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1 Introduction

A Cartesian skeptic must not accept anything but what is ideally clear and dis-
tinct in her mind. She has only few beliefs, but all her beliefs have maximal
certainty.1 Some philosophers recommend that a responsible believer should be-
lieve only what is beyond any doubt, namely logical and analytical truths.2 The
common core of such proposals is that maximal certainty is held to be necessary
and sufficient for rational belief. Consequently, the believer’s beliefs are all on an
equal footing, no degrees of belief are needed, the set of beliefs is ‘flat’.

Other philosophers felt that this picture is inadequate. As a matter of fact,
we are not as reluctant to take on beliefs as Descartes admonished us to be.
We believe quite a lot of things, and we are aware that there are differences
in the quality of these beliefs. There is no denying that we are fallible, and if
we are forced to give up some of the beliefs we have formed (Descartes would
say, precipitately), we can adapt our beliefs in accordance with their varying
credentials. Beliefs can be thought of as being equipped with labels specifying
their ‘certainty’, or, to use a different terminology, their ‘entrenchment’ in a
person’s belief state.

Ever since Hintikka (1962), philosophers and logicians have been fond of
thinking of belief as a form of necessity (‘doxastic necessity’). If one wants to
acknowledge distinctions in degrees of belief, one has to introduce a notion of
comparative necessity. Saying that A is more firmly believed than B is to say
that A is more necessary than B. Degrees of belief are grades of modality.

Having said that, there are questions on two sides. First, it is of course
natural to think of a dual to necessity, a doxastic possibility operator. Second,
we seem to miss rankings of non-beliefs. Even if a proposition is not believed, it
may be more or less close to being believed. We shall distinguish non-beliefs in

1Actually, not so few and not so certain beliefs if she runs through the six Meditations to
their very end.

2‘Relations of ideas’, in Hume’s favourite terms. Isaac Levi calls such an epistemology
‘Parmenidean’.



a narrow sense from disbeliefs (see Quine and Ullian 1978, p. 12). A sentence A
is disbelieved by a person if she believes the negation of A, and the person is in
a state of non-belief with respect to A if she is agnostic about it, i.e., believes
neither A nor the negation of A.3 In a rather straightforward manner, the notion
of doxastic possibility can be applied to non-beliefs: A is a non-belief if and only if
the agent considers both A and the negation of A possible. Perhaps surprisingly,
we shall see that it has also been quite common to apply the notion of doxastic
possibility to disbeliefs.

To believe that A is true means that A is true in all the worlds that the per-
son regards as (doxastically) possible, and truth in all accessible possible worlds
has long been viewed as explicating the notion of necessity. As a consequence
of the classical notion of a world, it follows that the reasoner believes A ∧ B if
and only if she believes A and believes B. Necessity distributes over conjunc-
tion. Possibility is dual to necessity, and thus it distributes of over disjunction.
The reasoner believes that A ∨ B is possible if and only if she believes that A
is possible or believes that B is possible. We shall see that in a framework that
acknowledges degrees of belief, comparative necessity comes with a special con-
dition for conjunctions, and comparative possibility with a special condition for
disjunctions.

It is not quite clear whether the term ‘degree of belief’ should in the first
instance be applied to beliefs or non-beliefs. Advocates of subjective probability
theory, identifying degrees of belief with probability values, seem to apply it pri-
marily to non-beliefs. If your degree of belief of A is represented by probability
0.5, for example, you certainly don’t believe that A. In contrast, I start this
paper by assuming that degrees of belief should in the first instance be applied to
beliefs.4 The paradigm case of a degree of belief gives expression to the firmness
of belief.

It is the main aim of the present paper, however, to extend the degrees of
belief into a single linear ordering that also applies in a non-trivial way to both
disbeliefs and non-beliefs. It will turn out that the ways of constructing the two
extensions are surprisingly uniform, viz., by relational intersection, even if the
results differ in structure. A constraint to be met is that beliefs should be ranked
higher than disbeliefs, and that non-beliefs in the narrow sense should find a
place between beliefs and disbeliefs.5

3Thus ‘A is not a belief’ is equivalent to saying that ‘A is either a non-belief or a disbelief’.
To avoid confusion, I shall sometimes speak of ‘non-beliefs in the narrow sense’ rather than just
‘non-beliefs’.

4Here I side with Levi (1984, p. 216): “In presystematic discourse, to say that X believes
that h to a positive degree is to assert that X believes that h.”

5The notion of partial belief which is often used in probabilistic frameworks will not be
addressed in the present paper. We shall have no measure function that could express the
relative size of a proposition in a reasoner’s space of doxastic possibilities. Degrees are not
proportions.
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The term ‘degrees of belief’ is usually taken to mean that some numbers, for
instance probabilities, are assigned to the beliefs in question. I shall not make this
assumption in the present paper. It is rather hard to justify the assignment of a
precise numerical value. Often it is easier (if less informative) to determine the
certainty of a belief not absolutely, but only in comparison with other beliefs. I
shall be content in this paper with the comparative notion of ‘degree’, as expressed
in the phrase ‘I believe A to a greater degree than B’.

Whenever I will make use of numerals in the following, they are not meant
to stand for genuine numbers representing metrical relations among beliefs. They
just serve as convenient indicators of positions in a total preordering. The op-
erations of addition, subtraction or multiplication wouldn’t make any sense if
applied to the numerals I will be using.6

Non-probabilistic degrees of belief have sometimes been advocated because
in contrast to ordinary probability, they allow us to model ‘plain belief’ (Spohn
1990; 1991, p. 168) or ‘total ignorance’ (Dubois, Prade and Smets 1996). At the
end of this paper we will return to the question of the meaning of ‘belief’. Having
extended a qualitative notion of degree to both non-beliefs and disbeliefs, I will
argue that the notion of belief (as well as the correlative notions of disbelief and
non-belief) is as elusive here as it is in the probabilistic context.

2 Degrees of beliefs

2.1 Entrenchment relations. We begin the presentation with a way of dis-
tinguishing beliefs according to their degrees of firmness, certainty or endorse-
ment. A measure of the firmness of belief can be seen in their invulnerability,
that is, the resistance they offer against being given up. Such measures are pro-
vided in the work on entrenchment relations by Peter Gärdenfors and David
Makinson (Gärdenfors 1988, Gärdenfors and Makinson 1988) and on the degrees
of incorrigibility by Isaac Levi (see Levi 1996, p. 264; 2004, pp. 191–199). Dubois
and Prade (1991) have rightly pointed out that entrenchment is a notion of com-
parative necessity and have related it to their own account of possibility theory.7

In the following, we propose to read A ≤e B as “B is at least as firmly
believed as A” or “B is at least as entrenched among the reasoner’s beliefs as A”.
Here are the first three Gärdenfors-Makinson axioms for entrenchment relations8

6An exception seems come up in Section 4.2, but as remarked there, the plus sign used
in the construction of ‘belief functions’ from ‘entrenchment’ and ‘plausibility functions’ is not
necessary, but serves just a convenient means for encoding an operation that could just as well
be presented in purely relational terms.

7Possibility theory as developed in Toulouse has produced a large number of very important
contributions to the topics covered in this paper. See for instance Dubois (1986), Dubois and
Prade (1988a), Dubois, Prade and Smets (1996) and Dubois, Fargier and Prade (2004).

8This set of axioms is exactly the one used by Gärdenfors and Makinson (1994, p. 210) for
expectation orderings. I will offer an account of the difference between beliefs and expectations
later in this paper.
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(E1) If A ≤e B and B ≤e C then A ≤e C Transitivity

(E2) If A ` B then A ≤e B Dominance

(E3) A ≤e A ∧B or B ≤e A ∧B Conjunctiveness

We work in a purely propositional language, containing the truth and falsity
constants > and ⊥. For the sake of simplicity, we assume that the background
logic is classical (or of some similar Tarskian kind). Thus in (E2), ` may be
thought of as denoting the consequence relation of classical logic. Condition (E3)
establishes a kind of functionality of ≤e with respect to conjunction, since the
converse inequalities A∧B ≤e A and A∧B ≤e B already follow from (E2). The
firmness of belief of a conjunction equals that of the weaker conjunct.

It is easy to derive from these axioms that entrenchment relations are to-
tal.

A ≤e B or B ≤e A.

Thus any two sentences can be compared in terms of entrenchment. The very
talk of ‘degrees of belief’ seems to presuppose this.9

By (E2), logically equivalent sentences are equally entrenched, they have the
same ‘degree of belief’. The contradiction ⊥ is minimally and the tautology > is
maximally entrenched.

The entrenchment of a proposition is determined by the least incisive way of
making that proposition false. This explains (E3), for instance. A least incisive
way of making A∧B false is either a least incisive way of making A false or a least
incisive way of making B false (or both). For reasons explained in Section 4, there
can be no corresponding condition for disjunctions, a disjunction A∨B can indeed
be strictly more entrenched than either of its disjuncts. There is no condition for
negation, but it is easy to deduce from (E1)–(E3) that at least one of A and ¬A
is minimal with respect to ≤e.

We treat as optional two conditions of Gärdenfors and Makinson (1988)
relating to the maximum and minimum of entrenchments.

9Many people find this too strong. We often appear to have beliefs that we are unable to
rank in terms of firmness or certainty. For instance, I am more certain that I can jump 3 meters
than that I can jump 3.5 meters. But how does this relate to the question whether Henry V is
the father of Henry VI? It seems that I am neither more certain that Henry V is the father of
Henry VI than that I can jump 3.5 meters, nor am I more certain that I can jump 3 meters than
that Henry V is the father of Henry VI. I simply feel that I cannot compare the historical belief
with my beliefs about my ability to leap over a certain length. I agree that full comparability
of entrenchments is a very strong and sometimes unrealistic requirement. Various concepts
of entrenchment without comparability are studied by Lindström and Rabinowicz (1991) and
Rott (1992, 2000, 2003). The choice-theoretically motivated condition for the most ‘basic’
entrenchment (Rott 2001, p. 233, Rott 2003), viz., A∧B ≤e C if and only if both A ≤e B ∧C
or B ≤e A ∧ C, has turned out to be dual to Halpern’s (1997) condition of ‘qualitativeness’.
Still, for the purposes of this paper, I will assume that all beliefs are comparable in terms of
their firmness.
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(E4) ⊥ <e A iff A is believed Minimality

(E5) > ≤e A only if ` A Maximality

(E4) can be considered to be an explication of the notion of belief : A sentence
is entrenched in a person’s belief state to any non-minimal degree if and only if
it is believed to a degree that exceeds that of the non-beliefs.10 Put equivalently,
with the help of (E1)–(E3), that A is believed means that ¬A <e A. Beliefs are
more entrenched than their negations. Non-beliefs (in the wide sense including
disbeliefs), on the other hand, are only minimally ‘entrenched’, i.e., as entrenched
as ⊥. Only beliefs are really ranked by the degrees-of-belief relation ≤e which
offers nothing to distinguish between non-beliefs.

The ‘Parmenidean’ condition (E5) says that only tautologies are maximally
entrenched. Setting technical advantages aside, there is little to recommend this
condition. Let us call maximally entrenched sentences a priori. I do not see
that we should dogmatically deny logically contingent sentences the status of
aprioricity. But (E5) implies the much weaker

(E5′) Not > ≤e ⊥ Non-triviality

which is a very reasonable condition. If> ≤e ⊥, then all sentences of the language
have the same entrenchment which trivializes the notion of a degree, and the
reasoner would be at a loss whether to believe everything or nothing. Next to
this trivial relation are entrenchments having exactly two layers, one including
> and one including ⊥, the former containing all beliefs (which are all ‘a priori’)
and the latter containing all non-beliefs (in the wide sense). Although not trivial,
such two-layered relations do not represent substantive degrees of belief either,
but express nothing more than a categorical yes-no notion of belief.11

2.2 Entrenchment ranking functions. There are situations in which the
requirements on the representation of firmness have to be tightened, situations
in which one does not only compare beliefs but in which one wants to distinguish
distances in strength or degree of belief. Rather than just saying that A is less
firmly believed or less entrenched than B, one wants to express how much less
firmly A is believed than B. To this end, one can map beliefs onto a scale,
i.e., a totally ordered set of numbers, like the natural numbers (Spohn) or the
closed real interval from 0 to 1 (Dubois and Prade). Rather than just saying that
A <e B, one might say, for instance, that the degree of entrenchment (as a degree
of belief) of A is 3, say, while the degree of entrenchment of B is 8. And this
of course is meant to express more of a difference than the degree 4 for A and
a degree 6 for B, even though the purely relational term is A <e B both times.

10We may safely neglect here Gärdenfors and Makinson’s restriction of (E4) to consistent
belief sets.

11According to my idealized description at the beginning of this paper, every skeptic has a
two-layered entrenchment relation. But the converse is of course not true; not every person
with a two-layered degree structure has beliefs that are absolutely certain.
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We follow Spohn in favouring the discrete structure of the integers.
An entrenchment ranking function, or simply entrenchment function, ε as-

signs to each sentence a non-negative integer such that

(Ei) Sentences equivalent under ` get the same ε-value. Intensionality

(Eii) ε(⊥) = 0 Bottom

(Eiii) ε(A ∧B) = min{ε(A), ε(B)} Conjunctiveness

Entrenchment functions express quantitative degrees of beliefs. Condition
(Ei) needs no comment. Condition (Eii) is not really necessary and listed here just
for the sake of convenience and continuity with the literature. Condition (Eiii)
is the most characteristic feature of entrenchment ranking functions, essentially
expressing what the axioms (E2) and (E3) above express in qualitative terms.

It follows from these conditions that for any A, either ε(A) = 0 or ε(¬A) =
0, corresponding to the fact that either A ≤ ⊥ or ¬A ≤ ⊥ for entrenchment
relations.

Spohn’s idea is that a positive entrenchment value ε(A) > 0 means that A
is believed. A maximum entrenchment value ε(A) ≥ ε(>) means that A is a
priori for an agent with the doxastic state represented by ε. One may stipulate
again that only tautologies are a priori, or, more cautiously, add at least the
non-triviality condition ε(⊥) < ε(>). We take all these conditions as optional.

Variants of entrenchment functions were introduced with Shackle’s (1949,
1961) ‘degrees of belief’, Levi’s (1967) ‘degrees of confidence of acceptance’, Co-
hen’s (1977) ‘Baconian probability’, Rescher’s (1964, 1976) ‘conjunction-closed
modal categories’ and ‘plausibility indexings’, Shafer’s (1976) ‘consonant belief
functions’, Dubois and Prade’s (1988a, 1988b, 1991) ‘necessity measures’, Gär-
denfors and Makinson’s (1994) ‘belief valuations’ and Williams’s (1995) ‘partial
entrenchment rankings’.

2.3 Entrenchment functions and relations. Let us call a reflexive and
transitive relation ≤ finite if the symmetric relation ' = ≤ ∩ ≤−1 partitions the
field of the relation into finitely many equivalence classes.

Observation 1 Take an entrenchment function ε. Then its relational projection
defined by

A ≤e B iff ε(A) ≤ ε(B)

is an entrenchment relation. Conversely, for every finite entrenchment relation
≤e there is an entrenchment function ε such that ≤e is the relational projection
of ε.

I think it is fair to say that the first part of this observation it is folklore in
belief revision theory. The second part is equally simple. Just take the equiva-
lence classes with respect to 'e and number them, beginning with 0, “from the
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bottom to the top” according to the ordering induced by ≤e. The structure of the
entrenchment relation guarantees that the function generated satisfies (Ei)–(Eiii).

Notice that if we start from ε, take its projection ≤e and afterwards apply
the construction just mentioned to ≤e, then in general we will not get back ε
again. All the “gaps” in ε will be closed in the new entrenchment function.

Now we have quite a fine-grained and satisfactory notion of degrees of belief.
The problem is, however, that the propositions that are not believed are all on
the same level. They are all as entrenched as the contradiction ⊥. Intuitively
this seems just wrong. Believers do make distinctions between non-beliefs just
as elaborately as between beliefs. We begin to address this modelling task by
refining the degrees of disbelieved sentences. This will be our first step in fanning
out the ‘lowest’ degree of belief. The second step will then continue by fanning
out the newly formed, still large ‘middle’ layer of non-beliefs in the narrow sense.

3 Degrees of disbeliefs

Do we have any means to rank the large class of sentences at the bottom of
entrenchment? The sentences that are not believed fall into two classes. On
the non-beliefs in the narrow sense, the reasoner does not take any firm stand.
The disbeliefs, on the other hand, are sentences that the reasoner believes to be
false. Among the latter, we can distinguish various degrees of plausibility. The
key idea, it turns out, is to tie the notion of the plausibility of a disbelief to the
entrenchment of its negation. Degrees of disbelief are in a sense dual to degrees
of belief.

3.1 Plausibility relations. Let us first look at the binary relation that com-
pares degrees of disbeliefs. We propose to read A ≤p B as “A is at most as
plausible as B” or “B is at least as close to the reasoner’s beliefs as A”. Plausi-
bility has the same direction as entrenchment. The “better” the doxastic status
of a proposition (either in terms of entrenchment or in terms of plausibility), the
higher it is in the relevant ordering.

(P1) If A ≤p B and B ≤p C then A ≤p C Transitivity

(P2) If A ` B then A ≤p B Dominance

(P3) A ∨B ≤p A or A ∨B ≤p B Disjunctiveness

(P1) and (P2) are identical with (E1) and (E2). (P3) is dual to (E3), with
disjunction playing the role of conjunction. Conditions (P2) and (P3) together
establish a kind of functionality of ≤p with respect to disjunction. The degree
of plausibility of a disjunction equals that of the more plausible disjunct. Like
in the case of entrenchment, (P1)–(P3) taken together immediately entail that
plausibility relations are total.
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Again like in the case of entrenchment, we treat as optional two conditions
concerning the maximum and minimum of plausibility.

(P4) > ≤p A iff ¬A is not believed Maximality

(P5) A ≤p ⊥ only if ` ¬A Minimality

(P4) can be considered to be an explication of the notion of believing-possible:
A sentence is maximally plausible in a person’s belief state if and only if it is not
excluded as impossible by the person’s belief state. Put equivalently, with the
help of (P1)–(P3), that A is believed means that ¬A <p >, or equivalently, that
¬A <p A. All the sentences that are believed possible, i.e., not disbelieved, are
maximally plausible, and in this respect there is nothing to distinguish between
them. Distinctions in plausibility are only made between sentences that are
disbelieved.

(P5) says that only contradictions are minimally plausible, a condition that
we do not want to endorse as universally valid. (P5) implies the much weaker

(P5′) Not > ≤p ⊥ Non-triviality

which is a very reasonable condition.
The plausibility of a proposition is determined by the most plausible way of

making that proposition true. This explains (P3), for instance. A most plausible
way of making A∨B true is either a most plausible way of making A true or a most
plausible way of making B true (or both). For reasons explained in Section 4,
there can be no corresponding condition for conjunctions, a conjunction A∧B can
indeed be strictly less plausible than either its conjuncts. There is no condition
for negation, but it is easy to deduce from (P1)–(P3) that at least one of A and
¬A is maximal with respect to ≤p.

A disbelief A is less plausible than another disbelief B if and only if the
negation of the former has a higher degree of belief, i.e., is more entrenched, than
the negation of the latter.

Observation 2 Take an entrenchment relation ≤e. Then its dual defined by

A ≤p B iff ¬B ≤e ¬A

is a plausibility relation. And vice versa.

This duality makes clear that while entrenchment relations are compara-
tive necessity relations, plausibility relations are comparative possibility rela-
tions. The conjunctive condition for entrenchments is changed into a disjunctive
condition for plausibilities by the occurrence of the negations in Observation 2.

3.2 Plausibility ranking functions. We now have a look at numerical ranks
of disbeliefs. Although there is a line of predecessors going back to Shackle
(1949), I take Spohn (1988) as the seminal paper for this model. The direction
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of Spohnian κ-functions, however, is reversed in relation to plausibility relations.
For Spohn, lower ranks (that can be thought of as closer to the person’s current
beliefs) denote higher plausibility, higher ranks are ‘farther off’ or ‘more far-
fetched’. For reasons that will become clear later, we want more plausible (or
‘more possible’) sentences to get higher ranks. Thus we introduce plausibility
ranking functions, or simply plausibility functions, that are the negative mirror
images of Spohnian κ-functions (which could be called implausibility functions).

A plausibility function π assigns to each sentence a non-positive integer such
that:

(Pi) Sentences equivalent under ` get the same π-value. Intensionality

(Pii) π(>) = 0 Top

(Piii) π(A ∨B) = max{π(A), π(B)} Disjunctiveness

Plausibility functions express quantitative degrees of disbelief. Condition
(Pii) is not really necessary. Condition (Piii) is the most characteristic feature of
plausibility ranking functions, expressing what the axioms (P2) and (P3) above
express in qualitative terms.

It follows from these conditions that either π(A) = 0 or π(¬A) = 0. A
negative plausibility value π(A) < 0 means that A is disbelieved. A minimal
plausibility value π(A) ≤ π(⊥) means that ¬A is a priori.

Plausibility functions are entirely dual to entrenchment functions.

Observation 3 If ε is an entrenchment function and π is defined by

π(A) = −ε(¬A)

then π is a plausibility function. And vice versa.

If π and ε are related as in Observation 3, then either π(A) = 0 or ε(A) = 0,
i.e., either A or ¬A is doxastically possible.

3.3 Plausibility functions and plausibility relations. The following ob-
servation is entirely dual to Observation 1.

Observation 4 Take a plausibility function π. Then its relational projection
defined by

A ≤p B iff π(A) ≤ π(B)

is a plausibility relation. Conversely, for every finite plausibility relation ≤p there
is a plausibility function π such that ≤p is the relational projection of π.

Again, I think it is fair to say that this is folklore in belief revision theory.
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4 Combining degrees of belief and degrees of

disbelief

The axiom sets (E1)–(E3) and (P1)–(P3) are very similar. It is tempting to ‘com-
bine’ degrees of belief and disbelief by just collecting their axioms, and dropping
the subscripts ‘e’ and ‘p’ attached to ‘≤’. Combining the minimum clause for
conjunctions with the maximum clause for disjunctions would make degrees of
(dis-)beliefs more “truth-functional.” However, we can show that given the back-
ground in which ` is the classical consequence relation, the combining of the
requirements for entrenchments and plausibilities results in a trivialization.12

Observation 5 If a relation ≤ satisfies (E1)–(E3) and (P3), then it is at most
two-layered.

We can see this as follows. Suppose that A < > and B < > are two
arbitrarily chosen sentences of non-maximal entrenchment. Then A ∨ B < >,
by (P3) and (E1). Since > is equivalent with (A ∨ B) ∨ (¬A ∧ ¬B), we get
> ≤ (¬A∧¬B), by (P3), (E1) and (E2).13 By (E2), A∨¬B and ¬A∨B are also
maximally entrenched. Since A is equivalent to (A∨B)∧ (A∨¬B), we thus find,
by (E1) – (E3), that A receives the same degree as A∨B, i.e., A ≤ A∨B as well
as A∨B ≤ A. Since on the other hand B is equivalent to (A∨B)∧ (¬A∨B), we
get by the same reasoning that B receives the same degree as A∨B, too. Hence
A and B must have the same degrees. Since we can choose ⊥ for A, say, we find
that all non-maximally entrenched sentences are in fact minimally entrenched.
Thus the relation ≤ is trivial in that it distinguishes at most two degrees of belief.
We conclude that there are rather tight limits to the functionality of the degrees
of belief – at least as long as we insist that sentences that are logically equivalent
with respect to classical logic should receive the same degree.14 We reject the
disjunctiveness condition (P3) as a condition for entrenchments or degrees of
beliefs. The degree of belief of a disjunction can definitely be higher than that of
its disjuncts. Similarly, we reject the conjunctiveness condition for plausibilities
or degrees of disbelief.

So there is a tension between degrees for beliefs and degrees for disbeliefs.
The former are functional with respect to conjunctions, but cannot be so with
respect to disjunctions, the latter have it just the other way round. Can we still
piece together the relations ordering beliefs and the relations ordering disbeliefs

12This result is contained in Rott (1991), but there are several related observations around,
for instance in a notorious little paper by Elkan (1994). Seen from a multiple-valued logic
perspective, it is (E2) (and also (Ei)) that is not acceptable.

13If A and B were both beliefs, this result would be very strange indeed since the conjunction
of the negations of two beliefs would turn out to be maximally entrenched.

14Which follows from (E2). Note that we haven’t talked about the functionality of negation
in this argument. While we shall not be able to fix the rift between the functionality of ‘and’
and ‘or’, we shall install unrestricted functionality for negation.
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in a reasonable way? It turns out that this is possible. The idea of combining
entrenchment and plausibility (necessity and possibility) to a single scale has
been first explored by Spohn (1991, p. 169; 2002, p. 378) and Rabinowicz (1995,
pp. 111–112, 123–127).15

4.1 Rabinowicz likelihood relations. Rabinowicz studied relations that
make beliefs and disbeliefs fully comparable. We change the numbering of Rabi-
nowicz’s axioms in order to have a better correspondence with the relations we
have seen so far.

(L1) If A ≤l B and B ≤l C then A ≤l C Transitivity

(L2) A ≤l B or B ≤l A Connectivity

(L3) If A ` B then A ≤l B Dominance

(L4) If ¬A <l A and ¬B <l B, then A ≤l A ∧B or B ≤l A ∧B
Positive conjunctiveness

(L5) If A ≤l B then ¬B ≤l ¬A Contraposition

(L1) and (L3) parallel analogous conditions for entrenchment and plausibil-
ity. (L2) is needed since in contrast to the cases of entrenchment and plausibility,
the connectivity of the relation ≤ is no longer derivable from the other conditions.
The validity of the conjunctiveness condition (E3) for entrenchment relations is
restricted for likelihood relations to pairs sentences that are more likely than
their negations (‘likely’ is here not meant in a probabilistic sense). Thus con-
dition (L4).16 Finally, there is a new condition (L5), called ‘contraposition’ by
Rabinowicz, that takes care of negations.

As in the case of entrenchment and plausibility relations, we treat as optional
two conditions concerning the maximum and minimum of plausibility.

(L6) ¬A <l A iff A is believed Positivity

(L7) If > ≤l B then ` B Maximality

(L7) says that only tautologies are maximally likely, a condition that we do
not want to endorse as universally valid. (L6) can be interpreted as a definition
of the notion of belief. A sentence A is believed iff it is more likely than its
negation, i.e., iff ¬A <l A. Consequently, A is a disbelieved iff A < ¬A, and A
is a non-belief iff both A ≤ ¬A and ¬A ≤ A. In likelihood relations, the belief

15But see footnote 17.
16Rabinowicz’ original axiom is actually not (L4), but

(L4R) If ¬C <l C , C ≤l A and C ≤l B, then C ≤l A ∧B.
(L4R) can be proven equivalent to (L4) on the basis of the other axioms (the proof of this and
other proofs are collected in Appendix 1 at the end of this paper). – Note also that on the
basis of the other axioms, (L4) can equivalently be strengthened to

(L4+) If ¬A ≤l A and ¬B <l B, then A ≤l A ∧B or B ≤l A ∧B.
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status can no longer be expressed as a relation between A and either > or ⊥.
But notice that in any case, A is a belief if and only if ¬A < A, regardless of
whether ≤ is supposed to stand for ≤e, ≤p or ≤l.

By (L4), likelihood relations are functional with respect to conjunction for
beliefs. Using contraposition, it is easy to see that they are functional with respect
to disjunctions for disbeliefs. A natural question to ask is whether there is any
functionality “across the categories”, for instance, when A is a belief and B is a
disbelief. The following facts are derivable from the axioms (L1)–(L5). Roughly,
they say that in this case, if A is more firmly believed than B is disbelieved, then
A ∧ B is as likely as B, while if A is less firmly believed than B is disbelieved,
then A ∨B is as likely as A.

(LC∧) If B ≤l ¬B <l A, then B ≤l A ∧B

(LC∨) If B <l ¬A ≤l A, then A ∨B ≤l A

Likelihood relations express distinctions between both beliefs and disbeliefs.
However, all the sentences that are neither believed or disbelieved, i.e., that
are non-believed in the narrow sense, get the same likelihood level ‘below’ all the
beliefs and ‘above’ all the disbeliefs. As far as Rabinowicz likelihood is concerned,
there is nothing to distinguish between them. Distinctions in likelihood are only
made between sentences that are either believed or disbelieved.

Rabinowicz’ motivation for introducing likelihood relations is given by the
following

Observation 6 (Rabinowicz) Take an entrenchment relation ≤e, and define
the corresponding plausibility relation ≤p as in Observation 2. Then the relation
≤l defined by

A ≤l B iff both A ≤e B and A ≤p B

is a likelihood relation.

Note that the definition of ≤l from an entrenchment relation ≤e and a plau-
sibility relation ≤p in Observation 6 produces a likelihood relation only if ≤e and
≤p fit together in the sense that they satisfy the condition A ≤p B iff ¬B ≤e ¬A
(or, of course equivalently, A ≤e B iff ¬B ≤p ¬A).

Rabinowicz also shows how to reconstruct the entrenchment relation (and
thus, also the plausibility relation) corresponding to a given likelihood relation.
He defines A ≤e B if and only if A ≤l B or A ≤l ¬A. Using this definition, he is
able to demonstrate formally that entrenchment and likelihood are “equivalent
concepts” (1995, p. 125).

4.2 Spohnian beta functions. Now suppose an entrenchment ranking func-
tion ε is given, and π is its associated plausibility function as defined in Observa-
tion 3. We are looking for a numerical function that assigns ranks to both beliefs
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and disbeliefs. Except for notational differences, the following suggestion is due
to Wolfgang Spohn (1991, p. 169):17

β(A) = ε(A) + π(A)

Notice that β(A) equals ε(A) if ε(A) is positive, i.e., if A is believed, and equals
π(A) otherwise. Because either ε(A) or π(A) is 0, we do not need “real” addition
here, the plus sign is just a convenient notational device. Another way of con-
ceiving of beta functions is viewing them as combining the pair of entrenchment
and plausibility values by applying restricted maximum and minimum operations
on them. This view will prove to be interesting later.

β(A) =

{
max{ε(A), π(A)} if ε(A) > 0
min{ε(A), π(A)} otherwise

As far as I know, no axiomatic characterization of beta functions has been
given yet. So let us propose one here. A beta function, or also likelihood function,18

β assigns to each sentence an integer such that

(Bi) Sentences equivalent under ` get the same β-value Intensionality

(Bii) β(>) ≥ 0 Top

(Biii) If β(A) ≥ 0 and β(B) > 0, then β(A ∧B) = min{β(A), β(B)}
Positive conjunctiveness

(Biv) β(¬A) = − β(A) Inversion

The inversion condition (Biv) for beta functions is the counterpart of the con-
traposition condition (L5) for likelihood relations. The positive conjunctiveness
condition (Biii) strengthens its relational counterpart (L4).19 As a consequence,
the dominance condition is not needed as a separate axiom. It follows from
(Bi)–(Biv) that if A ` B then β(A) ≤ β(B).

The following interpretation of beta functions was the one intended by
Spohn: β(A) is positive (negative, or zero) if and only if A is believed (disbelieved
or, respectively, a non-belief in the narrow sense). We will treat this interpretation
as optional, but emphasize that beta functions in this interpretation distinguish

17This concept of “firmness of belief” (and its relational projection “more plausible than”)
was present already in Spohn (1988, p. 116). Spohn (1991) attributes the following elegant
definition, or actually its notational variant β(A) = κ(A)−κ(A), to Bernard Walliser. Variants
of a similar combination of necessity and possibility functions are mentioned and related to the
certainty factors of MYCIN (Buchanan and Shortliffe 1984) by Dubois and Prade (1988a, p.
295; 1988b, pp. 246, 254), Dubois, Prade and Smets (1996, end of Section 4.1) and Dubois,
Moral and Prade (1998, p. 349).

18Spohn calls such functions ‘belief functions’, but I want to avoid this term because (a) it is
rather unspecific, and (b) in so far as it has an established meaning, it is commonly associated
with the work of Arthur Dempster and Glenn Shafer.

19We pointed out in footnote 16 that the relational counterpart (L4+) of (Biii) is derivable
from the axioms for likelihood relations.
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ranks between both beliefs and disbeliefs. (Bii) says that tautologies must not
be disbelieved. If β(A) ≥ β(>), we say that A is a priori, and if β(A) ≤ β(⊥),
then ¬A is a priori.

As in the relational case, we have functionality for conjunction among beliefs,
for disjunction among disbeliefs, and the following restricted “cross-categorical”
functionality of conjunction and disjunction:

(BC∧) If 0 ≤ −β(B) < β(A), then β(A ∧B) = β(B)

(BC∨) If 0 ≤ β(A) < −β(B), then β(A ∨B) = β(A)

It is easy to construct the entrenchment and plausibility functions cor-
responding to a given beta function. If we put ε(A) = max{β(A), 0} and
π(A) = −ε(¬A) = −max{β(¬A), 0} = −max{−β(A), 0} = min{β(A), 0}, it
can be proved that entrenchment and likelihood functions are “equivalent” con-
cepts, as indeed are plausibility and likelihood functions. This justifies our claim
that the above conditions axiomatically characterize Spohn’s idea of beta func-
tions.

Observation 7 A function β is a likelihood function satisfying (Bi)–(Biv) if and
only if there is an entrenchment function ε satisfying (Ei)–(Eiii) such that

β(A) = ε(A) + π(A)

where π is the plausibility function corresponding to ε, defined by π(A) = −ε(¬A).

Spohn (2002, p. 378) argued that “belief functions [i.e., beta functions, HR]
may appear to be more natural [than plausibility functions, HR]. But their formal
behaviour is more awkward.”20 For the purposes of the present paper with its
focus on the concept of comparative degrees of belief, however, it is sufficient that
there are systematic and well-understood non-probabilistic rankings of beliefs and
disbeliefs along a single scale. We have axiomatized them and then identified a
number of interesting facts about them. So perhaps they look a little less awkward
now.21 If one were still inclined to call their formal behaviour awkward, then this
would not speak against the reasonableness of the notion of unified degrees of
belief and disbelief.

4.3 Spohnian beta functions and Rabinowicz likelihood relations.
It turns out that the qualitative counterparts of Spohnian belief functions are
exactly the Rabinowicz likelihood relations.

20Dubois, Moral and Prade (1998, p. 349) gave a similar comment: “It turns out that this
set-function is not easy to handle beyond binary universes, because it is not compositional
whatsoever.”

21Perhaps as awkward as the cubic function y = x3 which is concave for x < 0 and convex
for x > 0.
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Observation 8 Take a Spohnian beta function β. Then its relational projection
defined by

A ≤l B iff β(A) ≤ β(B)

is a Rabinowicz likelihood relation.
Conversely, for every finite Rabinowicz likelihood relation ≤l there is a Spohnian
beta function β such that ≤l is the relational projection of β.

Sentences mapped to zero by a beta function are exactly those that are as
likely as their negations under the corresponding likelihood relation. For the proof
of the second part of Observation 8, one takes the equivalence class of sentences
that are as likely as their negations as the class of sentences getting rank zero by
the beta function β. Then one assigns numbers to all other equivalence classes
with respect to 'l going up and going down from zero according to the ordering
relation induced by ≤l. Due to contraposition (L5), everything happening in the
negative integers will be perfectly symmetrical to what goes on in the positive
integers.

Let us now give a graphical illustration of the situation so far. The model for
belief states most easily comprehended is Grove’s (1988) subjectivist variant of
Lewis’s (1973) objectivist conception of system of spheres. It represents a doxastic
state by a system of nested sets of possible worlds.22 The smallest set “in the
center” is the set of possible worlds which the reasoner believes to contain the
actual world wa, i.e., the worlds considered “possible” according to the reasoner’s
beliefs. If she receives evidence that the actual world is not contained in this
smallest set, she falls back on the next larger set of possible worlds. Thus the first
shell23 around the center contains the worlds considered second most plausible
by the reasoner. And again, should it turn out that the actual world is not to be
found in this set either, the reasoner is prepared to fall back on her next larger set
of possible worlds. And so on. The sets or spheres of possible worlds correspond
to grades of plausibility, or to put it differently, grades of deviation from the
subject’s actual beliefs. The system of spheres taken as a whole can be thought
of as representing a person’s mental or, more precisely, her doxastic state.24

How can we use this modelling to codify the degrees of belief and disbelief
(entrenchment or plausibility) of a given sentence? Such degrees are determined
by the sets of spheres throughout which this sentence holds universally, and the

22For the sake of simplicity, I suppose that all sets mentioned in this model are finite. Tech-
nically, the “worlds” should be thought of as the models of a finitary propositional language.

23A shell is the difference set between two neighbouring spheres. Spheres are nested, shells
are disjoint.

24Of course, it must not be expected that the system of spheres is centered on a single world
wa that represents the actual world. The facts that (i) the innermost circle need not be a
singleton and (ii) it need not contain the actual word distinguish Grove’s subjectivist from
Lewis’ objectivist system-of-spheres model. If one of the reasoner’s beliefs is wrong, then wa is
not contained in the innermost sphere. It may indeed be located at any arbitrary position in
the sphere system.
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sets of spheres which it intersects. If A covers more spheres than B, then A is
more entrenched than B. If A intersects more spheres than B, then A is more
plausible than B. Fig. 1 gives an illustration of the degrees of belief of three
sentences A, B and C in a doxastic state represented by a Grovean system of
spheres. I remind the reader that the numerals in the qualitative approach are not
supposed to denote genuine numbers, they are just used to indicate the relative
positions in a weak total ordering. There is no sphere labelled ‘0’ in Fig. 1. That
β(B) = 0 means that the innermost sphere (labelled ‘1’) contains both B-worlds
and ¬B-worlds.

4321
 

AB

C

Fig. 1: Degrees of belief and disbelief: β(A) = 3, β(B) = 0 and β(C) = −1.
A is a belief, B a non-belief, and C a disbelief.

5 Degrees for non-beliefs: Expectations,

disexpectations, non-expectations

We have seen that we can, drawing on the work of Rabinowicz and Spohn, map
degrees of beliefs and disbeliefs into a single dimension in a reasonable way that
ranks disbeliefs lower than beliefs. But usually there are lots of things that
a reasoner is ignorant of, honestly most reasoners would have to admit that
they neither believe nor disbelieve most of the propositions they could be asked
about. Yet all of these myriads of non-beliefs in the narrow sense are mapped
by a beta function onto a single zero point. Intuitively, however, there can be
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vast differences between the credibilities of various non-beliefs. Some of them are
considered to be quite likely, while others would be found very surprising. We
should like to be able to express such differentiations. What should we do then
with the non-beliefs?

One perfectly good way of proceeding would be to use probabilities in order
to express the different doxastic attitudes toward non-beliefs.25 The fact that
probability distributions are not functional with respect to either ∧ and ∨, how-
ever, makes it evident that the introduction of probabilities makes the model
a hybrid. Although this is not a decisive argument against using probabilities,
it would be nicer if we continued with our ‘logical’ approach and distinguished
among non-beliefs in terms of comparative necessity and possibility in just the
way in which we have assigned degrees to beliefs and disbeliefs. Would it make
sense to stipulate an expectation ordering of non-beliefs analogous to the en-
trenchment ordering of beliefs, perhaps in such a way that a selected set of ex-
pectations is logically closed and consistent? It turns out that this is indeed
possible. We can combine entrenchment and plausibility structures for beliefs
and disbeliefs with similar structures for non-beliefs. Intuitively, we just need to
fan out the zero point of likelihood relations and functions into a multitude of
different ranks.

The key idea is this. Reasoners do not only have beliefs, but also things
they almost believe, or things they would believe if they were just a little bolder
than they are: They have opinions, expectations and hypotheses, they make
conjectures and default assumptions, they act on presumptions etc. It is not
necessary to decide here which of these pro-attitudes are stronger than which of
the others. The point is that by increasing their degree of boldness (or degree
of credulity, gullibility etc.), reasoners can successively strengthen the set of ac-
cepted sentences, until they reach a point at which they refuse to further raise
their credulity. A sequence of successively increasing ‘expectation sets’ emerges.26

Following the lead of Gärdenfors and Makinson (1994), I use expectation as the
generic term for such “subdoxastic” attitudes. Let us call weak expectations the
sentences accepted at the maximum level of boldness. Semantically, this process
of stepwise extending one’s expectation set means establishing an inverted Grove
model. Starting with the set of worlds that represent the reasoner’s beliefs, new
spheres that go inward are added. Each such set of worlds corresponds to a mem-
ber of the sequence of the reasoner’s gradually enlarged expectation sets. In this
system of spheres, the outermost sphere represents the reasoner’s belief, and the
innermost sphere represents her weakest expectations, that is, the sentences she
is ready to accept at her highest level of doxastic boldness.

Having established ‘inner spheres’ of expectation, some non-beliefs turn out

25The most well-known way of having a probability distribution within each ordinal rank has
emerged in the research related to so-called Popper measures, cf. van Fraassen (1976), Spohn
(1986), Hammond (1994) and Halpern (2001).

26We assume for simplicity that this sequence is finite.
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to be comparatively plausible and positively expected to some degree. How-
ever, other non-beliefs will turn out to be implausible and surprising (or ‘disex-
pected’) to some degree. Some non-beliefs will be neither expected nor disex-
pected, namely those that are neither implied nor contradicted by the boldest
theory entertained by the reasoner.

5.1 Relations for non-beliefs. Interestingly, one can use precisely the same
relational structures of comparative necessity and possibility for evaluating ex-
pectations as we employed for beliefs. We can re-use our axioms (E1)–(E3),
(P1)–(P3) and (L1)–(L5) as before, but for the sake of clarity we rename them
into (Ex1)–(Ex3), (Px1)–(Px3) and (Lx1)–(Lx5) in the present context, and ap-
ply the relation symbols ≤ex, ≤px and ≤lx. All these relations are total.

The only difference lies in the interpretation. The optional conditions (E4)
and (E5) and their counterparts for plausibility and likelihood are no longer
appropriate. They should be replaced by

(Ex4) ⊥ <ex A iff A is weakly expected

(Ex5) > ≤ex A iff A is believed

(Px4) A <px > iff ¬A is weakly expected

(Px5) A ≤px ⊥ iff ¬A is believed

(Lx6) ¬A <lx A iff A is weakly expected

(Lx7) > ≤lx A iff A is believed

Expectation relations ≤ex are similar to the relations with the same name
introduced by Gärdenfors and Makinson (1994). Expectation plausibility rela-
tions ≤px establish comparisons of ‘disexpectations’ (with full comparability). I
am not aware that they have been presented in this way in the literature, but
they are straightforward to introduce on our account.27

Notice that A is weakly expected if and only if ¬A <x A, regardless of
whether ≤x is supposed to stand for ≤ex, ≤px or ≤lx.

As in the case of belief and disbelief, we can say that the relevant relations fit
together if, for example, they satisfy the duality principle A ≤px B iff ¬B ≤ex ¬A,
or the condition A ≤lx B iff A ≤ex B and A ≤px B, or the condition A ≤ex B iff
A ≤lx B or A ≤lx ¬A.

Focussing on the comparative necessity structures, the only difference be-
tween entrenchment and expectation relations is that beliefs occupy the (usu-
ally: many) non-minimal ranks in entrenchment relations, while they occupy the
(single) maximal rank in expectation relations. By the same token, non-beliefs
occupy the (single) minimal rank in entrenchment relations, while they occupy

27I shall continue to use the artificial term ‘disexpectation’ as short for ‘expectation-that-not’.
If neither A nor ¬A is expected, I will call A a ‘non-expectation’.
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the (usually: many) non-maximal ranks in expectation relations.
The relations are intertwined in a way similar to the corresponding relations

for beliefs and disbeliefs

Observation 9 (i) Take an expectation relation ≤ex. Then its dual defined by

A ≤px B iff ¬B ≤ex ¬A

is a plausibility relation for expectations. And vice versa.
(ii) Take an expectation relation ≤ex and define the corresponding plausibility

relation ≤px for expectations. Then the relation defined by

A ≤lx B iff both A ≤ex B and A ≤px B

is a likelihood relation for expectations.
Conversely, take a likelihood relation ≤ex for expectations. Then the relation
defined by

A ≤ex B iff both A ≤lx B or A ≤lx ¬A

is the corresponding expectation relation.

While expectation relations are comparative necessity relations, plausibility
relations for expectations are comparative possibility relations. Likelihood rela-
tions for expectations have the same hybrid structure as the likelihood relations
for beliefs.

5.2 Functions for non-beliefs. Can we design ‘expectation functions’ anal-
ogous to belief and disbelief functions, just with different ‘limiting cases’? Yes,
we can. The intuitive idea is that we use 1 as the threshold value for belief and
-1 as the threshold value for disbelief. Non-beliefs receive degrees between the
degrees of beliefs and the degrees of disbeliefs, that is, between -1 and +1. We
will use inverse integers for this task. However, the reader should be warned once
more that the numerals are not supposed to represent anything more than the
relative positions in a weak total ordering. In particular, the distance between
1/2 and 1/3 , say, is not meant to be smaller than the distance between 2 and 3.
Both pairs signify neighbouring ranks. And of course fractions such as 1/2 , 1/3 ,
1/4 , . . . should not be mistaken for probabilities. As before, we assume that the
range of values of all functions that follow is finite.

An expectation ranking function, or simply expectation function, εx assigns
to each sentence an inverse positive integer 1, 1/2 , 1/3 , 1/4 , . . . or 0 in such a way
that (Ei)–(Eiii) are satisfied, with the understanding that εx(A) = 1 means that
A is believed, and εx(A) > 0 means that A is weakly expected by a reasoner with
expectation state εx.

A plausibility ranking function, or simply plausibility function, for expec-
tations πx assigns to each sentence a negative inverse integer −1, − 1/2 , − 1/3 ,
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− 1/4 , . . . or 0 in such a way (Pi)–(Piii) are satisfied, with the understanding that
πx(A) = −1 means that ¬A is believed, and πx(A) < 0 means that ¬A is weakly
expected by a reasoner with expectation state πx.

A likelihood function for expectations, βx assigns to each sentence an inverse
integer ±1, ± 1/2 , ± 1/3 , ± 1/4 , . . . or 0 in such a way (Bi)–(Biv) are satisfied, with
the understanding that βx(A) = 1 means that A is believed, and βx(A) = 0
means that neither A nor ¬A is weakly expected by a reasoner with expectation
state βx.

Notice that the sentences that receive value 0 by the functions ε, π and β, i.e.,
the non-beliefs in the narrow sense, can now be differentiated by assigning to them
(finitely many) values lying in the interval [− 1/2 , 1/2 ]. This provides an enormous
resource of fine-grained degrees for non-beliefs. On the other hand, functions for
non-beliefs do not report any distinctions between beliefs or distinctions between
disbeliefs. Fig. 2 gives an example in system-of-spheres representation. Note that
this time, the reasoner’s beliefs are represented by the outermost sphere, rather
than by the innermost sphere as in Fig. 1. Again, there is no sphere labelled ‘0’,
a β-value of zero means that the proposition in question intersects but does not
cover the innermost sphere (labelled ‘ 1/4 ’ in Fig. 2).

1

 

1/2
1/3

1/4

AB

D

C

Fig. 2: Degrees of expectation and disexpectation (= degrees of
non-belief): βx(A) = 1, βx(B) = 1/2, βx(D) = −1/4, βx(C) = −1

A is a belief, B an expectation, C a disbelief, and D is a disexpectatiojn.
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6 Combining degrees of beliefs and disbeliefs with

degrees for non-beliefs

We have treated expectations formally exactly like beliefs – except that we indi-
cated that they are not quite beliefs, but strictly speaking non-beliefs. Gärdenfors
and Makinson have rightly pointed out that also from an intuitive point of view,
beliefs and expectations are not so different after all:

Epistemologically, the difference between belief sets and expectations lies
only in our attitude to them, i.e., what we are willing to do with them.
For so long as we are using a belief set K, its elements function as full
beliefs. But as soon as we seek to revise K, thus putting its elements into
question, they lose the status of full belief and become merely expectations,
some of which may have to go in order to make consistent place for beliefs
introduced in the revision process. (Gärdenfors and Makinson 1994, pp.
223-224)

Gärdenfors and Makinson did much to uncover the analogy between belief struc-
tures and expectation structures in their seminal papers (Makinson and Gärden-
fors 1991, Gärdenfors and Makinson 1994), but they did not unify beliefs and
expectations into an all-encompassing doxastic state.

Semantically, what has to be done in order to get beliefs and expecta-
tions into a joint representation is quite clear. One just has to superimpose
the outward-directed system of spheres for beliefs and disbeliefs on the inward-
directed system of spheres for non-beliefs (see Fig. 3 for illustration). The only
precondition for this operation to succeed is that the two systems of spheres fit to-
gether. The innermost sphere of the former must be identical with the outermost
sphere of the latter: These spheres are both supposed to represent the reasoner’s
beliefs. What we have to do now is to transfer this pictorial description to our
various relations and functions representing degrees of belief.

6.1 Combining relations for beliefs and disbeliefs with relations for
non-beliefs. Before we can start merging degrees for beliefs and disbeliefs with
degrees for non-beliefs, we need to make sure that the relevant orderings fit to-
gether. This is the case if the beliefs marked out by the relation ≤e (or by ≤p or by
≤l) are identical with the beliefs marked out by the relation ≤ex (or respectively,
by ≤px or by ≤lx). Thus, when joining comparative necessity, comparative possi-
bility and comparative likelihoods, we require that the following fitting conditions
are satisfied for all sentences A:

(i) ⊥ <e A iff > ≤ex A

(ii) A <p > iff A ≤px ⊥

(iii) ¬A <l A iff > ≤lx A
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Fig. 3: Degrees of belief, non-belief and disbelief:
βall(A) = 3, βall(B) = 1/2, βall(D) = −1/4, βall(C) = −1

In the following, we use the relation symbols≤ee, ≤pp and≤ll for the relations
that combine the respective relations for beliefs/disbeliefs and non-beliefs.

If the relevant belief sets coincide, then there is no reason why entrench-
ment and expectation relations should not be merged into a single homogeneous
comparative necessity relation satisfying (E1)–(E3).

A ≤ee B iff A ≤e B and A ≤ex B

The transitivity and dominance conditions for ≤e and ≤ex transfer immediately
to ≤ee. With the help of the ‘fitting condition’ (i), one can also show that ≤ee sat-
isfies conjunctiveness. The maxima of the combined relation ≤ee are the a priori
beliefs, the minima are those propositions that are not even weak expectations.

The plausibility relations concerning disbeliefs and non-beliefs (in the nar-
row sense) can similarly be combined into a homogeneous comparative possibility
relation satisfying (P1)–(P3).

A ≤pp B iff A ≤p B and A ≤px B

The transitivity and dominance conditions for ≤p and ≤px transfer immediately
to ≤pp. With the help of the fitting condition (ii), one can also show that ≤pp

satisfies disjunctiveness.
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Finally, the likelihood relations concerning beliefs/disbeliefs and non-beliefs
(in the narrow sense) can be combined similarly into a homogeneous comparative
likelihood relation satisfying (L1)–(L5).

A ≤ll B iff A ≤l B and A ≤lx B

The relation ≤ll is the most comprehensive or fine-grained notion of degree that
we have: It draws distinctions in degree between beliefs and disbeliefs and non-
beliefs, with the latter in turn split up into expectations, disexpectations and
non-expectations.

6.2 Combining functions for beliefs and disbeliefs with functions for
non-beliefs. It will come to no surprise that we can achieve an analogous unifica-
tion with functions rather than relations. For the merger to succeed, the beliefs
marked out by the function ε (or by the functions π and β) must fit together
with the beliefs marked out by the function εx (or, respectively, by the functions
πx and βx). When joining comparative necessity, comparative possibility and
comparative likelihoods, we thus require that for all A

(i) ε(A) ≥ 1 iff εx(A) ≥ 1

(ii) π(A) ≤ −1 iff πx(A) ≤ −1

(iii) β(A) ≥ 1 iff βx(A) ≥ 1, and β(A) ≤ −1 iff βx(A) ≤ −1

If the relevant functions fit together, then we can again combine them into
functions specifying all-encompassing degrees of belief, disbelief and non-belief.
We use the function symbols εall, πall and βall to denote them.

(i) εall(A) = max{ε(A), εx(A)}

(ii) πall(A) = min{π(A), πx(A)}

(iii) βall(A) =

{
max{β(A), βx(A)} if βx(A) > 0
min{β(A), βx(A)} otherwise

It is easy to verify that the overall function εall is a necessity function that
assigns to each sentence a non-negative integer or a positive inverse integer such
that (Ei)–(Eiii) are satisfied; that πall is a possibility function that assigns to
each sentence a non-positive integer or a negative inverse integer such that (Pi)–
(Piii) are satisfied; and that βall is a likelihood function βall that assigns to each
sentence an integer or an inverse integer such that (Bi)–(Biv) are satisfied. Fig. 4
illustrates how the discrete degrees of belief are arranged along a line.
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Fig. 4: Degrees of belief plotted on a line

7 Levi on degrees of belief and degrees of

incorrigibility

The British economist G.L.S. Shackle (1949, appendix; 1961, Chapter X) was per-
haps the first person to introduce plausibility functions for expectations (under
the name ‘degrees of potential surprise’) and also to consider expectation func-
tions (under the name ‘degrees of belief’).28 Isaac Levi picked up on Shackle’s
work,29 and has developed a sophisticated theory of his own that combines aspects
related to beliefs and disbeliefs with aspects related to non-beliefs (or expecta-
tions). This is expressed, for instance, in Levi (1996, p. 267):

Shackle measures can be interpreted in at least two useful ways: in terms of
caution- and partition-dependent deductively cogent inductive expansion
rules and in terms of damped informational value of contraction strate-
gies. One interpretation (as an assessment of incorrigibility) plays a role
in characterizing optimal contractions . . . . The other interpretation plays
a role in characterizing inductively extended expansions . . . . Although the
formal structures are the same, the applications are clearly different.

For four decades, Levi has studied both expansions and contractions of sets of
belief (‘corpora’ in his terminology). In a contraction, the reasoner gives up some
specific sentence and makes use of the outward-directed spheres. These spheres
are fallback positions for the case when a specified belief is to be withdrawn. The
sort of expansions mainly considered by Levi, however, does not need any input of

28This is so in Levi’s streamlined accounts of the matter. Actually, Shackle struggled a lot
with his notion of degree of surprise, and he certainly did not have a worked-out concept of
degree of belief. As pointed out by Levi (1984, note 5) himself, Shackle was not quite consistent
in his use of the term ‘degree of belief’. Taking Shackle’s potential surprise to be the function
−π, we can recast his first official axiom as identifying the degree of belief in A with the pair
〈−π(A),−π(¬A)〉 while only on p. 71 in Shackle (1961) he determines the degree of belief as
the value −π(¬A) = ε(A).

29Cf. Levi 1967, pp. 135–138; 1984; 1996, pp. 180–182; 2004, pp. 90–92.
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a specific sentence. An inductive expansion aims at inductively enlarging a certain
set of beliefs, making use of inward-directed spheres as bridgeheads for more
daring inferential leaps. How far into unknown territory the reasoner advances
depends on her boldness. No external instigation is needed to inductively expand
a belief set. Levi gives a decision-theoretic derivation of the expected value of
accepting a given sentence, with a degree of boldness serving as a parameter that
tunes the comparative utilities of freedom-from-error and acquirement-of-new-
information. The degree of expectation of a given sentence varies inversely with
the degree of boldness that is needed in order to render that sentence acceptable.

In Levi’s work, entrenchment relations (corresponding to outward-directed
systems of spheres) characterize “degrees of incorrigibility.”30 Expectation rela-
tions are derived by Levi by allowing different degrees of “boldness” in inductive
acceptance rules, and are on various occasions called “degrees of confidence of
acceptance” (Levi’s original term used in 1967), “degrees of belief”, “degrees of
certainty” or “degrees of plausibility.” Structurally, degrees of incorrigibility and
degrees of certainty are the same, in so far as they both obey the minimum-rule
for conjunctions. The crucial difference is that a sentence A is believed if and
only if it has a non-minimal degree of incorrigibility, and if and only if it has
maximal degree of certainty.31

I think that by considering degrees of belief and disbelief along with degrees
of non-belief, our model may also help to make transparent Levi’s long insistence,
which many have found hard to comprehend, that certainty (the feeling of infal-
libility) and incorrigibility are entirely different notions.32 Degrees of certainty
are needed for the construction of inductive expansions, degrees of incorrigibility
are needed for the construction of belief contractions.33

The full scope of degrees of belief, disbeliefs and non-beliefs offered in this
paper may help dissolving some misunderstandings that have haunted the litera-
ture for some time. For instance, the notion of ‘plain belief’ is used differently by
Isaac Levi (2004, pp. 93–95, 179–180; 2006) and Wolfgang Spohn (1990; 2006).

30As studied by Levi in his work on contractions, cf. Levi (1996, p. 264, 2004, p. 196). I
take the liberty of glossing over the subtler differences that Levi (2004, pp. 191–199) identifies
between degrees of entrenchment and degrees of incorrigibility.

31I do not claim it is easy to find this explicitly stated in Levi’s writings. But it gets clear
on contrasting the axioms for Shackle-style b-functions in Levi (1996, p. 181; 2004, p. 90) with
the axioms for Gärdenfors-style en-functions in Levi (1996, p. 264; 2004, p. 198) for which the
above description is entirely correct, if ‘being believed’ is identified with ‘being contained in the
corpus K’. Levi’s en-functions are our ε-functions, while his b-functins are our εx-functions.
Like Gärdenfors and Makinson, Levi has no counterparts to εall-functions.

32See Levi (1980, pp. 13–19, 58–62; 1991, pp. 141–146; 1996, pp. 261–268).
33Another important point to note is that while Levi uses both informational value and

the probability of error for belief expansions, he only uses (damped) informational value as a
criterion for belief contractions. Levi argues that belief contractions cannot incur any error to
a person’s belief system. That is certainly right, but error might be removed by a contraction.
Levi’s pragmatist philosophy, however, has no room for this, since in his picture a reasoner is
invariably committed to the infallibility of her beliefs. For details, see Rott (2006).
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What we have called simply ‘belief’ in this paper is, I think, called ‘full belief’
by Levi and ‘plain belief’ (or ‘belief simpliciter’) by Spohn. For Levi, plain belief
is the sort of belief that would be reached after performing the inductive expan-
sion recommended by epistemic decision theory.34 In my terminology, this is an
expectation to a certain degree. Some misunderstandings in the discussion may
have arisen from the fact that most people have had in mind entrenchment or
plausibility relations where Levi was thinking of degrees of non-belief or expecta-
tion. To my knowledge, neither Levi nor any of his critics has combined degrees
of belief, disbelief and non-belief (expectation) into a single linear structure.35

8 Conclusion: Elusive belief

In many approaches of belief change and non-monotonic reasoning, researchers
have used either degrees of belief or degrees of disbelief or degrees of non-belief
(degrees of expectations). I have attempted to combine these various structures
into a unified whole in this paper. The combination was achieved in two steps. In
the first step, degrees of belief (necessity structures) were joined with degrees of
disbelief (possibility structures). In the second step this combined structure was
joined with a similar structure for (dis-)expectations rather than (dis-)beliefs,
where this new expectation structure fans out a single point of the old belief
structure, namely the zero point assigned to all the non-beliefs. For the first
step, we were guided by work of Rabinowicz and Spohn, for the second step, we
expanded on some thoughts of Levi.

I have said nothing about the application of this unified structure to belief
change or non-monotonic reasoning tasks, because this seems rather straightfor-
ward: Just utilize that part of the ranking structure that is needed, and apply
the well-known recipes. The point of the paper is, anyway, the idea of ‘degrees
of belief’ itself.36

It appears that the structural difference between necessity relations and func-
tions (representing belief and expectation) on the one hand, and possibility re-
lations and functions (representing disbelief and potential surprise) on the other
hand is more fundamental than the distinction between belief and expectations.
After all, we have seen that there is no problem in defining all-encompassing
necessity structures which have weak expectations (mere hypotheses, guesses,
conjectures, etc.) occupying the lowest ranks and very strong, ineradicable be-

34If the reasoner actually performs such an expansion, then, according to Levi, she in fact
converts her plain beliefs into full beliefs.

35Levi (2004, p. 201) explicitly recommends against making this move.
36For more related structures and their applications to belief revision and non-monotonic

reasoning, see Friedman and Halpern (1995, 2001) and Halpern (2003). These works are repre-
sentative of excellent AI research of great technical sophistication. However, they do not follow
through the idea of combining degrees of belief, non-belief and disbelief into a single scale.
Their terminologies differ from the one used here.
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liefs (that I called ‘a priori’) occupying the highest ranks. Structurally, there
are no differences from the top to the bottom. Indeed, this explains the struc-
tural similarity between belief revision and non-monotonic reasoning first noted
by Makinson and Gärdenfors (1991). But there is an essential structural contrast
between the necessity structures of positive doxastic attitudes (belief, expecta-
tion) and the possibility structures of negative doxastic attitudes (disbelief, dis-
expectation), in that the latter obey a disjunction rule rather than a conjunction
rule.

It is interesting that even though the various structures we used for encoding
degrees of doxastic attitudes are not themselves uniform, the operations we used
for merging them have turned out to be uniform. The combination of the relevant
relations is always achieved by a conjunction: A ≤combined B iff both A ≤1 B and
A ≤2 B. The combination of the relevant functions can always be represented as
a minimum-maximum-operation: fcombined(A) equals max{f1(A), f2(A)} in some
circumstances, and min{f1(A), f2(A)} in others.

We pointed out in the introduction that some proponents of non-probabilistic
approaches to the representation of belief states argued that a main advantage of
their approaches is that they allow for the notion of ‘plain belief’ (or ‘belief sim-
pliciter’) and ‘plain non-belief’ (or ‘non-belief simpliciter’). Probabilistic models
are committed to assigning some number to any given proposition, and intro-
spectively, this is just not what we feel like doing when we say that we believe
something (or that we don’t believe it). Another advantage of non-probabilistic
approaches is that they are not troubled by the failure of closure under conjunc-
tion that afflicts the high-probability interpretation to belief.

Richard Foley (1992, p. 111) interprets Locke’s (1690, Bk. IV, Ch. xv–xvi)
discussion of probability and degrees of assent as warranting the

idea that belief-talk is a simple way of categorizing our degree of confidence
in the truth of a proposition. To say that we believe a proposition is just to
say that we are sufficiently confident of its truth for our attitude to be one
of belief. Then it is epistemically rational for us to believe a proposition
just in case it is epistemically rational for us to have sufficiently high degree
of confidence in it, sufficiently high to make our attitude towards it one of
belief.

Foley calls this idea the Lockean Thesis, and proposes that rational belief should
be identified with a rational degree of confidence above some threshold level that
the agent deems sufficient for belief. The lottery has taught us that it is difficult to
reconcile this idea in probabilistic models of belief.37 The (non-trivial) necessity
structures that we have discussed in this paper do not have the problems afflicting
high-probability approaches to belief. They guarantee that the sets of sentences
above some specified threshold are all logically closed and consistent.

37This ‘Lockean thesis’ has recently been probed in a probabilistic setting by Hawthorne and
Bovens (1999) and Wheeler (2005).
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So it seems that qualitative theories keep their promise of supplying a clear
account of plain belief (and thus, of plain non-belief). The situation, however, is
more complicated than that. In our final, all-encompassing comparative necessity
relations ≤ee and necessity functions εall, we have weak expectations, something
like mere guesses at the bottom, and these are clear cases of non-belief. At
the top we have a priori beliefs, which are clear cases of belief. Somewhere
between the reasoner’s expectations and a priori beliefs, her attitude must begin
to be one of belief. But where to draw the line? Once entrenchment functions
have been merged with expectation functions, the divide at the number 1 in
the functional case of εall seems arbitrary, and in the relational case of ≤ee,
there is no dividing line to be found at all. Belief is a vague notion, and the
threshold, if there really is one, is certainly context-dependent. We would set
the threshold high in the courtroom interrogation, and we would set it low in
a casual chat over lunch. There is no plain notion of belief. Accordingly, even
though qualitative approaches to belief possess some advantages over probabilistic
ones (they certainly possess some disadvantages, too), they do not single out a
unique, clear and distinct notion of belief simpliciter. This is as it should be.
Belief remains elusive.
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Appendix I: Some proofs

A few little lemmas for likelihood relations

(a) Define A <l B as the conjunction of A ≤l B and B 6≤l A. Then transitivity
for ≤l implies:

If A ≤l B and B <l C, then A <l C.

Proof. Let A ≤l B and B <l C. A ≤l C follows from the transitivity of ≤.
Suppose for reductio that C ≤l A. Then by transitivity C ≤l B, contradicting
B <l C.

If A <l B and B ≤l C, then A <l C.

Proof. Similar

If A <l B and B <l C, then A <l C.

Proof. Immediate consequence of the last two lemmas.

(b) If ¬A ≤l A and A ≤l B, then ¬B ≤l B

Proof: Let ¬A ≤l A and A ≤l B. From the latter, by contraposition ¬B ≤l ¬A.
So ¬B ≤l ¬A ≤l A ≤l B, and by transitivity ¬B ≤l B.

(c) If ¬A <l A and A ≤l B, then ¬B <l B

Proof: Let ¬A <l A and A ≤l B. From the latter, by contraposition ¬B ≤l ¬A.
So ¬B ≤l ¬A <l A ≤l B, and by transitivity ¬B <l B.

(d) If ¬A ≤l A and A <l B, then ¬B <l B

Proof: Let ¬A ≤l A and A <l B. From the latter, by contraposition ¬B <l ¬A.
So ¬B <l ¬A ≤l A <l B, and by transitivity ¬B <l B.

(e) If ¬A ≤l A, A ≤l ¬A and ¬B <l B, then A <l B.

Proof: Let ¬A ≤l A, A ≤l ¬A and ¬B <l B, and suppose for reductio that
B ≤l A. Then we have the chain ¬B <l B ≤l A ≤l ¬A, and thus by transitivity
¬B <l ¬A. So by contraposition, A <l B, and we have a contradiction. QED

Given transitivity, connectivity, dominance and contraposition, Rabi-
nowicz’ original conjunction axiom (L4R) is equivalent with the con-
junction axiom (L4) used in this paper
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(L4R) If ¬C <l C, C ≤l A and C ≤l B, then C ≤l A ∧B

(L4) If ¬A <l A and ¬B <l B, then A ≤l A ∧B or B ≤l A ∧B

Proof. (L4R) implies (L4). Let ¬A <l A and ¬B <l B. By connectivity either
A ≤l B or B ≤l A. Suppose without loss of generality that A ≤l B (the case
B ≤l A is similar). Since we have ¬A <l A, A ≤l A as well as A ≤l B, we can
apply (L4R) and conclude that A ≤l A ∧B.

(L4) implies (L4R). Let ¬C <l C, C ≤l A and C ≤l B. By contraposition, we get
¬A ≤l ¬C and ¬B ≤l ¬C. So by several applications of transitivity, ¬A <l A
and ¬B <l B. So by (L4), we get A ≤l A ∧B or B ≤l A ∧B. In either case, an
application of transitivity gives C ≤l A ∧B. QED

Given transitivity, connectivity, dominance and contraposition, the
conjunction axiom (L4) can be strengthened to

(L4+) If ¬A ≤l A and ¬B <l B, then A ≤ A ∧B or B ≤l A ∧B

Proof. Let ¬A ≤l A and ¬B <l B. The case ¬A <l A is covered by (L4). So
assume that A ≤l ¬A.

Suppose that not A ≤l A ∧ B. By connectivity, A ∧ B <l A. Thus by contrapo-
sition, ¬A <l ¬(A∧B). Using A∧B ` A, dominance, A ≤l ¬A and transitivity,
we get A ∧B <l ¬(A ∧B).

Now we can apply (L4) and get

B ≤l B ∧ ¬(A ∧B) or ¬(A ∧B) ≤l B ∧ ¬(A ∧B)

which can be simplified to

B ≤l ¬A ∧B or ¬(A ∧B) ≤l ¬A ∧B.

This implies, by dominance and transitivity

B ≤l ¬A or ¬(A ∧B) ≤l ¬A.

But the latter contradicts ¬A <l ¬(A ∧ B) what we had above. So B ≤l ¬A
must be true. Since ¬A ≤l A by transitivity B ≤l A.

On the other hand, lemma (e) above tells us that A ≤l ¬A, ¬A ≤l A and
¬B <l B taken together imply that A <l B, and we also get a contradiction.

So the supposition that not A ≤l A ∧ B has led us into a contradiction. Thus
A ≤l A ∧B, and we are done. QED

The likelihood axioms (L1) – (L5) imply the following “cross-categorical”
functionalities

(LC∧) If B ≤l ¬B <l A, then B ≤l A ∧B
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(A belief, B non-belief or disbelief)

(LC∨) If B <l ¬A ≤l A, then A ∨B ≤l A
(A belief or non-belief, B disbelief)

Proof. (LC∧) Let B ≤l ¬B <l A. Hence, by lemma (d), ¬A <l A. We want to
show that B ≤l A ∧ B. By contraposition (L5), this means that ¬(A ∧ B) ≤l

¬B. Suppose for reductio that this was not true, i.e., by connectivity (L2), that
¬B <l ¬(A ∧B). Hence, by lemma (d), A ∧B <l ¬(A ∧B). Then by restricted
conjunctiveness (L4), either A ≤l A ∧ ¬(A ∧ B) or ¬(A ∧ B) ≤l A ∧ ¬(A ∧ B).
Either way, we get by transitivity (L1) that ¬B <l A ∧ ¬(A ∧ B). But since
A ∧ ¬(A ∧B) implies ¬B, this contradicts dominance (L3).

(LC∨) Let B <l ¬A ≤l A. Then by contraposition (L5), ¬A ≤l A <l ¬B. We
want to show that A∨B ≤l A, that is, by contraposition again, ¬A ≤l ¬A∧¬B.
But this follows immediately by (LC∧) that we have just proved. QED

Observation 6. Take an entrenchment relation ≤e and the correspond-
ing plausibility relation ≤p satisfying the fitting condition A ≤p B iff
¬B ≤e ¬A. Then the relation ≤l defined by

A ≤l B iff both A ≤e B and A ≤p B

is a likelihood relation.

Proof. This result is due to Rabinowicz (1995). Because of some differences in
the details, we give a proof of our own.

Transitivity and dominance for ≤l, (L1) and(L3), follow immediately from Tran-
sitivity and dominance for ≤e and ≤p. Contraposition (L5) follows immediately
from the fitting condition.

Connectivity (L2). Suppose that not A ≤l B. We need to show that B ≤l A.
That not A ≤l B means that either not A ≤e B or not A ≤p B.

Case 1: Not A ≤e B. Hence, by the connectivity of ≤e, B <e A. By the fitting
condition, ¬A <p ¬B. Hence, by dominance and transitivity, ¬A <p >. Hence,
since for every proposition, either it or its negation is as plausible as >, > ≤p A.
Hence, by dominance and transitivity again, B ≤p A. Taking this together with
B <e A, we get that B ≤l A.

Case 2: Not A ≤p B. Hence, by the connectivity of ≤p, B <p A. By the fitting
condition, ¬A <e ¬B. Hence, by dominance and transitivity, ⊥ <e ¬B. Hence,
since for every proposition, either it or its negation is as entrenched as ⊥, B ≤e ⊥.
Hence, by dominance and transitivity again, B ≤e A. Taking this together with
B <p A, we get that B ≤l A.

Positive conjunctiveness (L4). Let ¬A <l A and ¬B <l B. We need to show that
either A ≤l A ∧B or B ≤l A ∧B.
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By the fitting condition, ¬A ≤e A is equivalent with ¬A ≤p A. Thus ¬A <l A
reduces to ¬A <e A, and similarly ¬B <l B reduces to ¬B <e B.

By conjunctiveness for ≤e, we know that either A ≤e A ∧ B or B ≤e A ∧ B. To
prove our claim, it thus suffices to show that both A ≤p A∧B and B ≤p A∧B,
i.e., by the fitting condition, that both ¬(A ∧ B) ≤e ¬A and ¬(A ∧ B) ≤e ¬B.
But since either A ≤e A ∧ B or B ≤e A ∧ B, and since both ⊥ ≤e ¬A <e A and
⊥ ≤e ¬B <e B, we know that ⊥ <e A ∧ B. Hence, since for every proposition,
either it or its negation is as entrenched as⊥, ¬(A∧B) ≤e ⊥. Thus, by dominance
and transitivity, ¬(A∧B) ≤e ¬A and ¬(A∧B) ≤e ¬B, which finishes the proof.
QED

It follows from (Bi)–(Biv) that if A ` B then β(A) ≤ β(B).

Proof. Suppose that A ` B. Since the logic is classical, this is equivalent with
each of the following conditions: ¬B ` ¬A, A a` A∧B, ` ¬A∨B and A∧¬B ` ⊥.
We want to show that β(A) ≤ β(B). In order to do this, we distinguish six cases.

Case 1. β(A) > 0 and β(B) > 0. Then, by (Biii), β(A ∧B) = min{β(A), β(B)}.
By (Bi), β(A) = β(A ∧B), so β(A) ≤ β(B), as desired.

Case 2. β(A) > 0 and β(B) < 0. By inversion, β(¬B) > 0. So, by (Biii),
β(A∧¬B) = min{β(A), β(¬B)} > 0. By (Bi), β(A∧¬B) = β(⊥), so β(⊥) > 0.
By inversion again, β(>) < 0, contradicting (Bii). So this case is impossible.

Case 3. β(A) > 0 and β(B) = 0. By inversion, β(¬B) = 0. Thus, by (Biii), β(A∧
¬B) = min{β(A), β(¬B)} = 0. By (Bi), β(A∧¬B) = β(⊥), so β(⊥) = 0 and, by
inversion, β(>) = 0. We now show that for all sentences C, β(C) = 0. Suppose
firstly for reductio that β(C) > 0. Then β(C) = β(C ∧>) = min{β(C), β(>)} =
0, and we have a contradiction. Suppose secondly for reductio that β(C) < 0. By
inversion, β(¬C) > 0. Then β(¬C) = β(¬C ∧>) = min{β(¬C), β(>)} = 0, and
we have again a contradiction. Thus β is the constant function assigning 0 to all
sentences, so trivially β(A) ≤ β(B). (It is in fact immediate that the relational
projection of this function satisfies all of (L1)–(L5).)

Case 4. β(A) ≤ 0 and β(B) ≥ 0. This immediately implies β(A) ≤ β(B).

Case 5. β(A) < 0 and β(B) < 0. Then, by inversion (Biv), β(¬A) > 0 and
β(¬B) > 0. By (Biii), β(¬A ∧ ¬B) = min{β(¬A), β(¬B)}. By (Bi), β(¬B) =
β(¬A ∧ ¬B), so β(¬B) ≤ β(¬A). Thus, by inversion (Biv) again, β(A) ≤ β(B),
as desired.

Case 6. β(A) = 0 and β(B) < 0. By inversion, β(¬B) > 0. Thus, by (Biii),
β(A ∧ ¬B) = min{β(A), β(¬B)} = 0, and the case continues exactly like case 2.
QED

Observation 7. A function β is a likelihood function satisfying (Bi)–
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(Biv) if and only if there is an entrenchment function ε satisfying (Ei)–
(Eiii) such that

β(A) = ε(A) + π(A)

where π is the plausibility function corresponding to ε, defined by
π(A) = −ε(¬A).

Proof. We first show that for every entrenchment function ε satisfying (Ei)–
(Eiii), the function β defined by β(A) = ε(A) − ε(¬A) is a likelihood function
satisfying (Bi)–(Biv). Intensionality (Bi) and inversion (Biv) follow immediately
from the intensionality of ε and the definition of β. For (Bii), β(>) = ε(>) −
ε(⊥) ≥ 0, since ε is non-negative and ε(⊥) = 0, by (Eii). The most complex
condition is (Biii). Suppose that β(A) ≥ 0 and β(B) > 0. We need to show
that β(A ∧B) = min{β(A), β(B)}. From β(A) ≥ 0 we conclude that ε(¬A) = 0
and β(A) = ε(A). From β(B) > 0 we conclude that ε(¬B) = 0 and β(B) =
ε(B). From ε(¬A) = 0 and ε(B) > 0, we get that ε(¬(A ∧ B)) = 0, otherwise
ε(¬A) ≥ ε(B ∧ ¬(A ∧B)) = min{ε(B)), ε(¬(A ∧B))} > 0. Now finally consider
β(A ∧ B) = ε(A ∧ B) − ε(¬(A ∧ B)). Since ε(A ∧ B) = min{ε(A), ε(B)} and
ε(¬(A ∧B) = 0, we get that β(A ∧B) = min{β(A), β(B)}, as desired.

For the converse direction, let β be a likelihood function satisfying (Bi)–(Biv).
We define for all sentences A

ε(A) = max{β(A), 0}

with the corresponding plausibility function being

π(A) = −ε(¬A) = −max(β(¬A), 0) = −max(−β(A), 0) = min(β(A), 0)

Now we check that this function ε indeed generates β by means of the equation
β(A) = ε(A) − ε(¬A). Let us distinguish two cases. If β(A) ≥ 0, then by
inversion β(¬A) ≤ 0, so ε(A)−ε(¬A) = max{β(A), 0}−max{β(¬A), 0} = β(A).
If β(A) < 0, then by inversion β(¬A) > 0, so ε(A) − ε(¬A) = max{β(A), 0} −
max{β(¬A), 0} = −max{−β(A), 0} = β(A). So in either case β(A) = ε(A) −
ε(¬A), as desired.

We finally show that ε is an entrenchment function satisfying (Ei)–(Eiii). (Ei)
and (Eii) are immediate. Regarding (Eiii), the case when both ε(A) and ε(B)
are positive is directly covered by the positive conjunctiveness condition (Biii).
The only subcase of (Eiii) that requires a closer look is when either ε(A) = 0 or
ε(B) = 0. So suppose without loss of generality that ε(A) = 0. Then, by the
definition of ε, β(A) ≤ 0. We need to show that ε(A∧B) = min{ε(A), ε(B)} = 0,
i.e., that β(A ∧ B) ≤ 0. Suppose for reductio that β(A ∧ B) > 0. Then by
dominance for β which we have proved to be satisfied before, β(A) > 0, too, and
we have a contradiction. QED
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Observation 8. Take a Spohnian beta function β. Then its relational
projection defined by

A ≤l B iff β(A) ≤ β(B)

is a Rabinowicz likelihood relation.
Conversely, for every finite Rabinowicz likelihood relation ≤l there is
a Spohnian beta function β such that ≤l is the relational projection of
β.

Proof. Part 1. That the relational projection ≤l of a beta function satisfies (L1),
(L2), (L4) and (L5) follows trivially from the conditions (Bi)–(Biv). And we have
proven before that these conditions imply a dominance condition for β which in
turn guarantees the dominance condition (L3) for ≤l.

Part 2 is sketched in the main text, after the formulation of Obs. 8. QED

The relation ≤ee = ≤e ∩ ≤ex is a comparative necessity relation satisfy-
ing (E1)–(E3)

Proof. ≤ee satisfies transitivity and dominance, since both ≤e and ≤ex do.

For conjunctiveness, suppose that not A ≤ee A ∧ B. We need to show that
B ≤ee A ∧ B. That not A ≤ee A ∧ B can come about in two ways: Either not
A ≤e A ∧B or not A ≤ex A ∧B.

Case 1. Suppose that not A ≤e A ∧ B. So B ≤e A ∧ B, by the conjunctiveness
of ≤e. Also, A ∧ B <e A, by the connectivity of ≤e, and thus a fortiori ⊥ <e A.
By the fitting condition (i), we get > ≤ex A and thus a fortiori B ≤ex A. So
by the conjunctiveness and transitivity of ≤ex, B ≤ex A ∧ B. Since we also had
B ≤e A ∧B, we finally get B ≤ee A ∧B, as desired.

Case 2. Suppose that not A ≤ex A∧B. So B ≤ex A∧B, by the conjunctiveness
of ≤ex. Also, A ∧ B <ex A, by the connectivity of ≤ex. By the transitivity of
≤ex, we get B <ex A, and thus a fortiori B <ex >. By the fitting condition (i),
we get B ≤e ⊥ and thus a fortiori B ≤e A ∧B. Since we also had B ≤ex A ∧B,
we finally get B ≤ee A ∧B, as desired. QED

The relation ≤pp = ≤p ∩ ≤px is a comparative possibility relation satis-
fying (P1)–(P3)

Proof. ≤pp satisfies transitivity and dominance, since both ≤p and ≤px do.

For disjunctiveness, suppose that not A ∨ B ≤pp A. We need to show that
A ∨ B ≤pp B. That not A ∨ B ≤pp A can come about in two ways: Either not
A ∨B ≤p A or not A ∨B ≤px A.

Case 1. Suppose that not A ∨ B ≤p A. So A ∨ B ≤p B, by the disjunctiveness
of ≤p. Also, A <p A ∨B, by the connectivity of ≤p, and thus a fortiori A <p >.
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By the fitting condition (ii), we get A ≤px ⊥ and thus a fortiori A ≤px B. So
by the disjunctiveness and transitivity of ≤px, A ∨ B ≤px B. Since we also had
A ∨B ≤p B, we finally get A ∨B ≤pp B, as desired.

Case 2. Suppose that not A ∨B ≤px A. So A ∨B ≤px B, by the disjunctiveness
of ≤px. Also, A <px A ∨ B, by the connectivity of ≤px. By the transitivity of
≤px, we get A <px B, and thus a fortiori ⊥ <px B. By the fitting condition (ii),
we get > ≤p B and thus a fortiori A ∨B ≤p B. Since we also had A ∨B ≤px B,
we finally get A ∨B ≤pp B, as desired. QED

A lemma concerning the relation ≤ll = ≤l ∩ ≤lx, built from ≤l and ≤lx.
Let ≤l and ≤lx satisfy the fitting condition (iii). Then

(i) If A <l B, then A ≤lx B

(ii) If A <lx B, then A ≤l B

(iii) If A ≤lx ¬A, then A ≤l ¬A

(iv) ¬A <ll A if and only if ¬A <lx A

Proof. (i) Let A <l B and suppose for reductio that not A ≤lx B. From the
latter we get by connectivity that B <lx A, and a fortiori B <lx >. Hence, by
the fitting condition (iii), B ≤l ¬B. Taken together with A <l B, this gives us
A <l ¬B. By contraposition, B <l ¬A. So by transitivity, A <l ¬A. By the
fitting condition (iii) again, we get > ≤lx ¬A, and a fortiori ¬B ≤lx ¬A. By
contraposition, A ≤lx B, and we have a contradiction.

(ii) Let A <lx B and suppose for reductio that not A ≤l B, that is, B <l A. From
the former we get a fortiori A <lx >, so by the fitting condition (iii), A ≤l ¬A.
By transitivity, we get B <l ¬A, and by contraposition A <l ¬B. By transitivity
again, this gives us B <l ¬B, so by the fitting condition (iii) again, > ≤lx ¬B.
So a fortiori, ¬A ≤lx ¬B, and by contraposition B ≤lx A. But this contradicts
the initial supposition A <lx B.

(iii) Let A ≤lx ¬A, and suppose for reductio that not A ≤l ¬A, that is, ¬A <l A.
From the latter we get, by the fitting condition (iii), > ≤lx A. By transitivity,
this gives us > ≤lx ¬A, and by the fitting condition (iii) again, A <l ¬A, and we
have a contradiction. We conclude that A ≤l ¬A, as desired.

(iv) The condition ¬A <ll A means that ¬A ≤ll A and not A ≤ll ¬A. The former
part says that

¬A ≤l A and ¬A ≤lx A
while the latter part says that

not A ≤l ¬A or not A ≤lx ¬A
By part (iii) of this lemma, the latter line means that not A ≤lx ¬A, i.e., by
connectivity ¬A <lx A. But, due to part (iii) of this lemma again, this implies
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the former part. In sum then, ¬A <ll A is equivalent with ¬A <lx A. QED

The relation ≤ll = ≤l ∩ ≤lx is a likelihood relation satisfying (L1)–(L5)

Proof. ≤ll satisfies transitivity (L1), dominance (L3) and contraposition (L5),
since both ≤l and ≤lx do.

For connectivity (L2), assume that not A ≤ll B. We need to show that B ≤ll A,
that is, B ≤l A and B ≤lx A. That not A ≤ll B can come about in two ways:
Either not A ≤l B or not A ≤lx B. Firstly, suppose that not A ≤l B. Then, by
connectivity, B <l A. By part (i) of the lemma, we also get B ≤lx A, and we are
done. Suppose secondly that not A ≤lx B. Then, by connectivity, B <lx A. By
part (ii) of the lemma, we also get B ≤l A, and we are done.

For positive conjunctiveness (L4), let ¬A <ll A and ¬B <ll B. By the lemma,
part (iv), this reduces to ¬A <lx A and ¬B <lx B. Assume further that not
A ≤ll A ∧ B. We need to show that B ≤ll A ∧ B, that is B ≤l A ∧ B and
B ≤lx A ∧ B. That not A ≤ll A ∧ B can come about in two ways: Either not
A ≤l A ∧B or not A ≤lx A ∧B.

Case 1. Suppose that not A ≤l A ∧ B. Then, by connectivity, A ∧ B <l A.
Suppose for reductio that not B ≤lx A ∧ B, that is A ∧ B <lx B. Then by
positive conjunctiveness for ≤lx, A ≤lx A ∧ B. By transitivity, A <lx B. Thus,
by part (ii) of the lemma, A ≤l B. Together with A ∧ B <l A, this gives us
A ∧ B <l B, by transitivity. We conclude with positive conjunctiveness for ≤l

that either A ≤l ¬A or B ≤l ¬B. By A ≤l B, contraposition and transitivity,
this reduces to A ≤l ¬A. Together with A ∧ B <l A, we get A ∧ B <l ¬A.
However, we have ¬A <lx A as well as A ≤lx A∧B which implies ¬A <lx A∧B.
By the lemma, part (ii), this implies ¬A ≤l A ∧ B, and we have a contraction.
So the supposition was wrong, and we have shown that B ≤lx A∧B, as desired.

Case 2. Suppose that not A ≤lx A∧B. Then, by connectivity, A∧B <lx A, and
by positive conjunctiveness for ≤lx, B ≤lx A ∧ B. Taken together, this gives us
B <lx A, and by part (ii) of the lemma B ≤l A. Suppose for reductio that not
B ≤l A∧B, that is A∧B <l B. By transitivity, we get A∧B <l A. By positive
conjunctiveness of ≤l, we conclude that either A ≤l ¬A or B ≤l ¬B. By B ≤l A,
contraposition and transitivity, this reduces to B ≤l ¬B. Taken together with
A ∧ B <l B, this gives us that A ∧ B <l ¬B. However, we have ¬B <lx B as
well as B ≤lx A ∧ B, which implies ¬B <lx A ∧ B. By the lemma, part (ii),
this implies ¬B ≤l A ∧ B, and we have a contradiction. So the supposition was
wrong, and we have shown that B ≤l A ∧B, as desired. QED
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Appendix II: The modal logic of plain belief as implicit

in the logic of entrenchment relations

According to the Lockean thesis, a proposition can count as believed if the degree
of confidence in its truth is sufficiently high, or in the terms mainly used in this
paper, if the degree of belief in it is high enough. Degrees of belief are here thought
of as comparative necessity relations, also called ‘entrenchment relations’. What
kind of implications does the theory of entrenchment relations and functions
developed in this paper have for a logic of plain belief? In order to answer this
question we have to begin with another one: How can we translate statements of
comparative necessity into the language of plain belief?

The Lockean thesis implies that belief is upward-closed, that is, if A is be-
lieved and A ≤ B, then B is believed as well. In a first approximation, let us
thus read A ≤ B as expressing ‘If the reasoner believes A, then she also believes
B’, or more formally, �A → �B. For this suggestion to make sense, we have to
presuppose the transitivity condition (E1) for ≤.

We then have interesting translations of the entrenchment axioms. For the
labelling and the systematic place of the respective axioms in modal logic, see
Chellas (1980, Chapter 8).38 Dominance (E2) becomes Chellas’ rule

(RM) From ` A → B infer ` �A → �B

Conjunctiveness (E3) becomes Chellas’ axiom

(C) �A ∧�B → �(A ∧B)

Taken together, (RM) and (C) define a regular system of modal logic (Chel-
las’ terminology). Alternatively, in the place of (RM) one could use the weaker
rule

(RE) From ` A ↔ B infer ` �A ↔ �B

together with the additional axiom

(M) �(A ∧B) → �A ∧�B

Regular systems are still weaker than normal systems.39 I think it may perhaps
be said that (C) and (M) provide a syntactic way of capturing the intrinsic
meaning of ‘�’. It is characteristic of the concept of necessity that it distributes
over conjunction.

What is still missing is the necessitation rule (RN) ‘From ` A infer ` �A’, or
equivalently, the axiom (N), �>. Systems without (RN) or (N) have no theorems
of the form ‘�A’, so no beliefs at all are declared by them as “logically required”.

It is hard to express this in entrenchment language. Relatively close is ⊥ <
>. Clearly ⊥ ≤ >, saying that �⊥ → �>, is just an instance of (E2). In our first

38Here as everywhere in this paper, I use the term ‘axiom’ also when I talk about axiom
schemes.

39Instead of (M), just �(A∧B) → �A would be sufficient. Notice that (RE) corresponds to
(Ei), and the biconditional (R) joining (C) and (M) corresponds to (Eiii).
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approximation to the interpretation of ≤, ‘Not > ≤ ⊥’ is just construed as the
negated material conditional ‘¬(�> → �⊥)’. Thus the condition ⊥ < > seems
to express, roughly, that all tautologies, but no contradictions are to be believed,
and it makes sense to stipulate this. It is equivalent with the conjunction of the
modal axiom40

(N) �>
with the consistency axiom

(P) ¬�⊥
(P) is equivalent, in the context of the other axioms, with the usual axiom stating
that whatever is necessary is possible

(D) �A → ♦A

Using the interdefinability of � and ♦ as an axiom, it is easy to show that
the following rule and axioms are the counterparts of (RE), (M) and (C) for the
possibility operator:

(RE♦) From ` A ↔ B infer ` ♦A ↔ ♦B

(M♦) (♦A ∨ ♦B) → ♦(A ∨B)

(C♦) ♦(A ∨B) → (♦A ∨ ♦B)

We now understand how fundamental the role of the Distribution Laws for �
and ♦ is for the characterization of necessity and possibility, respectively. Given
(RE) or (RE♦), they suffice to characterize regular systems of modal logic.

Let us summarize the situation as seen in the light of our first approximation
to the modal reading of entrenchments (i.e., of comparative necessities). The
modal logic of belief implicit in our standard axiomatizations (E1)–(E3) or (Ei)-
(Eiii), is the non-normal, regular system of modal logic called R or ECM by
Chellas; an axiomatization in the spirit of this paper consists in (RE), (C) and
(M). If we decide to add the non-triviality condition ⊥ < > or ε(⊥) < ε(>), then
we get a double extension of ECM : The normal system D or KD satisfying the
axioms (N) and (D). Entrenchments do not validate the truth axiom (T), nor do
they account for iterated modalities.

But there is a problem about our first approximation. This can be seen in
the translation of the connectivity condition for ≤, for instance. We should not
render it by (�A → �B) ∨ (�B → �A) which would be a simple tautology
of propositional logic. Connectivity should not be that trivial. So I don’t think
‘Not A ≤ B’ should be read as ¬(�A → �B), i.e., �A∧¬�B, because this says
that A is actually believed and B is actually not believed. Now what else could
it mean? The correct meaning is rather that there is a level of belief at which A
is believed but B is not believed. This does not imply that the level referred to is
the one actually applied by, or actually ascribed to, the reasoner for demarcating
her ‘beliefs’ from her ‘non-beliefs’.

40About which Chellas does not say much.
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Better than the first approximation, and I think basically correct, is it to read
A ≤ B as expressing ‘Whenever the reasoner believes A, then she also believes
B’. The quantification is not over time indices here, but over degrees or levels of
belief. We can be more precise about that if the language includes (finitely many)
graded modalities �1, . . . , �n and their respective duals ♦1, . . . , ♦n, governed
by the logical axioms �iA → �jA or, respectively, ♦jA → ♦iA for all i and j
such that i ≥ j (cf. Goble 1970). Then we can say that A ≤ B means that for all
certainty indices i, ‘If the reasoner believes A at level i, then she also believes B
at i’, or more formally, for all i, �iA → �iB. Connectivity is no longer trivial on
this reading. Having relativized belief to some grade or level, however, we find it
hard to make sense of the notion of plain belief.
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