p<qL1 is a proper
subset of the belief set p<qL1 . Take some sentence α > β in L1 that is in p<′q
but not in p<q. So by (>>T1), we get that α > ((¬α∨¬β) > α) is in p<q but
not in p<′q. Since this sentence belongs to L2, we have a counterexample to
p<qL2 ⊆ p<′qL2 , as desired. �

We have established two claims, viz., that under certain preconditions,

(6⊂0) p<qL0 ⊂ p<′qL0 entails p<qL2 6⊆ p<′qL2

and that under certain other, slightly different preconditions,

(6⊂1) p<qL1 ⊂ p<′qL1 entails p<qL2 6⊆ p<′qL2

The preconditions are essentially Non-dogmatism for belief states and Non-
reversal of ∗ for the former, and Generalized Non-reversal of ∗ for the latter
condition. It is worth pointing out that the claims (6⊂0) and ( 6⊂1) are logically
independent, because neither antecedent implies the other. The antecedent of
(6⊂0) does not say anything about conditionals in L1. The antecedent of ( 6⊂1)
leaves open the possibility that the belief sets in L0 are identical. Now recall
from Corollary 4(ii) that as long as a belief revision function ∗ is fixed, two
belief sets cannot be identical in our modelling within L1 and yet diverge in
L2 or L3. This taken together with (6⊂1) implies that under the preconditions
mentioned,

29



(6⊂2) There are no two belief states < and <′ such that p<qL2 ⊂ p<′qL2 .

Observations 7 and 8 tell us that for undogmatic belief states and revision
functions ∗ satisfying the (Generalized) Non-reversal condition, the language
L2 provides for non-elementhood tests (>>T0) and (>>T1) for L0-sentences
and, respectively, L1-sentences that are similar to the might test (♦T) within
the language L♦. The doxastic possibility statement ♦α has a close counterpart
in the nested conditional30

(α∨p) > ((α∨¬p) > α)

and something like a belief-contravening might conditional ‘If α were the case,
it might be the case that β’ is expressible by

α > ((¬α∨β) > α)

provided that the revision method is non-reversing in the ordinary or, repec-
tively, generalized way.

The test sentence corresponding to ♦α rather complex. Supposing that ordinary
language users can understand it at all and that natural language conditionals
are captured by the Ramsey test, we may ask how plausible the result just
obtained is. Unfortunately, it does not look very plausible. Many people may
(using, at least implicitly, the Import-Export Rule for conditionals) feel tempted
to read it as equivalent with the flat conditional ((α∨p) ∧ (α∨¬p)) > α which
can be reduced to α > α. This conditional should certainly be acceptable,
even if α is believed to be false! This finding does not speak against part (i)
of Observation 7, but parts (ii) and (iii) look objectionable now. If this line
of thought is considered to be convincing, it may be taken as an argument
against (NoReverse), and hence also against (Refine) and L1-Preservation. We
will return to this topic in Section 10.

9 The AGM postulates reconsidered

What becomes of the AGM postulates if we accept the Ramsey test in the
context of L2 and more complex languages? As Gärdenfors showed, the AGM
postulates must be invalid for conditionals that go by the Ramsey test. We
restrict our discussion to inputs from L0. Still the situation is somewhat com-
plex.

Remember that a belief set (in Li) is the set of Li-sentences validated by some
belief state in some given belief revision model 〈B,O, ∗〉. All postulates except
the Success postulate (AGM*2) refer to the background logic Cn, and we have
seen that there are different ways of interpreting Cn in the context of belief
revision models. The meaning and validity of almost all the AGM postulates
thus depends on the meaning that we attach to Cn. Since we are not claiming

30Incidentally, we might also regard (¬α ∨ p) > ((¬α ∨ ¬p) > α) as a counterpart to the
doxastic necessity statement �α, provided the revision function is refining. But this is not
really an achievement, since we could have a simpler conditional representation of �α by
> > α. It is the possibility operator that is interesting here.
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that conditionals express propositions, we cannot use a truth conditional se-
mantics but stick to the semantics in terms of the acceptability in belief states
described in Section 6.

The Closure condition (AGM*1) is automatically satisfied for Cn−, but it is
and should be invalid for Cn+. For instance, pO∗pq contains p∨q, and ¬p > q
is in Cn+(p ∨ q), but pO ∗ pq does not and should not contain ¬p > q. The
Consistency condition (AGM*5) is satisfied in all belief states represented by
finitistic strict preorderings < since there are always minimal worlds under <.31

The Extensionality condition (AGM*6) is unproblematic. Since we have little
grip on Cn+ yet, we focus on Cn− in the following.

The main issue lies with the pairs (AGM*3)/(AGM*4) and (AGM*7)/(AGM*8)
that ask for subset inclusions. We comment on the fist pair, the case of the
latter is similar. All canonical construction of course satisfy (AGM*3) and
(AGM*4) within L0.

Let us now look at languages containing conditionals. The first case we consider
for is the one in which α is in pBq. Then (AGM*3) and (AGM*4) basically
say that pB ∗ αq ⊆ pBq and pBq ⊆ pB ∗ αq, respectively. Both are satified
if B = B ∗ α, a result given by conservative revision, but by none of the
other canonical constructions. Restrained revision, a refining model, satisfies
(AGM*4), but not (AGM*3) within L1. Moderate and radical revision violate
both (AGM*3) and (AGM*4) even in this first case.

Now consider the more interesting case in which α is not in pBq. We need
to consider Cn−( pBq ∪ {α}) ⊆ pB ∗ αq. But we know from the last section
(see in particular Corollary 9(iii)), that within L2 no belief state includes the
set pBq ∪ {α}. So Cn−( pBq ∪ {α}) is the inconsistent set of all sentences,
which makes (AGM*3) trivially true and (AGM*4) trivially false. Can these
conditions be satisfied, in a more interesting way, within L1? Here the postulate
(AGM*4), according to which Cn−( pBq∪{α}) ⊆ pB ∗αq for α consistent with
B , is fulfilled for conservative and restrained revision, and indeed all successful
revision methods ∗ satisfying Refinement. But (AGM*3), according to which
pB∗αq ⊆ Cn−( pBq∪{α}), does not hold for any of the canonical constructions,
not even for the refining methods (Cons) and (Rest). To see this, consider the
blank slate O (any belief state that “knows nothing” about p and q would
do). O ∗ p satisfies the conditional q > p. But this conditional is not in
Cn−( pOq ∪ {p}), because there is a belief state satisfying the L1-part of pOq
and {p} which does not satisfy q > p. For instance, O ∗ (p∧¬q) is such a belief
state, with ∗ denoting conservative revision.32

Summing up, little is left of the AGM postulates if we move from L0 to L2

and more complex languages. Restricting the postulates to a language of low
31The situation is slightly different for systems of spheres which may be called inconsistent

if they include the empty set. But we neglect this case since dynamically speaking, the
inconsistent system of spheres $∪{∅} is equivalent to the consistent system of spheres $−{∅}.

32But should q > p perhaps be in Cn( pOq ∪ {p})? When α from L0 is consistent with
pBq, it looks indeed very natural to identify Cn( pBq ∪ {α}) with pB ∗ αq, where ∗ is con-
servative revision. This operation Cn is stronger than the operation Cn−, and it might be an
appropriate multiple-premise extension of Cn+. Such questions have to be left for later work.
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level is an obvious way out. Restricting them to L0 is the safe option and
brings us back to the propositional language of AGM. Restricting the AGM
postulates to L1 is possible in quite some cases, but lacks an independent mo-
tivation, once one has understood that any way of claiming that the postulates
are plausible for L2 is blocked. If we are prepared to include conditionals in the
language, then we should at the same time be prepared to give up the postulates
(AGM*3)/(AGM*4) concerning assumptions that are consistent with one’s be-
liefs, as well as the postulates (AGM*7)/(AGM*8) dealing with revisions by
conjunctions.

10 Conclusion

I have argued that the spirit of AGM is semantic. This is not a historical
claim about the origin and early development of the AGM program, but with
the benefit of hindsight, it seems to me systematically correct. The semantic
reinterpretation of AGM was first worked out by Grove and later confirmed in
the influential work of Katsuno and Mendelzon.

Throughout this paper I have presupposed that we use the Ramsey test as an
interpretation of conditionals – a certain kind of conditionals that we called
“Ramsey test conditionals”. Once one adopts a resolutely semantic point of
view, there is a very natural resolution of the riddle surrounding the applicabil-
ity of the Ramsey test in the context of AGM style belief change. The key to
it lies in the inspection of constructive revision operations on simple semantic
models of belief states, or more briefly, on semantic methods for iterated belief
change. It does not lie in any firm intuition about the various postulates that
have been discussed over and over again in the literature.

The spirit of AGM is encoded in the constraint (AGM) for the revision of
orderings of possible worlds or systems of spheres. One of our results has been
that one can very well keep both the Ramsey Test (RT) and a model for belief
state revision (or iterated belief set revision) that is fully in the spirit of AGM.
We have questioned neither (RT) nor (AGM) in this paper.

Following from the Ramsey test, the Monotonicity condition is true as well.
But it is important to distinguish two cases. (L1-L0-Mon) is non-vacuously
satisfied by some revision functions, notably by conservative and restrained
revision. But (L2-L1-Mon) can only be satisfied vacuously, due to the fact that
its antecedent, which requires subset inclusion between belief sets in L2, is only
fulfilled in trivial cases.

Like Monotonicity, the Preservation condition has been more finely analyzed
by distinguishing different levels of conditional nestedness. As AGM argued,
Preservation seems compelling for the factual sentences of L0. Preservation for
L1-sentences is the first and mildest extrapolation from L0-Preservation. We
have seen that it has a semantic equivalent in the Refinement property. We
then considered other refinement and non-reversal properties which are sim-
ilarly motivated as Refinement. Significantly, two out of our four canonical
constructions for iterated belief revision, viz., conservative and restrained re-
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vision, satisfy Refinement, and exactly these revision methods also satisfy the
other refinement and non-reversal properties.

So Preservation for non-nested conditionals in L1 has turned out to be imple-
mentable together with the Ramsey test. We have seen, however, that Preser-
vation cannot be obeyed for the language L2. Given the canonicity of the four
constructions that we considered, it is not awkward, but perfectly natural that
Preservation for L2 should fail. We can understand why it fails by inspecting
constructive processes of belief state change. In a second proof of this result,
we identified (>>T0), a kind of might test in a language that does not have the
diamond ♦, but allows the simplest nestings of conditionals.

The case for Preservation is strong for factual sentences in L0 and hopeless
for nested Ramsey test conditionals in L2. The merits of Preservation are
most difficult to evaluate for L1. While technically feasible, it seems to me
that Preservation for L1 is badly in need of independent motivation. Once
Preservation has been discredited in the context of L2, it is no longer self-
evident that it should hold for L1. I think it has been a philosophical error
to transfer, as a matter of course, the intuition of Preservation from truth-
functional propositional language to languages containing doxastic conditionals.
The complexities involved in nested conditionals (and iterated revisions) have
simply been underappreciated in the literature. Preservation for L2 and more
complex languages has been a wrong desideratum in the first place.

This paper has addressed a logical problem, not a linguistic one. I did not claim
that the meaning of natural language conditionals, indicative or subjunctive,
is captured by the Ramsey test. My topic here have been Ramsey test con-
ditionals themselves, as objects of logical analysis, not as possible elements of
common parlance. Our discussion of the Ramsey test in the AGM framework
has emphasized the idea of preservation, and we have seen that the preservation
of flat conditionals recommends conservative methods of belief change: (Cons)
and (Rest) are favoured, while moderate and radical revision, (Mod) and (Rad),
are dismissed as unnecessarily losing flat conditionals.

I believe that a discussion of conditionals from the linguistic point of view
tends to lead to the opposite conclusion. Let us illustrate this by McGee’s
(1985) notorious counterexample to Modus Ponens. The polls conducted before
the American election in 1980 predicted that the Republican Reagan would
end up first, the Democrat Carter would be second by a wide margin, and
finally the Republican Anderson would come in as a distant third. The polls
gave excellent justification for believing that Reagan wins (r), the second most
plausible scenario was that Carter wins (c) and the least plausible (but not
completely impossible) scenario was that Anderson wins (a). A rational person
then was in a belief state characterizable by acr < acr < acr. In this state
she accepts r and ¬r > c. Preservative revision methods like conservative
and restrained revision prescribe that ¬r > c be retained when she learns
or hypothetically assumes that it is a Republican who will win. But this is
counterintuitive. It seems hard to deny that in such a situation she would and
should rather switch to accepting ¬r > a. So the two preservative methods
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seem inadequate for the Ramsey test on intuitive grounds. The two remaining
canonical constructions, radical and moderate revision, predict the intuitively
right result and thus seem more suitable for the analysis of natural language
conditionals.33 Both (Rad) and (Mod) ensure the validity of the Import-Export
Law, according to which α > (β > γ) is equivalent with (α ∧ β) > γ, provided
that α ∧ β is consistent. According to (Rad) and (Mod), but not according
to (Cons) and (Rest), McGee is right in maintaining that ¬r > a is not in
Cn{(a ∨ r) > (¬r > a), a ∨ r}, hence that Modus Ponens is not valid within
L2.34 All of this suggests that Preservation is not a reasonable requirement
even within the language of flat conditionals, L1.
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Konieczny, S. and Pino Pérez, R. (2000). A framework for iterated revision.
Journal of Applied Non-Classical Logics, 10:339–367.

Leitgeb, H. (2010). On the Ramsey test without triviality. Notre Dame Journal
of Formal Logic, 51:21–54.

Levesque, H. J. (1990). All I know: A study in autoepistemic logic. Artifcial
Intelligence, 42:263–309.

Levi, I. (1967). Gambling With Truth. Alfred Knopf, New York, New York.

Levi, I. (1996). For the Sake of Argument: Ramsey Test Conditionals, Inductive
Inference and Nonmonotonic Reasoning. Cambridge University Press.

Lewis, D. (1973). Counterfactuals. Blackwell, Oxford. Second edition 1986.

Lewis, D. (1976). Probabilities of conditionals and conditional probabilities.
Philosophical Review, 85:297–315. Reprinted, with a postscript, in D. Lewis,
Philosophical Papers, Vol. 2, Oxford University Press, Oxford 1986, pp. 133–
156.

Lindström, S. and Rabinowicz, W. (1998). Conditionals and the Ramsey test. In
Gabbay, D. M. and Smets, P., editors, Handbook of Defeasible Reasoning and
Uncertainty Management Systems, volume 3 (Belief Change), pages 147–188.
Kluwer.

Makinson, D. (1990). The Gärdenfors impossibility theorem in non-monotonic
contexts. Studia Logica, 49:1–6.

McGee, V. (1985). A counterexample to modus ponens. Journal of Philosophy,
82:462–471.

Nayak, A. (1994). Iterated belief change based on epistemic entrenchment.
Erkenntnis, 41:353–390.

Nayak, A., Pagnucco, M., Foo, N. Y., and Peppas, P. (1996). Learning from
conditionals: Judy Benjamin’s other problems. In Wahlster, W., editor,
Proceedings of 12th European Conference on Artificial Intelligence, Budapest,
pages 75–79. Wiley, New York.

Nute, D. and Cross, C. B. (2001). Conditional logic. In Gabbay, D. M. and
Guenthner, F., editors, Handbook of Philosophical Logic, volume Vol. 4, pages
1–98. Kluwer, Dordrecht, second edition.

Ramsey, F. P. (1931). General propositions and causality. In Braithwaite,
J. B., editor, The Foundations of Mathematics and Other Logical Essays,
pages 237–255. Kegan Paul, London. 4th imprint 1965.

Rott, H. (1986). Ifs, though and because. Erkenntnis, 25:345–370.

Rott, H. (1991). A nonmonotonic conditional logic for belief revision I. In
Fuhrmann, A. and Morreau, M., editors, The Logic of Theory Change, volume
465 of LNAI, pages 135–181. Springer-Verlag, Berlin.

36



Rott, H. (2001). Change, Choice and Inference: A Study in Belief Revision and
Nonmonotonic Reasoning. Oxford University Press, Oxford.

Rott, H. (2003). Coherence and conservatism in the dynamics of belief. Part II:
Iterated belief change without dispositional coherence. Journal of Logic and
Computation, 13:111–145.

Rott, H. (2009). Shifting priorities: Simple representations for twenty-seven it-
erated theory change operators. In Makinson, D., Malinowski, J., and Wans-
ing, H., editors, Towards Mathematical Philosophy, Trends in Logic, pages
269–296. Springer Verlag, Berlin.

Ryan, M. D. and Schobbens, P.-Y. (1997). Counterfactuals and updates as
inverse modalities. Journal of Logic, Language and Information, 6:123–146.

Schwitzgebel, E. (2006). Belief. In Zalta, E. N., editor, The Stanford Encyclo-
pedia of Philosophy.

Segerberg, K. (1998). Irrevocable belief revision in dynamic doxastic logic.
Notre Dame Journal of Formal Logic, 39:287–306.

Stalnaker, R. (1968). A theory of conditionals. In Rescher, N., editor, Studies in
Logical Theory, volume 2 of APQ Monograph Series, pages 98–112. Blackwell,
Oxford. Reprinted in William L. Harper, Robert Stalnaker and Glenn Pearce
(eds.), Ifs, Dordrecht 1980, 41-55.

Stalnaker, R. (2009). Iterated belief revision. Erkenntnis, 70:189–209.

Veltman, F. (1996). Defaults in update semantics. Journal of Philosophical
Logic, 25:221–261. (Reprinted in Philosopher’s Annual 19, 1996).

37



Contents

1 Introduction: Remarks on the history of the AGM program 1

2 Belief states and belief revision models in general 3

3 The impossibility result 5

4 Proving the result 5

4.1 Existing literature. . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Two other attempts. . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Languages 9

6 Logics 10

7 Belief states and belief revision models: Specific representa-
tions 12

7.1 Particular modellings of belief states. . . . . . . . . . . . . . . . 12

7.2 Particular belief revision models. . . . . . . . . . . . . . . . . . . 14

8 The subset problem 19

8.1 Doxastic possibility. . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.2 Conditional doxastic necessity. . . . . . . . . . . . . . . . . . . . 20

9 The AGM postulates reconsidered 30

10 Conclusion 32

11 Acknowledgments 34

38


