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Abstract. The problemof how to remove informationfrom an agents stockof beliefsis of
paramountoncernn thebeliefchangditerature An inquiringagentmayremove beliefsfor a
varietyof reasonsabelief maybecalledinto doubtor theagentmaysimply wish to entertain
otherpossiblitiesIn theprominentAGM framework [1, 8] for belief changepponwhich the
work hereis basedpneof thethreecentraloperationsgcontraction addressethisconcern(the
othertwo dealwith theincorporatiorof new information).Makinson[23] hasgeneralisedhis
work by introducingthe notionof awithdrawal operation.

Underlyingthe accountprofferedby AGM is theideaof rational belief changeA belief
changeoperationshouldbe guidedby certainprinciplesor integrity constraintsn orderto
characterisehangeby a rationalagent.Oneof the mostnotedprincipleswithin the context
of AGM is the Principle of InformationalEconomy However, adoptionof this principle in
its purestform hasbeenrejectedby AGM leadingto a morerelaxed interpretation.n this
paperwe arguethatthis wealeningof the Principleof InformationalEconomysuggestshat
it is only oneof a numberof principleswhich shouldbetakeninto accountFurthermorethis
wealeningpointstowarda Principleof Indifference This motivatestheintroductionof a new
beliefremoval operatiorthatwe call severe withdrawal. We provide rationality postulatesor
severewithdraval andexploreits relationshipwith AGM contraction Moreover, we furnish
possibleworlds andepistemicentrenchmergemanticgor severewithdrawals.

Key words: AGM, belief change belief contraction,epistemicentrenchmentsevere with-
drawal, systemsf spheres.



1. Introduction

An inquiringagentmust,amongotherthings,dealwith the problemof belief
change (or beliefrevision)— how to modify its currentepistemicstate(stock
of beliefs)in light of new information.One of the more popularaccounts
of belief changein recenttimes hasbeenthat introducedby Alchourton,
Gardenforsand Makinson[1] (henceforthreferredto asthe AGM frame-
work). The AGM framework for belief changedistinguisheghreetypesof
transformationon epistemicstates:belief contraction (K ~¢) — removal
of belief ¢ from epistemicstate K without additionof ary further beliefs;
beliefexpansion(K + ¢) — additionof belief ¢ andits consequencesith-
out removal of ary existing beliefs;and,beliefrevision (K * ¢) — addition
of belief ¢ andits consequencesith possibleremoval of existing beliefsin
orderto maintainconsisteng

In this paperwe are predominantlyconcerneavith the processof belief
removal — “contraction” and“withdrawal”.! It is our aim hereto introduce
a neaw, principled, belief removal operation.Although distinct from AGM
contractionthe two arerelatedthroughtheir emegentrevision behaiour.
Moreover, whenattentionis restrictedo all functionsrelatedin this way and
satisfyingcertainintuitive principles,we find thatthesetwo proposaldie at
oppositeendsof the spectrumwith respecto their degreeof belief removal
measuredn termsof set-theoretiénclusion. The alternatve proposalintro-
ducedhereis contrastedvith AGM contractionwhich canbe seemsa point
of referencean helpingto understandhe vagariesof this newv approachin
the AGM vein, rationality postulatesare provided for our proposalandtwo
constructionof centralimportanceto the AGM framevork — systemsof
spheresandepistemicentrenchmernt— areadaptedandusedto further pro-
motethis comparison.

Thereare a numberof reasonswvhy an inquiring agentwould be inter
estedin removing beliefsfrom its currentepistemicstate.lf the agentfinds
itself in aninconsistenstate— believing contradictoryinformation— then
it cangive up certainbeliefsin an attemptto regain consisteng? On the
otherhand,an agentmay wantto suspendelief in a particularproposition
becausd nolongerhasary confidencen thatpropositionor simply because
it wouldlike to consideiotherpossibilitiesIn eithercasetheoverridingcon-
cernis that the agentno longerinclude the propositionin questionamong
its beliefs.Moreover, if one subscribedo Levi’'s Commenswability Thesis
[18, p. 65] which stateghatary reasonabléransitionbetweertwo epistemic
statescan be achieved througha sequencef expansionsand contractions,
thentheimportanceof contractionis clearlyevident?

Principally we areconcernedvith characterisinghatbeliefchangaunder
goneby thoseagentswvhich actin accordwith certainprinciplesor “integrity
constraints’tommonlyreferredto asrationality criteria (seealsoGardenfors
andRott[11, p. 38]). Arguablythe mostwell known of thesecriteria (espe-
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cially in thecontet of the AGM frameawork) is the Principle of Informational
Economyf8] whichwe shallpresenterein slightly moregeneraljuiseasthe
Principle of Economy!

e ThePrinciple of Economy:
Keeplossto a minimum.

Thisprinciplehas,in fact,becomdargely synorymouswith theAGM frame-
work. A specialinstanceof this constraintwherelossis measuredh termsof
set-theoretiinclusion(of epistemicstates)is known asthePrinciple of Con-
servatism16]. It canbe consideredhe startingpoint for the AGM account
of contractionthe motivatingconcerrnunderlyingthe AGM notionof “maxi-
choicecontraction”andthe pathwayto thatof “partial meetcontraction’[1].5
An importantpoint to note is that sucha comparisonpn the basisof set-
theoreticinclusion,presupposethe associatiorof a positive valueof utility
with every singleitem of belief. The Principleof (Informational)Economy
(andconsequentlyhat of Conseratism)is a restrictedcaseof the Principle
of Minimal Changp [16] which stateghatadditionaswell aslossshouldbe
keptto a minimum.

It is our contentionherethatthe Principle of Economyhasbeenseverely
compromisedn the AGM framework. In its purestform, asthe Principleof
Consenratism, it hasbeenshawvn to leadto undesirableconsequenceshen
appliedto logically closedbeliefsets[2].6 As aresultits impositionis effect-
edto amuchlessstringentdegree.We claim thatthis principleis not, in fact,
anoverridingcriterionbut, insteadmustbeappliedin combinatiorwith oth-
er, equallyimportant,principlesin orderto obtainanintuitively satisactory
accountof beliefchangeMoreover, theseprinciplesarein a stateof tension
with respecto eachother(i.e., they have conflictingconcerns)In this paper
we adwocate,in particular Principlesof Indifferenceand Prefeence Briefly,
taken togetherthey statethatan objectheldin equalor higherregardthan
anothershouldbe treatedequallyor morefavourablythanthelatter In fact,
we arguethat AGM contractiondoesembraceheseprinciplesto a limited
extent.However, this partialadoptiondoesnot appeato be clearlymotivated
or even justified. Therefore we proposea stricter adherenceo the Princi-
plesof Indifferenceand PreferenceAs a resultof this changein view, we
proposea new form of contractiondiffering from thatput forward by AGM.
Moreover, the rationality criteria proposedare equallyapplicableto the two
constructie modellingsthat we investigatehere— system®f spheesand
epistemientrendmentorderings Interestinglyenoughthis new contraction
operationdoesnot affectthe AGM beliefrevisionoperation.

Let us return our focus of attentionto the AGM developmentof belief
contraction Applying the Principleof Economyin the form of the Principle
of Conseratism, it wasat first suggestedhat the contractionof a belief set
K by asentence couldbeachievedby selectingsomemaximalsubsebf K
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thatdoesnot imply ¢. As mentionedabove, this proposalwasimmediately
abandonedsit hasundesirableconsequencesnsteada selectionfunction
~ wasappliedto thesetof all suchmaximalnon-implyingsubsetsK 1 ¢7, in
orderto seleciasetof the“best” elementsvhicharethenintersectedo obtain
apartial meetcontractionfunction(K —¢ = N v(K L¢)). It shouldbenoted
that the selectionfunction v is definedfor all sentenceg but with K held
fixed(i.e.,for somebeliefsetK, v maytake asanamgumentk 1 ¢ forary ¢ €
L). It is clearthatthis developmentleadsaway from conseratism. Certain
objectsareunderscrutiry. A mechanisnis usedto discriminateamongthem
althoughit may not be possibleto distinguishsomeapartand so theseare
all retainedandprocessetbgetherThis leadsusto formulatelndifferenceas
follows:

¢ ThePrinciple of Indifference

Objectsheldin equalregard shouldbetreatedequally

The situationin which all maximal non-implyingsubsetsare held in equal
regardis anAGM full meetcontractiof which standsatthe oppositeendof
thespectrunmto AGM maxichoicecontraction.

In settlingon partialmeetwe realizethatthe Principleof Economyandthe
Principle of Indifferencearein a stateof tensionwith respecto oneanoth-
er; Economyadwocatesthe selectionof a single elementfrom K 1 ¢ while
Indiffencerecommend$o give up morethannecessarif theselectiormech-
anismdoesnot singleout a unique“best” solution.Both of theseprinciples
figurein therationalebehindthe choiceof “best” elementsmplicitly adopt-
edin partial meetcontraction We shall extendthis stratgy by acceptinghe
following, intuitively appealingprinciple:

e ThePrinciple of Strict Prefeence

Objectsheldin higherregard shouldbe afforded a more favouiable
treatment.

Takentogetherwith the Principleof Indifference this principle canbe seen
asadwancingthefollowing rathergenerabprinciple:

¢ ThePrinciple of WeakPrefeence

If oneobjectis heldin equalor higherregard thananothertheformer
shouldbetreatedno worsethanthelatter.

Sucha principle canalreadybe seernto beatwork in AGM partialmeetcon-
traction with “importance” being judgedthroughthe selectionfunction +.
However, consideratioris restrictedto the elementof K 1 ¢ for a particular
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sentencep € L. Our aim hereis to emphasisan alternatve to AGM con-
tractionwhich we believe adheresnorefaithfully to the Principlesof Indif-
ferenceandPreferenceHowever, adoptingthe AGM formatfor beliefchange
processef.e., epistemidnputsassentencefrom a suitableobjectlanguage
and epistemicstatesas setsof sentenceshat are deductvely closedunder
someconsequenceelation)allows usto effecta straightforvard comparison
of thetwo proposals.

In the following sectionwe outline sometechnicalpreliminariesIn sec-
tions 3 and4 we presen@anintuitive overview of two importantconstructie
modellingsfor AGM belief contraction We describehow they fail to live up
to the requirementglemandedy the Principlesof Indifferenceand Prefer
enceandoutlineanapproactthatresolutelyfavourstheseprinciplesover the
Principle of Economy A commonmethodof presentingAGM contraction
operationss throughrationality postulatesvhich we suney in section5 and
contrastjn section6, with rationality postulategor thebeliefremoval opera-
tion adwocatedin the presenpaper TherelationshippbetweerAGM contrac-
tion operationsandour accountof beliefremoval is moredirectly addressed
in section?. In sections throughl1we returnto theconstructre modellings
discusseth sections3 and4, investigatinghetechnicabspectsf theirappli-
cationin ourbeliefremoval operationThis leadsusto aninvestigationof the
relationshipbetweenthe two constructre modellingsadoptedhere— sys-
temsof spheresand epistemicentrenchment— in section12. We conclude
with adiscussiorof theinsightsstemmingrom ourapproachits relationship
to otherwork in theliterature(sectionl3) and,in sectionl4, a summaryof
thecontritutionsmadehere.

2. Technical Preliminaries

Throughouthis papemwe assumeafixedpropositionalanguageC with count-
ably mary propositionalsymbols.We assumehat £ avails of the standard
logical connecties,namely—, A, V, —, and<, togethemwith the proposi-
tional constantsr (truth) and L (falsum).Theunderlyinglogic will beiden-

tified with its consequencepeiator Cn : 2 — 2£ which is assumedo

satisfythefollowing properties.

r'ccn(l) (Inclusion)
If ' C A, thenCn(T") C Cn(A) (Monotonicity)
Cn(T') = Cn(Cn(I")) (Iteration)
If ¢ canbedervedfrom T by classical
truth-functionalogic, then¢ € Cn(T") (Supraclassicality)

1 € Cn(C' U {¢}) if andonlyif (¢ — ¢) € Cn(I") (Deduction)
If ¢ € Cn(T"), theng € Cn(I") for somefinite
subsef” C T (Compactness)
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We oftenwrite " - ¢ to meang € Cn(T") and ¢ for () - ¢.

We referto ary setof sentence¥( in £ asa beliefsetor theoryif K is
closedunderCn (i.e., K = Cn(K)). One specialbelief setis the absurd
belief set K| containingall sentencen £. A belief set K is consistenin
L if andonly if it doesnot containsentenceg and—¢ for ary ¢ € L, i.e.,
if K doesnotequalK . A belief setis completein £ if either¢ € K or
-¢ € K for every ¢ € L. Thesetof all belief setsis denotedtC. We adopt
the corventionof denotingsentenceby lower caseGreekletterseg, 1, ...
andsetsof sentenceby uppercaseRomanlettersH, K, ....

3. Sphere-Based Withdrawal

An interestingwvay of viewing the proces®f beliefchanges in termsof pos-
sibleworlds. A constructionin this vein, specificallyfocussedn the AGM
framawork, hasbeenproposedy Grove [12] whoadapted.ewis’ [21] possi-
ble worldsmodellingfor counter&ctualconditionals Thisapproactpossess-
esahighly intuitive appeathroughthe pictorial representatioby system®f
sphere$. In this sectionwe concentrat®n motivating our approactthrough
thisintuition, deferringthe maintechnicaldetailsto section8.

Grove [12] characterisethe currentbeliefsof anagentby the collection
of thosepossibleworldsthatareconsistentvith the agents beliefs.But this
is nottheentirerepresentationf anepistemicstate. Theremainingworlds—
thoseinconsistentvith theagents currentbeliefs— aregroupedaroundthis
corecollectionin decreasingrderof plausibility This resultsin a system
of spherescentredon the setof worlds consistentwith the agents beliefs.
Changein belief involves the determinatiorof thoseworlds characterising
theagents new beliefsandis guidedby the preferencerderingover worlds.

More specifically we denotethe possibleworlds consistentvith a setof
sentence& by [K] andthesetof all possiblevorldsby W. Wealsoadoptthe
shorthand¢] for [{¢}]. A spheeis simply a setof possibleworlds X C W.
A systenof sphees cented on [K] is a setof nestedsphereqin the sense
of setinclusion)in which the smallestor innermostsphereis [K] andthe
outermosspherds W. Thisis ageneralisationf Lewis [21] whosesystems
of spheresare centredon a singleworld w € W (the actualworld) if we
allow ourselesto neglect the fact that Lewis doesnot require)V to be an
elementof every systemof spheresEssentiallya systemof spheregentred
on [K] ordersthoseworldsinconsistentvith the agents epistemicstate K.
Intuitively, the agentbelievesthe actualworld to be oneof the K -worldsbut
doesnot have sufiicient informationto establishwhich one. However, the
agentmaybemistalen,in which caseit believesthattheactualworld is most
likely to be one of thosein the next greatersphereand so on. As such,a
systemof spherexanbe consideredinorderingof plausibility over worlds;
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Figure 1. Spheresemanticor AGM belief contractionshaving [K —¢] shaded.

the more plausibleworlds lying furthertowardsthe centreof the systemof
spheres.

This orderingprovidesus with a powerful tool for investigatingthe pro-
cesof beliefchangeln thispapemwe concerrourseheswith theoperatiorof
belief contraction.Thatis, the situationin which anagentwishesto suspend
oneof its beliefs. In this scenario,informationis beingremoved, opening
up morepossibilities.In otherwords,the agents candidatevorldsincrease;
moreworlds beingaddedto [K]. In orderto suspendeliefin a sentencep
the agentmust have somecandidateworlds in which ¢ is falseandthere-
fore, consideringhe principalcasein which ¢ is initially believed (¢ € K),
it mustat leastintroducesome—¢-worldsinto [K]. The AGM approacho
this problemis motivatedto a large extentby the Principleof Informational
EconcomyAccordingly simply the closest=-¢-worlds— thosein thesmall-
estspherecontaining—¢-worlds— areaddedto [K]. This situationis illus-
tratedin Figurel. If by fs(¢$) we denotethe ¢-worlds closestto K andwe
introducea function th that returnsthe belief setcorrespondindo a setof
worlds,thenwe have thefollowing methodfor definingan AGM contraction
function— from a systemof spheres:

(Def = fromS) K-¢ = th([K] U fs(—¢))

It will alsobecorvenientto referto thesmallestspherdntersectingp which
we denoteby cs(#). Thenfs(¢) is givenby cs(4) N [].

Now, if onewereto apply the Principle of Informational Economyin
its unadulteratedorm (i.e., Conseratism), thenthe aim of contraction—
removal of a belief ¢ from epistemicstate X — would be achiezed through
the additionof a single—¢-world to [K] ratherthana numberof —¢-worlds
asdepictedin Figurel. Thisform of contractioncorrespondso maxidoice
contractionin the AGM literature[1], i.e., theideaof taking belief contrac-
tion of K by ¢ to be somemaximal subsetof K that fails to imply ¢.'°
However, this proposalhasbeenshavn to possess numberof dravbacks.
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Foremostamongtheseis thefactthatary revisionfunctiondefinedfrom such
a contractionfunctionvia the Levi Identity would alwaysleadto a complete
theoryi.e.,Cn(K—-¢U{—¢}) ismaximallyconsistentThisindicateghattoo
little informationis beingremoved.As aresult,thePrincipleof Informational
Economyis imposedon a muchwealer level asindicatedabove. Insteadof
including only one—¢-world in contraction AGM incorporatea numberof
—¢-worlds — thoseheld to be mostplausible— into the agents epistemic
state.However, noneof the rationality postulatesnentionedhusfar specify
preciselyhow to dealwith worldsthatareequallypreferrecby theagentAs
aremedywe suggestheemplog/mentof the Principleof Indifference As we
have seenAGM have gonepartof thewayto adoptingsucha principle.How-
ever, they limit their embracemendf sucha stratgy to the areacoveredby
—¢-worldsonly. Presumablythisis dueto a desireto remainasfaithful to the
Principleof InformationalEconomyaspossible despitdts recognisedhort-
comings.YetthePrincipleof InformationalEconomyhasbeencompromised
andits relevancecalledinto questionWe proposeo placestill lessemphasis
onits applicationandsubordinatet to the Principleof Indifference.
Another principle, relating to the preferencestructuresuppliedby the
spheremodelling,thatwe suggesto respecis the Principleof Strict Prefer
ence Accordingto this principle,worldsconsidereanoreplausibleshouldbe
givenmorefavourabletreatmentWhencontractingts belief setwith respect
to ¢, the agentmustat leastinclude some(one, at ary rate) —¢-world into
its epistemicstate.But the aforementionegbrinciples,asappliedto possible
worlds and systemsof spheresadwcatethat any ¢-worlds just as plausi-
ble astheinnermost=¢-worlds shouldbeincludedalso.Thus,togetherthey
sanctiorthefollowing specialisatiorof the Principleof WeakPreference:

If oneworldis consideedat leastasplausibleasanotherthentheformer
shouldbe admittedin the agent’s epistemicstateif thelatter is.

ThePrincipleof InformationalEconomyin aweakform, canbeviewedas
limiting the extentof changeto thatspherecontainingthe closest-¢-worlds
andnotbeyond. The Principleof WeakPreferenceleterminesvhich worlds
insidethislimited region shouldbeincludedin thenew epistemicstate With-
outary furtherrestrictiondt suggestshatall worldsinsidethisregionshould
form partof thecontractedpistemicstate In away, evenAGM appealo this
principle. There however, theprincipleis only appliedrelative to —¢-worlds,
notall worldsin W. However, no principleauthorisingarestrictedmposition
of this principle is establishedThe new situationis illustratedin Figure 2.
The agenthasdetermineda preferenceover worlds and doesnot preferthe
(closest)—¢-worlds over the (closer) ¢-worlds just becauset is giving up
beliefin ¢. Its preferenceareestablishegbrior to thechangeandwe assume
thatthereis noreasorto alterthemin light of thenew information(epistemic
input). It is for this reasornthatthe Principle of Conseratism (the Principle



Figure 2. Spheresemanticgor severewithdraval shaving [K~¢] shaded.

of InformationalEconomyin its pureform) mustgive way. We shallreferto
thistypeof beliefremoval assevere withdrawal

Denotingby cs(¢) the closestsphereto K containingg-worlds,asmen-
tionedabore, we obtaina severewithdraval functionasfollows:

(Def= fromS) K=¢ = th(cs(~¢))

It is thestudyof this classof functionsto whichwe devote ourseheshere.
Whenconsideredn a commonsetting,this form of beliefremoval hasbeen
independenthyadwcatedby Levi [20] who refersto suchfunctionsasmild
contractions Levi arguesfor mild contractionsn termsof an information
theoreticagument.We shallreturnto a consideratiorof Levi’s agumentsn
thediscussior(in Section13).!!

4, Entrenchment-Based Withdrawals

Lewis [21, Section2.5] was perhapsthe first to realisethat a total order
ing over possibleworlds could be rephrase@sa total orderingover the sen-
tenceof alanguageGrove [12] providessuchanorderingbasecdbn systems
of spherexentredon [K|. Gardenforsand Makinson[9] alsointroducean
orderingover sentencegnown as an epistemicentendment? Intuitively,
anepistemicentrenchmentelation< is anorderingover the agents beliefs
whichreflectstheplausibilitiesor degreesof retractabilityfrom agivenbelief
stateK. Therelation¢ < 1 canbereadas'it is atleastashardto discard
1 thanit is to discardy.” Epistemicentrenchmentelationsarethoughtof as
satisfyinga numberof structuralconstraintsvhich we needpresentonly in
Sectionll.

Now let arelation< of epistemicentrenchmenbegiven,andlet < beits
asymmetripart. Thenthecontractiorbasedn < assuggestetly Gardenfors
andMakinson[9, (C-) condition)]is asfollows.
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(Det=from=) K=o = { gﬂ W= ov gtﬁeerwfi{seand 7

AlthoughGardenforsandMakinson[9, p. 89] offer amotivationfor this def-
inition, it is ratherhardto understandBesidesasGardenforsand Makinson
point out, their agumentin supportof (Def — from <) depend®n the con-
troversialpostulateof recorery which we will discusshelow.

In contractiona basicideaseemso bethatlessepistemicallyentrenched
sentencesre to be given up in favour of more entrenchedsentenceg8,
pp.17-18,75,87]. Suchaninterpretatioris vaguelyreminiscenbf animpo-
sition of the Principleof Preferenceln arelatedfashion,a morestraightfor
wardway of using< wasairedby Rott [29] (alsocompareGardenforsand
Rott[11, p. 73]):

(Def = from<) K=Z¢= { gﬂ {:d <y} gtﬁeerwfiieand ¢

We shallseethatcondition(Def - from <) canin factbeusedin bothdirec-
tions.Onthereversereading g is epistemicalljessentrenchethemny, exact-
ly whenthe successfutemoval of ¢ from epistemicstate K resultsin the
retentionof .

Asin the caseof Groveansphere-basecbntractiongaliasAGM contrac-
tions),the pureideaof minimisingtheamountof informationlostis compro-
misedin GM entrenchment-basambntractiondeterminedoy (Def - from
<). In generalthe resultof an entrenchmentontractionis not a maximal
subsetof the theory K that doesnot entail ¢.'2 If ¢ is in K, then every
suchmaximalnon-implyingsubseincludeseithere Vv v or ¢ vV —p; if it did
not, thenit would not be maximalby disjunctive reasoningwhich follows
from our assumptiongor Cn). However, it neednot be the casethat either
dp<dV(pV)ord < ¢V (éV ). Thereasorfor thisis thattheremay
be tiesin the plausibility of beliefs— just asthereweretiesin the plausi-
bility of models.In the technicalframevork usedfor relationsof epistemic
entrenchmenthe situationthatneither¢ v v nor ¢ vV = is in the contrac-
tion of K with respecto ¢ arisesjustin case¢ V v is asequallyplausible
or entrencheds¢ vV —1). So Gardenforsand Makinsonare readyto let the
“Principle of Indifference”overridethe Principleof Minimal Changeatleast
asfarasdisjunctionsf ¢ andsomeothersentencareconcernedHowever, it
is generallynotthecasethatif ) remainsuntouchedn K —¢ andy is equal-
ly or moreentrenchedhans), theny remainsuntouchedn K¢ aswell.
ThusthePrinciplesof IndifferenceandPreferencareviolated.We shallful-
ly install theseprinciplesfor the entrenchment-baseaémoval of beliefsby
endorsing(Def = from <) in this paper Accordingto this definition, only
preferencesatter the contentof the beliefsremaingotally disregarded.
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5. The AGM Postulatesfor Contraction

In theprecedingwo sectionsve have discussedrom anintuitive standpoint,
two constructre modellingsfor AGM belief change.Thesemodellingsare
more often characterisedby rationality postulateswvhich specify axiomatic
constraintghatshouldbe satisfiedby ary contractionoperatorof thatpartic-

ular type. As with the constructre modellings,they areguidedby the ratio-

nality criteriaoutlinedin theintroduction.Thefollowing postulatesrethose
for AGM contractiorover abeliefsetK.

(1) K-¢=Cn(K-¢)

(-2 K-¢CK

(=3) If ¢ ¢ K,thenK C K¢

(-4 If I/ ¢, theng ¢ K—¢

(=5 K cCn((K-¢)U{¢})

(-6) If Cn(¢) = Cn(v), thenK-¢p = K1)

(=7  K-¢NK=9p CK=(p A1)

(=8 W o¢K-(pAt), thenK—(pAy) C K¢

The readerfamiliar with the AGM postulatedor contractionwill notice
thatpostulatg—3)is givenin aslightly wealerformthanusual[8, p.61]. The
usualconsequentK —¢ = K, is easilyrecaveredwith the help of (=2). It
alsofollows from (1), (-2) and(-5) that K —¢ = K for every ¢ € Cn((}).
This conditionis sometimeseferredto asFailure (c.f. [14, p. 109]).

The most controrersial of the AGM postulatesfor contractionis (=5)
which is commonlyreferredto as Recwery. In the presenceof postulates
(—1) and(—2) it impliesthat K = Cn((K—¢) U {¢}) if ¢ isin K. That
is, removing a sentence andthenrestoringit leadsto the original belief set
whenaer ¢ is in thatbelief setto begin with. Interestingly recovery hasno
counterparamongthe postulatesor AGM revisiont* which may be defined
from contractionvia the Levi ldentity'® We shall not enterinto the polemic
surroundinghe recovery propertybut, instead referthe interestedeaderto
therelevantliterature[13, 18,22, 23, 25].

We find it importantto also considerthe following wealer versionsof
(=7) and(—8). We note, given postulateg—1) — (-6), that (—7) implies
(=7c)and(-8) implies(-8c) (se€[30, Lemmal]).

(=7¢) Ifyp e K=(pAp),thenK=¢p C K=(d A)
(=8c) Ifyp e K=(pAp),thenK=—(pAp) C K¢
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The derivation of (=7c¢) from (=7) uses(-=5), while the deriation of
(—8c)from (-8) useq—4) andFailure.Postulate$—7) and(—-8) are,respec-
tively, the contractioncounterpartof the rules Or and RationalMonotory
usedin nonmonotoniaeasoningOn the other hand,postulateg—-7c) and
(—8c)arethecontractiorcounterpartsf therulesCutandCumulative Monotory
respectiely.'® In nonmonotoniaeasoningCut and Cumulatve Monotory
areconsideredo bemuchmorefundamentathanOr andRationalMonotory.
Postulateg—7c¢) and (—8c) areindeedexceedinglyplausiblein the contet
of beliefrevision aswell. Takentogetherthey statethatif  is still present
aftertheremoval of ¢ A 9, thenthatremoval just boils down to theremoval

of ¢.

6. Postulatesfor Severe Withdrawals

As we shall soonsee,the following postulatesharacteriséhe new belief
removal operatioradwocatedn sections3 and4. Themostobviousdifference
with AGM contractionss markedby theabsencef theRecwery postulate”

(“1) K“¢=Cn(K=¢)

(<2 K-¢CK

(=3) If $ ¢ K ort ¢, thenK C K=¢

(=4 If I/ ¢, theng ¢ K—=¢

(+6) If Cn(¢) = Cn(v), thenK=¢ = K=1)
(27a) Ift/ ¢, thenK=¢p C K=(¢p A1)

(=8) ¢ K=(pAt), thenK=(pAy)) C K=¢

Postulateg=1), (~2) (=4), (~6) and (-8) are simply thosefor AGM
contractiorover K. Postulatd-—3) containsanadditionalantecederin order
to take careof the limiting caseof Failure (which was previously handled
with theaid of Recwery). We shallcall thecollection(=1), (<2), (+3), (+4)
and(=6) thebasicpostulatesPostulatg-—7) hasbeenreplacedy themuch
strongerantitony condition(=7a). It statesthatanything thatis givenupin
orderto remove astrongsentencétheconjunctionof ¢ ands«)) shouldalsobe
givenup whenremwing a wealer sentencdqe) from the belief set,provided
the latteris not logically true. Intuitively, this makesquite a bit of senseln
giving up ¢ A 1 atleastoneof ¢ or 1) mustbeabandonedf ¢ is givenupin
K-=(¢ A1), wecansimply achiere K ¢ by abandoninghe samebeliefs.|f
1 is givenup instead we may have to give up more.If we areseriousabout
adheringto the Principlesof Preferencend Indifferencewe shouldat least
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give up asmuchbecause) andthe beliefsthathave beengiven up thusfar
wereapparenthyheldin lower regard.

Clearly the postulateof recorery doesnot follow from the presentcol-
lection of postulatesMakinson[23] refersto belief removal operationssat-
isfying postulateg—1) — (—4) and (-6), but not necessarilyRecwery, as
withdrawal functions In this senseary withdraval functionwould be con-
sideredwealer thanan AGM contractionfunction. On the other hand,we
have decisvely strengthened--7) throughits replacemenby (=7a).In this
respeci{andby theintroductionof the Failure conditionin (= 3)), theresult-
ing withdrawal functionis strongerthanan AGM contractionfunction. For
reasonghatwill becomeclearlater, we call the operationharacterisethy
theabove setof postulatesevere withdrawal functions

Notice also,in the context of the basicpostulateg—1) — (~4) and(-6),
that(~7a)implies (<7c) and(-8) implies (~8c). Recwery is not required
for thesederivations.

An alternatve axiomatisatiorof severewithdrawal is givenby Pagnucco
[27]. It consistof the AGM postulateg—1) — (=4) and(=6) togethemwith
thefollowing two postulates:

(29)  If ¢ ¢ K¢, thenK=ep C KZ¢
(210) If i/ ¢ andg € K29, thenK =g C K 1)

It is shavn thatpostulate$—7) and(=8) follow from thesepostulatesin fact,
postulatg—10)is redundanaswe shav belov. We shallsoonseg(Lemma3)
thatthesepostulatesio not hold in generafor AGM contraction.

Postulatg—9) stateghat,if ¢ is givenupin removing ¢ from K, thenary-
thinggivenupin removing ¢ from K shouldalsobegivenupwhenremaoving
1) from K. Castingour thoughtshackto the principlesoutlinedat the outset,
theantecederiellsusthat¢ is heldin no higherregardthan+ (possiblylow-
er) andthereforeno more(perhapdess)needbegivenupin orderto remove
1» whencomparedo removing ¢. Thatis, at leastas muchwork needsto
be donein remaoving 1) asis requiredto remove ¢ from K. Postulatg~10)
stateghat,if anon-tautologicasentence is retainedvhenremaoving + from
K, thenwhateveris givenup to remove v shouldalsobegivenup to remove
¢ from K. When¢ is heldin higherregardthan, morework may needto
bedonein giving up ¢ thanis requiredto give up .

The following lemmashaws thatthesetwo proposedaxiomatisationsre
equvalent.

LEMMA 1. Letthebasicpostulateg—1) — (=4) and(=6) begiven.Then
() (=7a)and(=8) takentogetherare equivalentwvith (=9);
(i) (=7a)and(=8)imply (=10).

The secondpartshavs that postulateg(-—10) is indeedredundanandwe can
omitit from furtherconsideratioralthoughit is of coursea propertyof severe
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withdrawals. Let us briefly look at somefurther propertiesfollowing from
our postulatesn orderto gainaclearerinsightinto the natureof severewith-
drawal.

LEMMA 2. Let = bea severe withdrawal functionover K. Then
(i) EitherK=¢ C K= or K= C K-¢.
(i) EitherK=(¢p Ap) = K=por K=(p ANp) = K=,
(i) FK=p N C K=1),thenyy ¢ K=port ¢ort .
(iv) If i/ ¢ andt/ 1), theneitheryp & K=1) or¢p ¢ K= ¢.

Thefirst part of the lemmatells us that severe withdrawals are nestedone
within the other This attestgo the strengthof theintroducedpostulatesThe
secondpart statesthat withdraval by a conjunctionis equvalentto with-
drawal by of oneits conjuncts(give up the leastpreferred).This factoring
condition, called Decompositiori1, p. 525], characterisemaxichoicecon-
tractionwithin theclassof AGM partialmeetcontractiorfunctions[1, Obser
vation 6.3(a)]. In the currentcontext however, we are concernedwvith with-
drawal functionsandthusrecovery is lacking. Thethird partof thelemmais
theconditioncalledConverse Conjunctivenclusionin Fermé andRodriguez
[7, p. 4]. Our proof shavs thatthis conditionis redundantn the axiomatisa-
tion of theseauthors(which includes(-9)). The last propertyis referredto
asExpulsivenesfL5, Obsenration 2.52]18 It saysthatfor ary two arbitrary
non-theoremsg and+, in theremoval of oneof themthe otherwill alsobe
removed.Expulsivenesss anundesirablgropertysincewe do notnecessari-
ly wantsentencethatintuitively have nothingto dowith oneanotheto affect
eachotherin belief contractionsThis is the bitter pill we have to swallow if
we wantto adherego the Principlesof IndifferenceandPreference.

Beforewe progresst will be usefulto adoptsomeuniform terminology
in orderto betterclassifythe beliefremoval operationsve have comeacross
thusfar. Thiswill alsoseneto give aclearempictureof how severewithdrawval
fits into the overall schemeof suchfunctions.

DEFINITION 1. Any function = satisfying(—1) — (—4), (—6) is referredto
asa withdrawal function Moreover, ary function - satisfying(—1) — (—4),

(-6)and
(=7¢), (=8¢) cumulativewithdrawal
(=7), (=8¢) is calleda prefeential withdrawal
(=7),(=8) rational (or AGM) withdrawal
(=3),(=7a) and (-8) severe withdrawal
function

Any withdrawal function satisfyingthe Recwery postulate(--5) is calleda
contractionfunction.

It shouldbe clearfrom the foregoing discussiorthat the classof with-
drawals (without recovery) form a linear hierarchy Thelabels‘cumulative’,
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‘preferential’ and‘rational’ areborraved from the correspondingnotionsin
thetheoryof nonmonotoniceasoning24, 30]. Severewithdrawal is themost
restrictecclassof thosepresenandthen,in orderof increasingyeneralitywe
have rational (or, AGM) withdrawals, preferentialwithdravals, cumulatve
withdrawals and(unrestrictedwithdrawals. Adding recovery to a withdraw-
al function leadsto the correspondingontractionfunction. What, then, is
the natureof the even morerestrictedclassof severe contraction function®
Significantly no suchcontractionfunctionexists (on painof triviality).

LEMMA 3. Thee is no contraction functionover a non-trivial belief set K
that satisfiegostulateg—1) — (—8) and (=9).

Herewe call a belief set K trivial if it doesnot containa non-tautological
sentence thatdoesnotalreadyaxiomatiseX, i.e.,for which K # Cn(¢).

We arethusfacedwith genuinealternatves. It is clearthat (~7a)is not
satisfiedoy AGM contractionsUnableto obtainahybrid of AGM contraction
and severe withdraval howvever, we devote the remainderof this paperto
explainingtherelationshipetweerthetwo andproviding two preciseAGM-
like constructie modellingsfor severewithdrawal functions.

7. Relating AGM Contraction and Severe Withdrawals

Thus far we have motivated our investigationof belief removal primarily
throughthe intuition behindtwo constructie modellingsdealtwith in Sec-
tions 3 and4 andtheway in which they satisfycertainprinciplesof rational-
ity. However, we canstudythe correspondencbetweenAGM contractions
andseverewithdravals without referencdo systemsf spherer entrench-
mentrelationsand,in fact, without referenceo ary constructre modelling
atall. Severewithdravalsarefar more“skeptical”’ thanAGM contractionsn
thatthey leadto theoriesthatare smallerin termsof set-theoretiénclusion.
Thisis but oneof theinterestingrelationshipdetweerthetwo.

Makinson[23] obseresthatwithdraval functionscanbe partitionedinto
revision equivalentclassesTwo withdrawval functions,— and= say arerevi-
sion equivalentif the correspondingevision functions,definedfrom them
via theLevi Identity, areequialent,i.e.,if K¢ = Cn((K—--¢) U {¢}) =
Cn((K=-¢) U{¢}) = Ki¢ for all ¢ in L. Moreover, henoted[23, Obser
vationp. 389]thatin eachrevision equivalentclass|—|, themaximalelement
(in termsof set-theoretiénclusion)wasan AGM (partial meet)contraction
function.

Theproblemaddresseih thissectionis to find thecorrespondendeetween
revision equivalentAGM contractionfunctionsandseverewithdrawval func-
tions. The idea at the back of our minds s that the relationshipbetween
matchingfunctionsshouldbe exactly asthatin the constructiondy means
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of systemaf sphere®r entrenchmentelations Whentalking aboutthe cor
respondencee presupposthatthereis a uniqueAGM contractiorfunction
andauniqueseverewithdraval functionin eachclass|—] of revisionequia-
lentwithdraval functions.Thefollowing lemmashaws thatthisis indeedthe
case.

LEMMA 4. Let — and ~' be two withdrawal functionsthat are revision
equivalent.Then—- and -’ are identical wheneer either of the following
two clausedholds:

(i) — and -’ satisfy(—1), (—2) andRecwery(-5);

(i) — and-~' are severe withdrawal functions.

Building onearlierresultsof GardenforsMakinson[23, p. 389]givesasome-
whatroundabouproof of thefactthatthereis only oneelemenin [-] which
satisfie{—1)—(=-6). Part(i) of theabore lemmashavsthatRecoery almost
aloneguaranteeanidentityin thiscase Ontheotherhand lackingRecavery,
the prooffor severewithdravalsin part(ii) makesessentialiseof postulates
(=7a)and(-8c).

Theconstructie modellingsconsideredn Sections3 and4 haveindicated
that, for a severe withdrawval function = andits revision equivalent AGM
contractiorfunction -, thebelief set K¢ will containno morebeliefsthan
K-¢.19 Letting -~ beanAGM contractiorfunction,thecorrespondingevere
withdrawal function = canbedefinedasfollows.

(Def =* from =) K:¢:{§/’:¢€K*(¢Aw)} if ¢

otherwise

Intuitively, in giving up ¢, (Def = from =) tells us to retainthosebeliefs
1 thatwould be retainedwhen given a choiceto remove either¢ or v (or
both).If 1) is considerednoreimportantthan¢ whenthereis a possibility of
decidingbetweerthem,thenthis consideratiorshouldalsobe keptin mind
whendecidingwhatto remove in the severewithdraval of K by ¢.

An alternatve ideais expressedy thefollowing definition.

(Def = from =) K¢ = {Q{K*(qb/\z/)) cpeL)if Vo

otherwise

Accordingto (Def’ = from —), in giving up ¢ we shouldretainthosebeliefs
thatarealwaysretainedvhengivena choicebetweergiving up ¢ or another
belief. Thatis, we retainthosebeliefsthatarealwaysretainedwhenthereis
thepossibilityof removing either¢ or anothersentencéor both).

It turnsout thatthesetwo approacheare,in fact,equivalent.

LEMMA 5. If = satisfieg—~1), (=2), (=5), (=6), (=7) and (=8), then(Def
= from ) and(Def’ = from ) are equivalent.
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It remainshowever, to shav thattheseadefinitionsarein factadequateMore-
over, we oughtto shawv thatrevision equivalentseverewithdravals are (set-
theoretically)smallerthan AGM contractionsThe relevant resultis asfol-
lows. result.

OBSER/ATION 6. If =~ is an AGM contractionfunction,then= asobtained
by (Def = from =) is a severe withdrawal functionrevisionequivalento —,
andK=¢ C K-¢forall ¢ € L.

To indicatethat severe withdrawals are in fact very severe comparedo
otherwithdrawals in regardto the volume of beliefsremaorved, we notethe
following result.

OBSER/ATION 7. Let = be an AGM contraction function.Thenthe severe
withdrawal function = definedfrom = by definition (Def = from =) is the
smallestwithdrawal function satisfying postulate(-8c) which is revision
equivalento —.

Smallnesss measuredherein termsof set-theoretiénclusion. Thus,severe
withdrawal removes more beliefsthana large classof (revision equivalent)
withdrawals which encompassesumulatve, preferentialandrational with-
drawals (aswell astheir contractioncounterpart®f course) Thisis aninter
esting and significant classof belief removal functions becausehey sat-
isfy the contractioncounterpart(—8c) of Cumulatve Monotory which is
an importantand widely acceptedoropertyin the study of (nonmonoton-
ic)consequenceelations.

However, severe withdrawals are not the smallestwithdraval functions.
Thisdistinctionbelonggo amoreiron-fistedor procrusteamvithdrawval func-
tion which maybe definedasfollows.

Cn(p)NnK=¢ if p€ Kand t/ ¢
K

(Def=from =) K=¢ = { otherwise

This definition would work equallywell with = substitutedor —. It deter
minesanexcessie typeof beliefremoval. Firstwe shaw thatit is, in fact,the
smallestevision equivalentwithdrawval function.

OBSER/ATION 8. Let — be an AGM contraction function. Thenthe with-
drawalfunction= definedrom-= bydefinition(Def~ from—) is thesmallest
withdrawal functionwhich is revisionequivalento —.

From (Def = from =) it is easyto seethatthe following propertyholds: If
¢ € K andlf ¢, thenK=¢ C Cn(¢). Suchawithdrawal, uniformly applied,
is drasticindeedandit is also counterintuitve. Why shouldwe retainonly
consequenced thevery beliefwe wantto retract?

Returningto our discussiorof therelationshipbetweerseverewithdrawal
andAGM contractiongoingbackin the otherdirection(i.e.,from = to =) is
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quitesimple.Let = beaseverewithdraval function. Thenthe corresponding
AGM contractionfunction— is definedby

(Def - from =) K-¢= { g nentEEg U=l ic]:thb;zlf/vise

This methodconsistsof consecutiely applyingthe Levi andHarperidenti-
ties. It hasbeenadwcatedasatrick of enforcingthe Recwery postulateby
Makinson[23, pp. 389, 391]. Its adequag is demonstratedly the following
result.

OBSER/ATION 9. If = is a severe withdrawal function,then— asobtained
by (Def - from =) is an AGM contraction functionrevisionequivalento —,
andK=¢ C K-¢forall ¢ € L.

Theappropriateness thedefinitionsin thissectionis furtherindicatedby
thefollowing resultdemonstratinghat— and= induceisomorphicstructures
[5] via thedefinitionsabore. Thefirst partstateshatsuccessie applications
of (Def = from =) and(Def - from =), in thatorder resultin thesameAGM
contractionfunction. The secondpart statesthat the correspondingesult,
mutatismutandis holdsfor severewithdrawal functions.

OBSER/ATION 10. (i) If westartwith an AGM contractionfunction—, turn
it into a severe withdrawal function= by (Def = from =) andturn the latter

into an AGM contractionfunction—’ by (Def — from =), thenweendup with
. I .

(i) If we start with a severe withdrawal function =, turn it into an AGM
contraction function - by (Def - from =) andturn the latter into a severe
withdrawal function-/ by (Def = from-), thenweendupwith =/ = =

This resultimpliesthat (Def = from =) and(Def -~ from =) inducea one-
one correspondencbetween(revision equivalent) AGM contractionfunc-
tionsandseverewithdraval functions.

In this sectionwe have takena closerlook attheinterrelationshifpetween
AGM contractionandseverewithdraval. Onevery importantpoint to notice
is that, althoughwe are contrastingdifferentbelief removal behaiour, there
is no effect on therespectie revision operationsobtainedvia the Levi Iden-
tity. Sincedifferentrevision behaiour is not, in generallinked with identi-
cal belief removal operationsthereis a greaterdegreeof freedomin belief
removal thanin belief revision functions.lIt is our aim hereto indicatethat
therearetypesof beliefremoval behaiour, differing from AGM contraction
yetrevision equivalentto it, thatcanbe motivatedby rationalmeansin fact,
ourmainaimis to promoteseverewithdraval asa highly principledmember
of thiscommunity We have alsowitnessednothemember— viz. the“iron-
fisted” withdraval — which is the smalleswithdrawval functionin a classof
revision equivalentwithdrawvals. Makinson[23, p. 389] pointsoutthatAGM
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contractionis thelargestwithdrawval functionin this class.Otherpossibilities
to befoundin theliteratureincludeLevi’ s[18] saturatableontractiongusing
undampednformationalvalue)andthe partialmeetvariety studiedoy Hans-
sonandOlsson[14], Levi [18, 20] contractionusingdampednformational
valueof type 1, Levi [19] contractionusingdampednformationalvalue of
type 2 (i.e., mild contractionsor, using our terminology severe withdraw-
al), Cantwells [4] fallback-basedontractionMeyeretal.’s systematiavith-
drawal [26], Lindstiom andRabinavicz’s [22] interpolationoperatoy Fermé
andRodriguezs [6] semi-contractioperatorandNayaks [p.c.] withdraw-
al. AppendixB briefly contrastshesevariousapproaches termsof systems
of spheres.

Having investigatedherelationshipbetweerseverewithdraval andAGM
contractiorfunctions we now returnto thesystenof spheregonstructiorfor
beliefremoval functions.

8. Retrieving Systemsof Spheresfrom Rational Withdrawals

In this sectionwe elaborateuponthe ideaspresentedn Section3 in amore
technicalmanner Grove [12] views maximally consistensetsof sentences
(consistentompleteheoriesias‘possibleworlds”. An orderingis thenimposed
over the setof all suchpossibleworlds M. The setof all possibleworlds
consistentwith a setof sentences (not necessarilyclosedunderCn) is
denoted K] andmay be determinedas[K] = {m € M, : K C m}. We
use[¢] asa shorthandor [{¢}]. We alsodefinea functionth : 2Mz — K
mappingsetsof possibleworldsto belief setsby puttingth(X) = N X for
any X C M.

Now recallthata systenof spheress anesteccollectionof setsof worlds
in which [K] is thesmallessphereand M/ is thelargest.Formally, we have
thefollowing definitiondueto AdamGrove.

DEFINITION 2. [12] Let S be ary collection of subsetsof M. We call
S a systemof spherescentredon X C Mg, if it satisfiesthe following
conditions:

(S1) S istotally orderedby C; thatis,if U, V € §,thenU CVorV CU
(§2) X istheC-minimumof S
(83) M isthe C-maximumof S

(84) If ¢ € £ andlf ¢, thenthereis asmallestspherdan S intersecting¢]
(i.e., thereis aspherelUl € S suchthatU N [¢] # 0, andV N [¢] # 0
impliesU C Vforall V € S)
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Thatspheresrenesteds specifiedby condition(S1). Condition(S4) guar

anteegshat thereis a smallestor innermostsphereintersecting[¢] for ary

¢ € L. Thiscorresponds$o Lewis’ [21, p. 19] limit assumptionWe denote
thisspherecs(¢) (cf. Section3). Moreformally we have afunctioncs : £ —

2Mcr definedasfollows:

thespherdJ € S suchthat
_ UN[g] #0andV N [g] #0
(Defes)  es(¢) = impliesU C V forall V € S whenaer I/ —¢
K] otherwise

This allows usto formally definea function fs : £ — 2™« returningthe ¢-
worldsclosesto [K] (cf. Section3). With eachsystemof spheresS centred
on [K] we canassociate function fs(¢) = [¢] N cs(¢). Notethat,in the
casewheret ¢, by (Def cs), we automaticallyhave via (Def - from &) and
(Def = from S) thatK ~¢ = K~¢ = K.

Our maininterestin this sectionis the methodusedto constructthe sys-
temof spheregentrecon K] correspondingo anAGM contractioror severe
withdrawal function. Beforeturningto severewithdrawal functions,we first
adaptLewis’ [21, pp.59 and133-134JandGrove’s[12, p. 162] methodof
constructingsystemsof spheregrom counteréctualsandrevisions,respec-
tively, to the context of AGM contractionfunctions.Theideais to specifya
methodby which eachsphereXy (the minimal spherentersectind—¢]) can
be determinedA systemof spheresS is thenobtainedby accumulatingall
setsX,, sodeterminecandthesetM . of all worldsjustin caseit is notiden-
tified with oneof the X,,'s. More specifically S = {Xy : ¢ € L} U{ M}
wheneer K # L andS = {X, : ¢ € L} U {M,} U {0} otherwise.

A setof possibleworlds X C M/, is in the Lewis-Groveansystemof
spheresS (i.e.,is aspheren S) derivedfrom — if andonly if

X C {m: thereisa¢ suchthatK—~¢ C m} and
forall v, if X Nn[—] # 0 then[K—¢] C X.

This condition,whichwe shallreferto asthefirst constructiomof Lewis and
Grove, canberephrasedby thefollowing equation:
X isin Sif andonlyif X = U{[K=¢]: X € [¢]}*.

However, this is not whatis actuallyusedin the completenesproofs of
Lewis and Grove. The spheresX, they needfor their proofs(Lewis [21, p.
59], Grove[12, p. 162]) have thefollowing form, hereagaintransferredrom
the contet of counterfictualsandrevisionsto the context of contractionsA
setX, of worldsis in S obtainedrom — if andonly if

(DefS from=) X, = { U{[K =] : [4] C [¢]} wheneer I/ ¢

K] otherwise
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We shall refer to this condition as the secondconstructionof Lewis and
Grove. Every X, thusconstructeds a Lewis-Groveansphereaccordingto
thefirst constructiorandit is actuallythe C-minimal suchsphereintersect-
ing [~¢].2! However, thereis no guaranteghat all spheref the first con-
structioncanbe capturedoy the X,'s. Using eitherof thefirst or the second
Lewis-Grove constructionresultsin a systemof spheresvhereeachsphere
canberepresentedsthe unionof modelsetsof a certaincollectionof theo-
ries.

The situationchangesf we considerseverewithdraval insteadof AGM
contractionlf the secondconstructioris appliedto severewithdrawals,then
we shallseethateachsphereconsistof themodelsetof exactly onetheory??

In orderto constructa systemof spheresS centredon [K| from a severe
withdrawal function = over K, we essentiallyidentify a spherein S with
the collection[K = ¢] for someg € L. Any worldsnot accountedor in this
manneir(i.e., “irrelevantworlds” — seebelow) arethrownn into the outermost
sphereM ¢ (by theconstructiorof S notedabore). More preciselywe have:

(DefS from =) X4 = [K=¢)]

Note that we do not needa specialcasefor I/ ¢ becausén this scenario,
dueto the Failure propertycapturedby postulateg-2) and (=3), we have

K*~¢ = K soXy4 = [K]. Wenow shav thatfor severewithdrawal functions
=, this definition coincideswith the secondLewis-Grove condition (Def S

from =).

LEMMA 11.If £ is a severe withdrawal function,thenthe two conditions
(Def S from =) and(Def S from =) are equivalent.

This resultalsohighlightsthe specialnatureof severewithdraval functions.
Dueto their propertieswe obtainamuchsimplifiedwayto construcsystems
of spheres.

Wenow briefly investigateseveraltransformationghatmaybeappliedto a
systenof spheresvithoutaffectingthe AGM contractioror severewithdraw-
al generatedrom it. They give riseto systemf sphereshatareequivalent
in the senseof the following definition.

DEFINITION 3. Let S andS’ be two systemsof sphereslet — and -’ be
the contractionfunctionsbasedon § and S’ and = and =’ be the severe
withdraval functionsbasedon S and &', respectiely. ThenS and S’ are
calledequivalentif andonly if for every sentencep it holdsthat K—-¢ =
K-'gandK=¢ = K~'¢.

Considernow, thefollowing operationson systemsf spheres.

DEFINITION 4. Let S beasystemof spheresentredon [K]. Then
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S; (thetrimmingof S) is obtainedoy remaving from S all thespheresS such
that S is never the smallestsphereintersecting/¢], i.e., all S suchthat
S #cs(¢) forall ¢ € L.

S, (theclosue underunionsof S) is obtainedby addingto S all the unions
U of classeof spheresn S, i.e., all U suchthatU = |JS&' for some
subsetS’ of S.

S. (thetopolayical closue of S) is obtainedby replacingall spheresS in
S by the setsof worlds (models)that satisfy the theoryof S, i.e., by
replacingall S in S by [th(S)].

In this last casewe candefinean operatorcl on setsof worlds (models)
ascl(S) = [th(S)]. This operationis clearlya closureoperatori.e., (i) S C
cl(S), (i) cl(cl(S)) C cl(S) and(iii) S C S impliescl(S) C cl(S"). More-
over, S andcl(S) have thesametheory th(S) = th(cl(S)). Noticethatfor
every¢ € L, th(cs(¢)) = th(cs, (¢)) andth(fs(¢)) = th(fs, (¢)). Clear
ly, all the operationson S resultin systemsf spheresandS; C § C S,
but S; is in generalnot comparabldo ary of the othersystemsf spheres.
Neverthelesswe have the following resultrelating systemsof spheresand
transformationgppliedto them.

LEMMA 12. S, S;, S, andS,; are all equivalent.

Thefinal resultin this sectionlendsfurtherweightto the suitability of the
pairing of AGM contractionsand severe withdrawals that we suggestedn
Section?. It shaws thatary two functionsrelatedby the appropriatedefini-
tionsgeneratequivalentsystemsf spheres.

OBSER/ATION 13. Let = and = be correspondingAGM contraction and
severe withdrawal functionseither via (Def = from =) or via (Def - from
). Then— and = leadto equivalensystem®f sphees,via (DefS from )
and (Def S from =). More precisely the systenof spheesobtainedfrom =
is thetopolggical closue of that obtainedfrom —.

For a contractionor withdrawval function =, call a world m irrelevant
(with respectto ) if thereis no ¢ € L suchthatm containsK—¢ (i.e.,
m ¢ [K-—¢]). Lewis-Grove spheregelegateirrelevant worlds to the out-
ermostsphere therebysacrificingthe A-elementarityof their spheresin
se/ere withdrawval we, asit were, add the irrelevant worlds to the Lewis-
Grove spheresn suchaway thatthey “make no difference”for withdrawals
but male surethattheresultingspheresire A-elementary?

9. Representation Theoremsfor Sphere-Based Withdrawals

The following analoguesof Grove’s resultsconcerningbelief contraction
(whichwe statewithout proof) shawv thatthe constructiorin termsof systems
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of sphereoutlinedin Sections3 and8 is in factanappropriateenderingof

the AGM rationality postulategor belief contractiorover K.2* Thefirst part
of the obsenration stateghatthe methodof addingthe innermost-¢-worlds
to [K] asdescribedy (Def - from §) doesindeedproduceanAGM contrac-
tion function. The secondpartshawvs thatfor any AGM contractiorfunction
andbelief set K, one can constructa systemof spheresS centredon K]

using(Def S from =) for which the additionof theinnermost-¢-worldsto

[K] correspond$o the contractionof K by ¢.

OBSER/ATION 14. [12, Theoremsl and?2] (i) If S satisfieqS1) — (S4),
thenthe function— obtainedfromS by (Def — from §) is an AGM contrac-
tion function.

(i) If = is an AGM contraction function,then — can be representeds a
sphee-basedontraction, wheie the sphee systenS onwhich - is baseds
obtainedby (Def S from =) and S satisfieqS1) — (S4).

This result shawvs the mutualadequag of definitions(Def — from S) and
(Def S from —) introducedhere.The correspondingepresentatiotheorem
cannow beestablishedior severewithdraval over K.

OBSER/ATION 15. (i) If S satisfiegS1)—(54), thenthefunction— obtained
fromS by (Def = from S) is a severe withdrawal function.

(i) If = is a severe withdrawal function,then = can be representedas a
sphee-basedwithdrawal, wheee the sphee systemS on which = is based
is obtainedby (Def S from ) (or equivalentlyby (Def S from =)) and S
satisfieS1) — (54).

Thefirst part shavs that the methodof taking the smallestspherentersect-
ing [—¢], expoundeddy (Def = from S) is anaccurateenderingof a severe
withdrawal function. The secondpart statesthat the methodfor construct-
ing systemof spherewia (Def S from =) or, equivalently (Def S from —)
by Lemmall, doesgive a systemof spheredor which the smallestsphere
intersectind—¢| correspondso K =¢.

This concludesour directtreatmenbf severewithdrawval in termsof sys-
temsof spheresWe shallreturnto systemf spheresn a slightly different
context later

10. Retrieving Epistemic Entrenchment Relationsfrom Rational
Withdrawals

While systemf spheregncodeanorderingonworlds(consistenandcom-
pletesetsof sentencesgpistemientrenchmentrderssentencedn this sec-
tion we concentraten the methodsusedto generatean epistemicentrench-
ment (relatve to K) from a given AGM contractionor severe withdrawal
function(over K).
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The fundamentaldea of how to retrieve an entrenchmentelationfrom
beliefchangebehaiour is this. A sentence is epistemicallylessentrenched
in abeliefstateK thanasentence) if andonly if anagentin belief stateK
who s forcedto give up either¢ or v will give up ¢ andhold onto . This
ideacanbe setin motionwhenwe realisethatto give up either¢ or 1) can
very well be rephrasedsthe taskof giving up ¢ A 1. Solet a contraction
function— (of ary kind) begiven.

(Def<from=) o< iff € K=(pAp) and ¢ ¢ K—(d A1)

Thesecondtlausds necessargincetheagentmayjustrefuseto withdrav
¢Ap. Rott[11,30,31] agueshatit isindeedbestto work with strictrelations
< of epistemicentrenchmenprovided oneis interestedn having the flexi-
bility to sensiblywealen the postulatesnvolved (in particular to drop the
requirementhateverythingis comparablén termsof entrenchmentandin
findingone-to-onecorrespondencdsetweerpostulategor entrenchmerdnd
postulategelatingto contractionbehaiour or to rationalchoices.We shall
not, however, pursuethis projectfurther herebut keepto the original, more
simple,if lessflexible, accountof GardenforsandMakinson.Thuswe shall
work with non-strictrelations< which may be thoughtof asthe corverse
complement®f the abore-mentionedstrict relationsandwe usethe postu-
late (=4) to restrictrefusalof contractionto logically true sentencesThe
following is the original definitionof GardenforsandMakinson[9, p. 89].

(Def<from—=) ¢ <o iff ¢ K-(pA) or FpAY

As with systemsof spheresijf = is a severe withdraval function, then
the procesf retrieving entrenchmentfrom contractionscanbe simplified
considerably

(Def<from=) ¢ <4 iff ¢¢ K= or F4

This essentiallymeansthat the condition (Def -~ from <) (seesection4)
canbeusedin bothdirections.Exceptfor somelimiting casesy) isin K-¢
if andonly if ¢ < 1. This greatly simplifiesthe transitionbetweensevere
withdrawal functionsandtheir associate@pistemicentrenchmentelations.

We now shaw thatthetwo conditionsabore areequivalentasfarassesere
withdrawvals areconcernedAgain, asin the casefor systemsf spheresthis
is dueto the propertiesnducedby the postulatesor seserewithdraval.

LEMMA 16. If = is a severe withdrawal function,thenthe two conditions
(Def < from =) and(Def < from =) are equivalent.

In orderto prove theseandsubsequentesults,we recallthe definition of
epistemicentrenchmerasintroducedby GardenforandMakinson[8, 9].
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DEFINITION 5. Let < be an orderingof the sentencesf £. We call < a
relation of epistemicentendimentwith respectto somebelief set K, if it
satisfieghefollowing conditions:

(E1) If ¢ <tpandy < xtheng <y (Transitvity)
(E2) If ¢ -1 thengp <o (Dominance)
(E3) o< opAporyy <pAp (Conjunctveness)
(E4) If K # Lthen:p < foreveryy € Liff ¢ ¢ K (Minimality)
(E5) If o < ¢ for everyy € L, thent ¢ (Maximality)

It follows from (E1) — (E5) that an epistemicentrenchments a total pre-
orderover sentencei which tautologiesare greatesiwhile non-beliefsare
smallestelementsWhile an entrenchmenorderingis an orderingof beliefs
in K, system®f sphereganbeseerasorderingworldsoutside[ K. We shall
returnto the relationshipbetweerentrenchmenaindsystemsof spheresn a
subsequergection.

The final resultin this sectionlendsfurther weight to our claim thatthe
pairing of AGM contractionsand severe withdrawals that we suggestedn
Section7 is theright one.Theresultshavs thatary two functionsrelatedby
theappropriatalefinitionsgeneratedenticalrelationsof epistemicentrench-
ment.

OBSER/ATION 17. Let =~ and = be correspondingAGM contraction and
severe withdrawal functionseither via (Def = from =) or via (Def — from
). Then= and = leadto identicalentrendimentrelations,via (Def < from
—) and(Def < from ).

11. Representation Theoremsfor Entrenchment-Based Withdrawals

In this sectionwe turnto moretechnicakesultsconcerninghenotionof epis-
temic entrenchmentn essenceywe would like to formally shav the appro-
priatenes®f (Def = from <) and(Def < from =) introducedin Sections4
and 10 just aswe wereableto do for analogouglefinitionsin termsof sys-
temsof spheresn Section9. Thefollowing representatiotheoremis dueto
GardenforsandMakinson?s

OBSER/ATION 18. [9, Theoremgand5] (i) If < satisfiefE1)—(E5),then
the function— obtainedfrom < by (Def — from <) is an AGM contraction
function,thatis, it satisfie—1) — (—8).

(i) If = is an AGM contraction function,then—- can berepresentedasan
entendment-basedontractionwhele therelation< onwhich - is baseds
obtainedby (Def < from =) and < satisfie{E1)— (E5).
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Thefirst partstateghatthemethodof retainingy in contractingp whengV
is strictly moreentrenchedhan¢ givesan AGM entrenchmentelation.The
secondhartshavs thattheappropriateentrenchmentelationcanbe obtained
from an AGM contractionfunction usingthe recipegiven by (Def < from
).

We cannow formulateanentirelyparallelrepresentatiotheorenfor severe
withdrawals. This resultis the epistemicentrenchmenanalogueof Obsenra-
tion 15for systemsf spheres.

OBSER/ATION 19. (i) If < satisfiefE1)—(E5),thenthefunction= obtained
from< by (Def = from <) is a severe withdrawal function.

(i) If = is a severe withdrawal function,then= can be representedas an
entendment-basedvithdrawal wheie the relation < on which = is based
is obtainedby (Def < from =) (or equivalentlyby (Def < from =)), and <
satisfiedE1)— (E5).

Thefirst partshavs that the techniqueof retainingy) wheneer it is strictly
more entrenchedhan ¢, i.e., the techniqueexpoundedn (Def = from <),
givesaseverewithdraval function. Thesecondartstateghatthemethodfor
constructingentrenchmentelationsvia (Def < from =), or equivalently via
(Def < from =), givesan entrenchmentelationfor which the setof beliefs
moreentrenchedhang is K= ¢.

Thisresultshavsthatwe canusethesamesortof entrenchmentelationas
GardenforandMakinsonbut we applyit in adifferentmannemhichfavours
the Principlesof Preferenceaand Indifferenceover the Principle of Minimal
Change— therebyviolating Recaorery. We can retain the samedefinition
(Def < from =) asin the Gardenfors-Makinsorfiramenork to reconstruct
the underlyingentrenchmentelationfrom someobsered severewithdraw-
al behaiour; in our framework, however, the definition canbe simplified to
(Def < from =). Like Gardenforsand Makinsonfor the caseof AGM con-
tractionswe obtainaperfectmatchbetweerseverewithdraval functionsand
entrenchmentelations.

12. Relating Spheresand Entrenchments

Uptill now we have beenstudyingAGM contractionandseverewithdravals

from the point of view of both spheresemanticsand entrenchmenseman-
tics; two importantconstructre modellingsn thesettingof AGM-stylebelief

changeWe have foundthatthereis afarreachingparallelbetweerthesetwo

kindsof semantic®r constructiongor beliefchangdunctions Now we want
to give anexplanationof thatparallelin termsof adirectbridgebetweersys-
temsof spheresandentrenchmentelations bypassingary particulartype of

beliefchangeunction.
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We begin by consideringhow to retrieve systemsof spheresrom epis-
temicentrenchmentelations.Givensomeentrenchmentelation<, we con-
structthecorrespondingystenof spheresS (<) asfollows (thatis, we accu-
mulateall suchS,’sandM asin Section8):

(DefSfrom<) Sy =[{¢: ¢ <9}

Thesetof sentence$y : ¢ < 1} ontheright-hand-sidef (DefS from <) is
acutin thesenseof [29, p. 159]. Firstwe have to checkwhetherwe actually
obtaina systemof spheredgrom this construction.

LEMMA 20. For anyentendmentrelation < with respecto K, thesystem
of spheesS (<) satisfieconditions(S1) — (S4) with respecto [K].

Next we shav that the systemof spheresobtainedfrom an entrench-
mentrelationin this way is equivalent with the latter in the sensethat it
leadsto the sameAGM contractionand the samesevere withdraval func-
tion. More precisely we shav thatthe AGM contractionfunction (respec-
tively, severewithdrawval function) obtainedfrom a systemof spheresS (<)
derivedfrom anentrenchmentelation< is thesameasthe AGM contraction
function(respectiely, severewithdraval function)obtaineddirectlyfrom the
entrenchmentelation<.

OBSER/ATION 21. For anyentrendimentrelation<, the AGM contractions
and the severe withdrawals geneated from < and §(<) are identical, i.e.,
C(S(<)) =C(<) andW(S(<)) = W(S).

Here C(<) refersto the AGM contractiorfunctionobtainedromtheentrench-
mentrelation< by meanf (Def = from <). Similarly, C(S(<)) istheAGM
contractionfunction obtainedfrom the systemof spheresS(<) via (Def -
from S). Again, W(<) andW(S(<)) referto theseverewithdraval function
obtainedby therelevantdefinitionsin Sections3 and4.

Let usnow turn our attentionto the reverseproblemof obtaininganepis-
temicentrenchmemtelationfrom a systenof spheresGivensomesystenof
spheresS, we constructthe correspondingntrenchmentelation< = £(S)
asfollows.

(Def< fromS) ¢ <4 iff forallS e Sif §C[¢]thenS C [¢]

We checkwhetherwe actuallyobtainan entrenchmentelationfrom this
construction.

LEMMA 22. For anysystenof spheesS with respecto [K], the entend-
mentrelation£(S) satisfiesconditions(E1)— (E5) with respecto K.

Giventhe nestednesgS1) andthe limit assumption(S4) for systemsof
spheresthis conditionreduceso the following 26
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(Def’ <fromS8) ¢ < iff cs(—¢) Z [¢]

Wefirst shaw thatthis definitionfits togethemith theonefor thecorverse
directionintroducedabove. The notationemplo/edin thefollowing obsenra-
tion shouldbe self-explanatoryby now.

OBSER/ATION 23. Let < be an entendimentrelationand S a systenof
sphees.Then

(i) £(S(<)) =<.

(i) S(&£(S)) is thetopolagical closue of thetrimmingof S, i.e., (S;) -

The first part of this resultexposesa strongconnectionbetweenepistemic
entrenchmenand systemsof spheresThe secondresult, while not quite
as strong,shaws that applying (Def’ < from S) followed by (Def S from
<) leadsto an equialent (althoughnot necessarilyidentical — seeLem-
ma 12) systemof spheresTogetherthey indicateanisomorphismbetween
epistemicentrenchmenanda particularsubclasgthosetrimmedandtopo-
logically closed)of systemf spheres.

We finally shaw the sphereanalogueof Obseration 21. Thatis, thatthe
AGM contractiorfunction(respectiely, severewithdraval function)obtained
fromanentrenchmentelationf (S) derivedfrom asystenmof spheresS isthe
sameasthatobtaineddirectly from S itself.

OBSER/ATION 24. For anysystenof spheesS, the AGM contractionsand
thesevere withdrawalsgeneatedfromS and€(S) areidentical,i.e.,,C(E(S)) =
C(S) andW(E(S)) = W(S).

Taken together theseresultsdemonstrateéhe appropriatenessf the defini-
tionsintroducedn this section.

13. Discussion

Levi [18] adwcatesa constructionfor belief removal basedon satuiatable
setsratherthan AGM’s maximal consistentsubsetsof K not implying ¢
(denotedK L ¢). He notesthatall elementsK’ of K 1 ¢ have the property
that Cn(K' U {—¢}) is a consistenttompletetheory (i.e., obey the maxi-
choice property).Yet, thereare subsetof K notin K_L¢ alsopossessing
this property ThesesetsLevi refersto assatuiatable sets(the collectionof
which we denoteK LI ¢ here).More precisely K' € K 11 ¢ if andonly if
(i) K' C K, (i) ¢ ¢ K', and(iii) Cn(K' U {—¢}) is a consistenicom-
pletetheory Hanssorand Olsson[14] placethis work in context with the
AGM shawing thata selectionfunction appliedto the setof saturatableets
generates withdrawval function that satisfiespostulateg—1) — (—4), (-6)
andFailure.In otherwords, this constructioncan be seenas capturingthat
of a withdrawal function satisfyingthe Failure property They extend this
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work by shawing thata selectionfunctiondefinedvia a real-\valuedmeasure
(satisfyinga weak monotonicity condition) gives a constructionsatisfying
the supplementaryostulateg—7) and(-—8). However, they do not supplya
“completenesstesultfor this extendedsetof postulatesin light of thework
presentedhere,seserewithdrawval is a furtherrestrictedconstructiorthatcan
be givena completecharacterisationlT hatis, a severewithdraval represents
anaxiomatisablesubclas®f thosebeliefremoval operationsharacterisetly
HanssorandOlssons real-\aluedmeasureselectiorfunctionconstruction.

Let us,however, returnto Levi’s agumentson this subject.Levi usesthe
termcontractionto denoteary functionremoving, say ¢ from K. In Makin-
sons [23] terminologywhich asadoptedn our Definition 1 suchfunctions
are termedwithdrawals contraction being resered for thosewithdravals
satisfyingtheadditionalReco/ery postulatg—5) andcharacterisableia meets
of maximalnon-implyingsubsetsThe classof withdrawvals canbe obtained
by takingmeetsf saturatableontractionsemoving ¢ but notmeetsof max-
imal subsetsotimplying ¢. For this reasonLevi maintainsthatoneshould
considemeetsof saturatableontractiongatherthanmerelymeetsof maxi-
mal non-implyingsubsetsWhile AGM beggin with the concepbof amaximal
non-implying subsetas a way of achieving a minimal (in the senseof set
inclusion)changen remaoving ¢ from K beforesettlingon (partial) meetsof
suchsets,Levi baginsat the “other end” He embracesaturatablesetssince
meetsof thesewill captureall withdraval behaiour. Of course,admitting
saturatableets, andmeetsof them,violatesRecwery (seeFigures4 and5in
AppendixB) — a postulatd_evi is stronglyopposedo.

Now Levi’s major concernin contractionfollows the broadaims of the
Principle of Minimal Changeand, more specifically the Principle of Infor-
mationalEconomy;thatis, to minimisethe loss of informationalvalue.As
such,it is importantto specify how informationalvalueis measuredLevi
considerdghreedifferentmeasurest variousstagesduring the development
of his ideas.Initially he consideredundampedor probability-based)nfor-
mationalvalue[18, p. 127] wherethelossof informationalvalueof the meet
of asetof saturatableontractiongs calculatedusingthe sumof thelosseof
informationalvalueof theminimal (in the senseof setinclusion)memberof
this set.He rejectedthis proposaimmediatelyasit leadsto a saturatecton-
tractionin every caseandthereforesatisfiesthe maxichoicepropertywhich
bothLevi andAGM agreeds unreasonablén its placehe adwocateddamped
informationalvalue(versionl) [18, 20] in whichintersectiongmeets)of sat-
uratablecontractiongncur a lossof informationalvalue equalto the largest
lossincurredby a memberof the set. However, Levi [20, p. 32] citesan
examplewherehe claimsthata classof versionl contractionsvhich satisfy
Recwery are counterintuitve. Moreover, Levi claimslack of uniformity in
thatdampednformationalvalue (versionl) equalsundampednformational
valuein somecasesut thetwo divergein others As aresult,thiswassuper
sededby dampedinformationalvalue (version 2) [19] whereloss of infor-
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mationalvalue is minimisedby taking the meetof thosemaximal subsets
of K notimplying ¢ with minimal undampednformationalvalueandother
saturatableontractionsvith (undampedinformationalvalueno greatetthan
this.In thesdattertwo methodd.evi adoptsa Rulefor Tieswhere“whentwo
or moreoptionstie for optimality oneshouldadoptthe intersectiorof all of
them” [20, p. 27] with the proviso thatsucha “tie breaking”mechanisnbe
adoptednly whentheresultantoptionis optimal. This lastclassof contrac-
tion functionsarereferredto asmild contractionsby Levi [20]. It turnsout
that,whenplacedn acommorsettingmild contractiongoincidewith severe
withdrawals. Interestinglyenoughit hasturnedout, by our obserationssur
rounding(Def’ = from ), thatLevi couldhave capturedmild contractions”
by consideringmeetsof maximalnon-implyingsubsets— althoughto con-
tract K’ by ¢ youwould needto considemmeetsof certainmaximalsubset®f
K notimplying ¢ A forall ¢ € L.

Levi [20] criticisesour choiceof terminology becauset is basedon a
measuref lossin termsof subsetnclusion(which we do notdery) andhe
maintainghatinformationalvalueshouldnotbemeasuredh theseerms;oss
of dampednformationalvalueof type 2 is minimisedandthusthe contrac-
tion (or withdrawal) is mild. We wish to emphasisehowever, thatwhile our
terminologyis influencedby the factthatseverewithdravalstendto remove
morebeliefsthanotherrevision equivalentproposalgseeObseration7), our
argumentsn favour of severewithdrawal in this paperare not motivatedby
thisfactoratall (nor, of coursepy InformationalEconomy)out, rather by the
concernsf principledbelief removal behaiour and, mostof all, respecting
of IndifferenceandPreference.

In anelegantpaperKaluzhry andLehmanr{17] give acharacterisationf
nonmonotonidénferenceoperationdnf for which Inf (A) canberepresented
asthe setof all monotonicconsequence®getherwith somesetAss(A) of
assumptionshat are “compatible”with A: Inf(A) = Cn(A U Ass(A)).2”
Theirintuitive ideais thattheassumptioroperatorAss(A) is antitonicin the
sensdhatfor A C " we getAss(I") C Ass(A). Themorepremisestheless
assumptionarecompatiblewith them.

Giventhewell-knovn connectiondetweemonmonotonigeasoningand
beliefrevision (seefor instancg10, 11]), it is easyto recognisehatfor finite
A C £, Kaluzhry andLehmanns assumptiorsetAss(A) correspond$o our
severewithdrawal K =(— A A), with K = Inf (@) left implicit. Their condi-
tion of antitory is theanalogueof our condition(=7a). The constructiongor
Ass(A) they usein their Theorems2.1and2.2,viz. Ass(A) = N {Inf(T) :
I' C A} andAss(A) = N{Inf(T") : T" C Cn(A)} respecitrely, arereminis-
centof our definition (Def’ = from ). But therearealsoimportantdiffer-
encesThey work onthelevel of postulate®nly without consideringexplicit
construction®f nonmonotoniénferenceoperation®r thegeneraprinciples
thatmight motivatethem.They work in contets thatdo not validatetherule
of RationalMonotory whichcorrespondso thebeliefrevisionpostulatg —8)
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alias(=8). And, perhapsnostimportantly nonmonotonidnferencerelations
correspondo revisionsratherthanremovals of beliefs.Dueto the revision
eguialenceof belief contractionsandwithdrawals, then, the distinctionwe
aremostinterestedn vanishesTo putit differently Kaluzhry andLehmann
do not presenta studyof their Ass operationin its own right.

14. Conclusions

The AGM accountof belief changeis guidedby principlesof rationality
However, contraryto the popularperceptiorgivenby theliterature the Prin-
ciple of Informational Economycannotbe given unrestrainedorominence
over otherrationality principles.lt mustbe seenasonly oneof a numberof
factorsto betakeninto considerationvhendecidingwhich beliefsto discard.
In fact, it works in combinationwith principlessuchasthoseof Indiffer-
enceandPreferencen this regard.Oncethis is acceptedit canbe seenthat
AGM arein factapplyingthelatterprinciplesonly in sofarasthe —¢-worlds
areconcernecnddisregardingthe ¢g-worlds. This positionseemdlifficult to
motivateandsupport.As aresult,we proposea newn form of belief removal
operation severewithdrawval, which appliestheseprinciplesuniformly over
all possibleworlds. The contentiougpostulateof recovery is not satisfiedby
seserewithdrawal.

In the presentwork we have attempteda comprehense treatmentof an
alternatve to AGM contractionwhich takes the Principlesof Indifference
andPreferencénto accountwe call this severewithdraval. We shaved how
theseprinciplespoint toward a differentway of usingtwo importantAGM
constructionssystem®f sphereandepistemicentrenchmenin thesecon-
structionghe objectsto whichthe principlesareappliedare,in thefirst case,
worlds(or models)and,in thesecondsentencesf the objectlanguageBoth
methoddeadto simplemechanism$or constructingemovals of belief.

Interestinglyenoughjf oneprefersto focuson belief revision ratherthen
belief removal, thenthe effects, via the Levi identity, areunnoticeableThat
is, in ary revisionequialentclassof withdraval functionstherewill beexact-
ly one AGM contractionfunction [23] andone severewithdraval function.
Severewithdrawal functionscanbe seenassettinga lower boundon inter
estingwithdraval behaiour within eachof theserevision equialentclasses.
We furnisheda way of moving backwardsand forwards betweenthe cor
respondingAGM contractionfunction and severe withdraval functionin a
givenclass.We alsosuppliedmethodgor obtainingthe desiredseverewith-
drawal behaiour from theconstructre modellingsof systemf spheresnd
epistemicentrenchmentelations.Furthermoremechanismgor going back
the otherway — extractingthe relevantunderlyingstructure(total pre-order
on worlds or one on sentences)}— were given. It is interestingto notein
regard to this latter point that the definitionsfor AGM contractioncan be
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usedfor sererewithdrawval to achieve the sameeffect but, in generalmaybe
simplified.Finally methodsveregivenfor mappingdirectly betweersystems
of spheresandepistemicentrenchmentelationsthatleadto the sameAGM
contractioror severewithdraval function.

Onelast, and important,moral can be dravn from this exposition with
regardto the constructie modellings Clearlytheunderlyingstructurgasys-
temsof sphere®r anepistemientrenchmentelation)is importantin achies-
ing beliefremoval (or belief changédn generafor thatmatter).However, the
way we usethis structureis alsovery crucial. Startingwith a fixed struc-
ture, differentprinciplesgive rise to differentbehaiour. More importantly
this behaiour, throughthe principlesthat bring it about,canbe motivated
by rational means.Here, the Principlesof Indifferenceand Preference—
amguablyrationalintegrity constraints— leadto severewithdraval.
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Appendix
A. Proofs

We reproducehe following propertiesof th : 2Mz — K, listed by Grove
[12], for referenceThey will be usefulfor someof the proofsthatfollow.

LEMMA 0. Propertiesof th [12].

(i) th([K]) = K for all beliefsets(i.e., theories)K if theunderlyinglogic is
compact

(i) th(X) # K, if andonlyif X is nonempty
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(iii)y Foranysentence € LandX C Mg, th(XN[¢4]) = Cn(th(X)U{¢})
(iv) For X, X' C M., if X C X', thenth(X') C th(X)
(v) For K, K' € K, if K C K', then[K'] C [K]

LEMMA 1. Letthebasicpostulateg—1)—(=4) and(=6) begiven.Then
() (=7a)and(=8) takentogetherare equivalentwvith (=9);
(i) (=7a)and(=8)takentogetherimply (=10).

Proof. Assumethatthe basicpostulateg—~1) — (~4) and(=6) aresatis-
fied.

(i) (=9)implies(=7a):Lett/ ¢. Thenby (=4), ¢ ¢ K—¢, soby (<1),
dNAY ¢ K=¢. Henceby (=9), K=¢p C K=(Pp Ap).

(+9) implies(=8): Thisis immediateon substitutingp A 1) for 1.

(=7a)and (=8) imply (=9): Let ¢ ¢ K-=1. With the help of (-8c),
¢ ¢ K=(¢p A ). Hence,by (=8), K=(¢ A 1p) C K-=¢. But by (27a),
K>y C K-(¢ A ) wheneer t/ ¢ andhenceK =1 C K¢ asdesired.
If F ¢, thenK=4 = K by (+2) and(=3). Now K C K~¢ by (+2) and
thereforeK ~1 C K¢ trivially.

(i) Lett/ ¢ andp € K=4p. If - p, thenK C K= by (+3),s0K~¢ C
K1) follows from (=2). Solet 4 be suchthatt/ 4. From¢ € K- and
(=7a),weconcludethatp € K=(¢ A1p). Sincel/ ¢ A, (=1) and(=4) give
usy ¢ K=(¢ A ). Hence,by (=8), K=(¢ A ) C K=1). Ontheother
hand,by (~=7a),K~¢ C K=(¢ A1). HenceK =¢ C K 4, asdesired. O

LEMMA 2. Let= bea severe withdrawal functionover K. Then
(i) EitherK=¢ C K= or K= C K=¢.
(i) EitherK=(¢p Ap) = K=por K=(p ANp) = K=1.
(i) FK=pAp C K=9p,theny ¢ K=port ¢ort .
(iv) If i/ ¢ andl/ 4, theneither¢ & K= or ¢ & K= ¢.

Proof. (i) Considertwo cases(a) ¢ ¢ K= and(b) ¢ € K= In the
formercase(—9) gives K =1 C K=¢. In thelattercasejf t/ ¢, then(=10)
givesK~¢ C K. Otherwise}- ¢ andby (~“3) K C K~¢, andby (+2)
K> C K soK=4y C K=¢.

(i) Using(—7c)and(—8c)it is easilyseenthatif 1 € K=(¢ A 1), then
K=(p Np) = K=¢, andif ¢ € K=(¢ A ), thenK=(¢p A p) = K=4p.
A similar situationholdsfor ¢ € K=(¢ A 1). Consideithen,thecasewhere
o, v & K=(¢ N). By two applicationsof (=8), K=(¢ A1) C K=¢ and
K-=(¢ A1) € K=1. Now considertwo furthersubcaseda) atleastoneof
t/ ¢ ort/ ¢ holds,and(b) botht- ¢ andt 1 hold. In the formercase gither
K=¢ C K=(p ANp) or K= C K=(¢p A 1) holdsby (=7a). It follows
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thateitherK=¢ = K=(¢ A ¢) or K=¢ = K=(¢ A ). In thelatter case,
K=¢ =K== K=(¢ A1), by (%2) and(=3).

(i) Let K=¢ A p C K9 andlf ¢ andt/ 1. Supposdor reductiothat
P € K=¢. Thenby (=7a)y € K=(¢ A). SosinceK=¢ Ap C K=,
wealsogety € K4, contradicting(-4).

(iv) Let t# ¢ andt/ 1. Supposdor contradictionthatboth¢ € K1 and
1 € K=¢. Thenby (©10), K-¢ = K-,s0¢ € K=¢ andyp € K1,
contradicting(-—4). O

LEMMA 3. Theris nocontractionfunctionover a non-trivial beliefsetK
that satisfiegostulateg—1) — (—8) and (=9).

Proof Supposéhereis a contractionfunction - over K thatsatisfiesall
of (-1)—(-8) and(+9). Supposdurtherthat K is non-trvial, i.e.,thatthere
isa¢ suchthaty € K \ Cn(f) andK Z Cn(¢). Wefirstshaw thatK ~¢ =
Cn(0). Supposefor reductioad absudum thatthereis a+) ¢ Cn(() such
thaty € K—-¢. Now ¢ € K by (—2). It follows by (~10), whichwe shaved
to follow from (=1) — (-8) and(~9) (in Lemmal(i) and(ii)), that K~ C
K-¢. By (-5), (—1) andthe DeductionTheoremy — ¢ € K= C K—¢.
However, by (—4), ¢ ¢ K—¢ soby (=1),1 ¢ K-—¢ contradictingourinitial
suppositionThereforeK~¢ = Cn(). ConsequentlyK ¢ Cn((K—=¢) U
{#}) = Cn(¢) violatingrecorery (-5). O

LEMMA 4. Let - and -’ be two withdrawal functionsthat are revision
equivalentThen— and-~' areidenticalwheneer eitherof thefollowing two
clausesholds:

(i) — and~' satisfy(-1), (~2) andRecwery(-5);

(i) — and-' are severe withdrawal functions.

Proof Let - and-’ berevision equivalentwithdrawal functions.

(i) Let — and-' satisfy(—1), (—2) andRecwery (-5). We needto shav
that— = /. Left to right inclusion.Suppose) € K-—¢. We needto shav
thaty € K-'¢ aswell. Firstwe shav that—¢ — 1 € K-'¢. From €
K¢, we concludeusingmonotonicityof Cn andtheLevi identity thaty €
Cn((K—-¢) U{—¢}) = K * —¢. By revisionequialencewe gety € K '
(=¢) = Cn((K~'¢) U {=¢}), so by the DeductionTheoremfor Cn and
(1), ~¢ — ¢ € K-'¢. Ontheotherhand,we know from (-2) thaty €
K-¢ C K.Soby (-5) and(-1), ¢ — % isin K-'¢. Fromthis andthe
previously establishedactthat—¢ — 1 isin K-'¢, we concludewith (1)
thate isin factin K—-'¢, asdesired.

Theright to left inclusioncanbe provedin the samefashionwith — and
~" exchanged.
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(i) Let — and ' be severewithdrawval functions.We needto shav that
— = =/, Left to right inclusion.Suppose) € K-—¢. We needto shav that
P € K-'¢paswell. If ¢ € Cn(D), thenK-¢ = K = K-'¢, by (~2) and
(=3).Solet¢p ¢ Cn(0). Thenit followsfromy € K¢ thaty € K=(¢pA),
by (=7a).Thusalsoy € Cn(K=(¢p A ) U{=(p A)}) = K *~(d AN ),
usingthe monotonicityof Cn andthe Levi identity. By revision equivalence,
theny € K+’ —(¢pAp) = Cn(K-"(¢p Ap)U{=($Av)}). By theDeduction
Theorenfor Cn and(-1), we getthat—(¢ A ) — 1 € K-'(¢ A1), which
meansby (1) againthaty € K-'(¢ A 7). Using (—8c) (or alternatvely,
(+4) and(=8)), we getthat K ~'(¢ A ¢p) C K—'¢ andthusy € K¢, as
desired.

Theright to left inclusioncanbe provedin the samefashionwith — and
—~" exchanged. O

LEMMA 5. (Def = from ) and(Def’ — from =) are equivalent.

Proof. It is sufficient to shaw, for every ¢ € £ suchthatt/ ¢, thaty €
K-=(¢pAx) iff x € N{K=($ A9) 19 € L}

Rightto left is trivial. Let x € N{K=(¢ A 9) : v € L}. Consequently
x € K—(¢p N) forall ¢ € L. Choosingy = x wegety € K—(¢ A x) as
desired.

Fromleft toright,letx € K-(¢ A x). Weneedto shav x € N{K-(¢ A
) ¢ € L}. We cando so by shawving thaty € K—(¢ A ) for arbitrary
P € L NowxV-gV—p € K=(pAx) =K=((xV-¢V-y)A((¢Ax)V
(¢ A 4))) using(—1) for the former partand (—6) for thelatter It follows
by (—8c) and(—-6) that K—(¢ A x) € K((¢ A x) V (¢ A ¥)). Therefore,
x € K=((¢ A x) V(¢ A)). Fromourinitial suppositiorand(=2), x € K
giving by (=5) and(—1) that(¢ vV —x) — x € K—(¢ V —x). Consequently
x € K=(¢ V —x) by (=1). It thereforefollows by (—7) and our previous
reasoninghaty € K=(((¢ A x) V (¢ A)) A (¢ V —x)). Hence by (-6)
x € K—(¢ A1) asdesired. O

OBSERVATION 6. If = isanAGM contractionfunction,then= asobtained
by (Def = from ) is a severe withdrawal functionrevisionequivalento —,
andK=¢ C K-¢forall ¢ € L.

Proof. Let - beanAGM contractiorfunctionand= beobtainedrom —
via (Def = from —). We first shav that = is a severewithdrawval function.
(By Lemmabs, (Def = from —) and(Def’ - from ) areequivalentsowe
canmale useof bothdefinitionsto simplify the proof.)
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(=) If t/ p, thenK=¢p = {K=(p Ap) : ¢p € L} by (Def’ = from -).
SinceK —(¢ A 1) is atheoryfor everyy € L by (1), thenclearly K=¢ is
too. Otherwisef- ¢ in whichcaseK ~¢ = K andagainK ~¢ is atheory

(£2)If I/ ¢, thenK=¢p = N{K=(p A ) : ¢p € L} by (Def’ = from =-).
SinceK=(¢pA1p) C K forally € L by (-2)clearlyK=¢ C K. Otherwise,
F ¢ andby (Def’ = from -) K-~¢ = K thereforeK ¢ C K trivially.

(=3)If F ¢, K=¢ = K by (Def = from =) andthedesiredresultfollows
trivially. Otherwisel/ ¢ and¢ ¢ K. ThenK=¢ = ({K=(p A1) : ¢p € L}
by (Def = from =). Since¢ ¢ K,thengp Ay & K forall ¢ € L. Therefore
K CK-(¢pAy)forallyp € L by (-3).HenceK C K¢ asdesired.

(=4) Lett/ ¢. Now ¢ ¢ K-—¢ by (—4). It follows by (—6) that ¢ ¢
K-(¢ A ¢). Thereforep ¢ K=¢ by (Def = from =).

(=6) Followstrivially using(—6).

(=7a)Let t/ ¢. Supposex € K-=¢. Thenvia (Def = from =) x €
K=(¢Nx).Itfollowsby (=7)thaty € K=((¢ A x) Av). (Actually thislast
partfollows moredirectly from condition(—P) K ~¢NCn(¢) C K=(¢p A1)
— with ¢ = ¢ A9y andy = ¢ — whichis equvalentto (-7) [1, Obsenra-
tion 3.3p. 516]).Hencey € K—¢ A v by (—6) and(Def = from —).

(£8)Letp & K=(¢ A 1p). Weneedto shaw that K= (¢ A ) C K=¢. If
F ¢,thenK—=¢ = K by (Def = from =) andK = (¢ A1) C K by (=2)which
wasshavn above to hold. Thereforejt follows directly that K= (¢ A ) C
K=¢. Otherwisel/ ¢. Thereforeby (Def = from =) K=(¢p A ) = {x :
x € K-((¢A9) Ax)} andK=¢ = {x : x € K-(é A x)}. Suppose
x € K=(¢ N). Weneedto shav thaty € K¢ andcando soby shaving
thaty € K—(¢Ax). Sincex € K=(pAp) wehavexy € K—((pAp)Ax) (*)
by (Def = from =). It followsthatpAy & K=((¢Ap)Ax) by (=4) and(=8)
subsequentlgivesK —((¢AY)Ax) C K—(¢pA) (#).Ourinitial assumption
thaty ¢ K—(¢ A1) and(Def = from =) give ¢ & K—((¢ A1) A ¢) which
by (—6) meansp ¢ K—(¢ A ). Usingthe contrapositie of (#) we getthat
¢ ¢ K-((¢ A1) A x) and(=1) thengives A x & K=((¢ A ) A x).
Applying (-8) again(andan applicationof (—6) to the left-hand-side)we
seethat K—((¢ A ) A x) C K=(¢ A x). It thereforefollows from (x) that
x € K—(¢ A x) asrequired.

We now shav that— and = arerevision equivalent. Thatis, we shav that
Kip = K¥p. Now Ki¢p = Cn(K-—¢ N {$}) andK#p = Cn(K==¢ N
{#}) by the Levi identity. We first prove left to right holds. Supposey €
Kk¢. Thengp — x € K——¢ by theLevi identity, DeductionTheoremand
(“1).Now - [~ A (¢ — x)] ¢+ — SOby (-6), ¢ — x € K-~(~d A (¢ =
x)) (*¥). We considertwo cases. (a) I/ —¢; and, (b) = —¢. In the former
casejt follows by (Def = from =) and(x) that¢ — x € K~-¢. Usingthe
DeductionTheorem,y € Cn(K=-¢ U {¢}). Hencex € K¢ asrequired.
In thelattercaseK ——¢ = K = K--¢ by (-1) and(-5) and(Def ~from
=) respectiely. It followsthaty — y € K~—¢ andconsequently € K¢
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via applicationsof the DeductionTheoremandthe Levi identity asrequired.
Rightto left is similar,

It remainsto shaw that K=¢ C K-—¢. This follows straightforvardly
from the resultby Makinson[23, Obsenration p. 389] however we include
a proof in termsof our own definitions.Supposey € K=¢. If - ¢, then
K=¢ = K = K-¢ by (Def = from =) for the former partand(-1) and
(=5) for thelatterandtheresultfollows trivially. Otherwisel/ ¢. Now x €
K-=(¢ A x) by (Def = from ). By (—8¢c) K=(¢ A x) C K—¢. Therefore
x € K-—¢ asdesired. O

OBSERVATION 7. Let— bean AGM contractionfunction.Thenthesevere
withdrawal function = definedfrom = by definition(Def = from =) is the
smallestwithdrawal function in termsof set-theoetic inclusion satisfying
postulate(—8c) which is revisionequivalento —.

Proof Let - beanAGM contractionfunctionand= definedfrom — via
(Def = from =). Let — beary withdrawval functionsatisfying(—8c) whichis
revision equivalentto - (andtherefore~ alsoby Obsenration6). We needto
shavthatK~¢ C K — ¢.

Supposep € K=¢. If - ¢, thenK=¢p = K-¢ = K (the former by
(=3) which is satisfiedby Obseration 6 andthe latter by (1) and (=5)).
Since— satisfieFrailure K — ¢ = K andy € K — ¢ asdesiredOtherwise,
t/ ¢. By (Def = from =), p € K—(¢ A 1) soby theLevi identity =¢ A ¢ €
Ki—(¢ AN p) = K+—(¢p A 1p). By therevision equivalenceof — and— (and
2), = A € K * —(¢p A 1p) wherex is definedfrom — via the Levi identity.
Usingthe Levi identity again,—(¢ A ¢) — (—mp A ) € K — (¢ A ). That
is,by (1), € K — (¢ A ). Butthenby (=8c), K — (¢ A¢p) C K — ¢.
Hencey € K — ¢ asrequired. O

OBSERVATION 8. Let—= bean AGM contractionfunction.Thenthe with-
drawalfunction= definedrom—= bydefinition(Def = from =) isthesmallest
withdrawal functionwhich is revisionequivalento —.

Proof. Let - beanAGM contractionfunctionand~ definedfrom - via
(Def = from —). Wefirst verify that~ is awithdraval function(i.e., satisfies
(1) - (=4) and(-5)).

(=1)If ¢ € K andlf ¢, wehave K~¢ = Cn(¢) N K—¢ by (Def = from
=) which is obviously closedby (—1) andthe propertiesof Cn. Otherwise,
¢ & K ort ¢ by (Def = from =). Again K~¢ is closed.

(=2)If ¢ & K ort ¢ (Def = from =) gives K~¢ = K in which case
the desiredresultfollows trivially. Otherwisep € K andl/ ¢ so K=¢ =
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Cn(¢) N K—¢ by (Def = from =). Now by (-2) K—¢ C K soclearly
Cn(¢) N K-¢ C K andthereforeK=¢ C K.

(-3)Let¢p ¢ K. By (Def = from -) K=¢ = K andK C K=¢ follows
trivially.

(—4)Lettf ¢.If ¢ ¢ K, thenby (Def = from -) K=¢ = K s0¢p & K=¢.
Otherwisegp € K andK ~¢ = Cn(¢) N K¢ by (Def = from ). However,
¢ & K-¢ by (-2)andthereforep ¢ Cn(¢) N K—¢p = K=¢.

(—6)Letk ¢ < . If ¢ & K andr ¢ thenclearlyy ¢ K andr- . By
(Def = from -) we have K¢ = K = K~ asdesiredOtherwisep € K
andt/ ¢. Clearlytheny € K andl/ 4. Now K=¢ = Cn(¢) N K-¢ and
K= = Cn(y) N K-1. Moreover, Cn(¢) = Cn() by our suppositiorat
the outsetand K—~¢ = K =1 by (=6). HenceK=¢ = Cn(¢) N K—¢ =
Cn(y) N K- = K= asdesired.

(Note:it is easilyshavn that = satisfiedrailurealso.)

Next we shav that™~ and— arerevision equivalent.Left to right. Suppose
x € K%p. Thengp — x € K=-¢ by thelLevi identity DeductionTheorem
and(—-1) (which hasbeenshavn aborve to hold). If —=¢ ¢ K or - —¢, then
K=-¢ = K by (Def = from -) and K ——¢ = K by (-2) and(-3)/(-1)
and (=5). Therefore,p — x € K——¢ and¢ € K¢ by the Deduction
Theoremandthe Levi identity Otherwise,~¢ € K andr —¢. By (Def =
from =), K=-¢ = Cn(—¢) N K—-—¢ andagainit follows that¢ — x €
K-—-¢ wherebywe proceedasabore.

Rightto left. Supposey € Ki—¢. Theng — x € K-—¢ by the Levi
identity, DeductionTheoremand(=1). If —¢ ¢ K or+ —¢, thenK~-¢ =
K = K-—¢ asabore andthereforep — x € K=-¢ wherebythe Deduc-
tion Theoremandthe Levi identity give ¢ € K. Otherwise¢ € K and
F —¢. Now clearly$ — x € Cn(—¢). So¢ — x € Cn(—¢) N K—-¢ and
by (Def = from =) ¢ — x € K~-¢. Henceby the DeductionTheoremand
thelLevi identity y € K~¢ asdesired.

Finally, we shawv that= is thesmallestithdraval functionrevisionequiv-
alentto —. Suppose) € K~¢. We needto shawv thaty € K — ¢ for ary
withdrawal function— revision equivalentto —. Now ) € K by (—2) which
= wasshawn to satisfyabove. If F ¢ or ¢ ¢ K,thenK-¢ = K by (-1)
and(-5)/(-2) and(-—3). Since— satisfiedrailureand(-2) and(-3) (since
it is awithdrawal function) K — ¢ = K andy € K — ¢ asdesired Other
wise,l/ ¢ or ¢ ¢ K. By (Def = from =), p € Cn(¢) N K—¢. Therefore,
P € Cn(¢p) (i.e.,¢ F ) andy € K—¢. It followsthat—¢p A p € Kk—¢ =
Cn(K—¢ U {—¢}). Therevision equivalenceof of — and— (and =) gives
—“pAYp € K x—¢. Thatis, mp A € Cn(K — ¢ U {—¢}) andtheDeduction
Theoremand(—1) give ~¢ — (—¢ A ) € K — ¢. By (—1) againwe obtain
¢V e K— ¢hutsincep -1y wehaveyp € K — ¢ asrequired. O

OBSERVATION 9. If = is a serere withdrawal function,then— asobtained
by (Def - from =) is an AGM contraction function,and K =¢ C K¢ for
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all ¢ € L.

Proof. Let = bea severewithdraval functionand— be obtainedfrom =
via (Def = from =).

We first shav that— is anAGM contractiorfunction.

(=1)Inthecasehatl/ ¢, wehave K-¢ = KNCn(K =¢pU{—¢}) by (Def
— from =) whichis obviously closedby thepropertief Cn. Otherwisel- ¢
andK~¢ = K by (Def - from =). Again, K —¢ is closed.

(=2)If F ¢, thenK ¢ = K by (Def -~ from =) andsoobviously K —¢ C
K. Otherwiset/ ¢ and(Def — from =) givesK—-¢ = K NCn(K-¢ U
{—¢}).ClearlyK—-¢ = KNCn(K=¢ U {-¢}) CKsoK-¢ C K.

(=3)Let¢p € K. If - ¢, thenK—-¢ = K by (Def - from =) and K C
K—=¢. Otherwise} ¢ andK—-¢ = K NCn(K=¢ U {—¢}). Now by (=3)
wehave K C K~¢ andthereforeby monotonicityof Cn, K C Cn(K=¢U
{—¢}). HenceK C K N Cn(K-=¢ U {—¢}) andconsequently’ C K¢
asdesired.

(—4) Lett/ ¢. ThenK—-¢p = K NCn(K=¢ U {—¢}) by (Def ~ from
=). Supposep € K-¢. Theng € Cn(K=¢ U {—¢}) by the monotonicity
of Cn. By the DeductionTheoremand(=1) -¢ — ¢ € K=¢ or, againby
(£1), ¢ € K=¢ contradicting(=4). It followsthatyp ¢ K —¢.

(=5) If ¥ ¢, thenK—¢p = K NCn(K=¢ U {—-¢}). By (Def - from
). Supposdor reductioad absurdunthatthereis ay € K suchthaty ¢
(K¢ U {¢}). Thatis, % ¢ Cn((K N Cn(K~¢ U {~¢})) U {$}). By
the DeductionTheoremyp — ¢ ¢ Cn(K N Cn(K-=¢ U {—¢})). Now either
p > EgKorg — ¢ & Cn(K=¢pU{—¢}). Intheformercasewe have
animmediatecontradictionsincey € K implies¢ — v € K. In thelatter
casewe have =¢ — (¢ — ¢) & K¢ by theDeductionTheoremand(-—1).
Equialently T ¢ K¢ contradicting(—1). Otherwiset- ¢ in which case
K-¢ =K andK C Cn(K U{¢}) = Cn(K-¢ U {¢}) by monotonicity

(—6) Letk ¢ «» 1. Suppose/ ¢, thent/ 1. We have by (Def =~ from =)
thatK—-¢ = KNCn(K=¢p U {—¢}) = KNCn(K=9p U{-9}) = K.
Otherwisel/ ¢ implying t/ v and K —¢ = K = K—1) by (Def - from =).

(-7) Supposeéhatt/ ¢ andt/ 1p. We needto shav that K~¢ N K- C
K-=(¢ A 1). By (Def = from =) we have the following: K~¢ = K N
Cn(K=U{~¢}), K~y = KNCn(K=U {-9}) andK=(¢ A ¢) =
KnCn(K=U{~(¢A)}). Supposes € K—-¢p N K-1. Theny € K—¢
andy € K. Sox € K by (=2)andy € Cn(K-¢ U {-¢}) and
X € Cn(K =y U {—}) by themonotonicityof Cn. By the DeductionThe-
oremand(=1) -¢ — x € K=¢ and—p — x € K=1. We needto shov
thaty € K-=(¢ A v). We cando so by shaving thaty € K andx €
Cn(K=(pAp)U{=(pA1))}) (i.e.,by theDeductionTheorem-(d A1p) —
x € K=(¢ A1) or, equivalently (¢ — x) A (- — x) € K=(p A1)
). By (=7a)andour reasoningabore we have that—¢ — x € K=(¢ A )
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and—y — x € K=(¢ A ). Thereforepy (=1), (=¢ — x) A (=) — x) €
K-=(¢ A1) asdesired.

Otherwiseatleastoneof - ¢, or - ¢ holds.If bothl- ¢ andt ¢ holdand
therefore- ¢ A 1, (Def = from =) givesK-¢NK-yp=KNK =K =
K-=(¢ A1) with theresultholdingtrivially. Soassumenly oneof - ¢, - 9
holds.Withoutlossof generality supposé- ¢ andt/ 1. Now K—-¢ = K by
(Def - from =). It alsofollows by (—2), whichwe have shavn abore to hold,
thatK—1 C K. Therefore K—¢NK-1p = KNK-=19) = K= C (p A1)
(thelastof theseby (—7a)).

(=8)Letp & K—(pAp). If E p A1), then(Def - from =) givesK —(¢p A
¥) = K. It follows by ourinitial assumptionthat¢$ ¢ K. Butthis contradicts
thefactthatt ¢ A1) sothiscasds notpossible Otherwise/ ¢ Av). Moreover,
we canassumehatt/ ¢ for, otherwise,K —~¢ = K by (Def — from ~) and
theresultfollows directly via (—2) whichwasshavn above to hold. Suppose
now thaty € K=(¢ A ). By (Def = from =) wehave K—(¢p Ap) = K N
Cn(K=(¢p Ap)U{=(¢p A1)}). Thislatterfact,togethemwith the Deduction
Theoremand (1) give =(¢ A ) — x € K=(¢ A 1) or, in otherwords
(againappealingo (<1)) (=¢ — x) A (= — x) € K(¢p A ¢)(#). We also
know thateither¢ ¢ K or ¢ & Cn(K=(¢ A ) U {=(¢ A 1)}) usingthe
assumptiorat the outsetof this proof. The former doesnot hold underour
currentassumptionsothe latter musthold and,via the DeductionTheorem
and(=1), we have =(¢p Ap) — ¢ & K=(¢ A 9) or, in otherwords¢ ¢
K-=(¢ AN1). Now (=8) and(#) give (¢ — x) A (-9 — x) € K=¢. So,
in particular-¢ — x € K=¢ by (1) andthe DeductionTheoremgives
x € Cn(K=¢ U {—¢}). Sincex € K we have via (Def -~ from =) that
x € K-¢ asrequired.

We now shav that = is revision equivalentto <. Thatis, we shawv that
Kip = K¥p. Now K¢ = Cn(K-—¢p U {¢}) andK¥¢ = Cn(K=—¢p U
{#}) Left to right. Supposey € K*¢ = Cn(K--¢ U {¢}). Now ¢ —
x € K-—-¢ bytheDeductionTheoremand(—1) which wasshavn abore to
hold. We considercaseqda) - —¢; and,(b) I/ =¢. In theformercase py (Def
= from =) K--¢ = K andby (-1) and(-5) K=-¢ = K. Clearlythen
¢ — x € K=-¢ andby theDeductionTheoremy € Cn(K=-¢ U {¢}) =
K#%¢. In thelattercasewe have ¢ — x € K-——¢ by the Levi identity and
(=1). Rightto left. Now supposey € Kx¢ = Cn(K=-¢ U {¢}). By the
DeductionTheoremand(=1) ¢ — x € K-—¢. We considertwo casega)
F —¢; and,(b) - —~¢. In theformercasepy (Def - from =) K ~—-¢ = K and
by (+3) K=-¢ = K. Clearlyp — x € K—-—¢ andtheDeductionTheorem
givesy € Cn(K-¢p U {¢}) = K+¢.

Now, in thelattercasepy (Def ~ from =) K——-¢ = K N Cn(K=-¢ U
{#}). By themonotonicityof Cn, ¢ — x € Cn(K=-¢pU{¢}) andp — x €
K. Thereforegp — x € K—-¢ by (=2). Hencex € Cn(K——-¢ U {¢}) =
K ¢ by the DeductionTheoremandthe Levi identity asdesired.
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It remainsto shav that K=¢ C K—=¢ for all ¢. This follows straight-
forwardly from Makinsons [23, Obseration p. 389] result. However, we
includea proofin termsof our definitionshere.Considertwo cases(a) - ¢;
and (b) t/ ¢. In the former case,by (Def - from =) we have K-¢ = K
andtheresultfollows straightforvardly by (-2). In thelattercase py (Def -
from =) wehave K—¢ = K N (K=¢ U {—¢}). Now supposey € K=¢.
Clearlyx € K by (=2)andx € Cn(K ¢ U {=¢}) by monotonicityof Cn.
It thereforefollowsthaty € K—¢. O

OBSERVATION 10. (i) If we start with an AGM contraction function—,
turn it into a severe withdrawal function= by (Def - from =) andturn the
latter into an AGM contractionfunction—/ by (Def - from =), thenweend
upwith -/ = =,

(i) If we startwith a severe withdrawal function=, turn it into an AGM
contraction function— by (Def - from =) andturn thelatter into a severe
withdrawal function=' by (Def - from ), thenweendup with =/ = =,

Proof. Let -, = and-' bedefinedasin the statemenabore.

(i) Left to right. Supposey € K-—¢. We needto shaw thaty € K-'¢.
If - ¢, thenK—¢ = K=¢ = K andK—-'¢p = K by (-1) and(=5), (Def
= from =) and (Def - from =) respectiely. Otherwisel/ ¢. By (Def =
from =) K=¢ = {¢ : p € K—(¢ A )} andby (Def - from =) K~'¢p =
KNCn(K=¢U{—¢}).Sincex € K-¢pwehaepV x € K-¢ by (-1).
Using(—6) wehare p V x € K—(¢ V (p A x)) andsop V x € K=¢
by (Def = from =). Thatis, by (=1) (which is satisfiedby Obseration 6),
-¢ — x € K=¢. TheDeductionTheoremgivesy € Cn(K=¢ U {—¢})
andby (=2) x € K. Hencex € K-'¢ by (Def ~from =) asdesired.

Rightto left. Supposey € K--'¢. If - ¢ we canreasorexactly asabove.
Otherwisel/ ¢. Now x € K andyx € Cn(K=¢ U {—¢}) by (Def - from
). As aresultof applyingthe DeductionTheoremand(~1) we have —¢ —
x € K=¢. Therefore-¢p — x € K=(¢p A (—¢ — 9)) = K—¢ (theformer
partby (Def = from —) andthe latter partby (-6)). But (—5) and(-1) give
¢ — x € K-¢. Puttingthesetogetherwe getby (1) thaty € K—-¢ as
required.

(i) Let =, — and-' bedefinedasin thestatemenabove. If - ¢ wereason
alongthelinesof (i). Otherwisef/ ¢. Left to right. Supposey € K-¢. By
(Def = from =) K—¢ = K N Cn(K=¢ U {—~¢}) andby (Def = from =)
K='¢p={x:x€ K=(¢ A1)} Now clearlyy € K by (+2). Sowe know
thatp A x € K andl/ ¢ A x. We needto shav thaty € K~'¢ whichwe can
do,accordingo (Def = from =), by shawving thatx € K=(¢ A x). Thiswe
cando, accordingo (Def — from =) by shawing thaty € K N Cn(K=(¢ A
) U {=(d A1)}). Wehave alreadyshavn thaty € K soit remaingto shav
thaty € Cn(K=(¢ A1) U {=(¢ A)}) or equivalently by the Deduction



42

Theoremand(=1),that—=(¢pAx) — x € K=(¢A1). Thatis, by (~1) again,
x € K=(¢ AN). Sincelf ¢ andy € K¢, thisfactfollows by (=7a).
Rightto left. Supposey € K='¢. Now x € K—(¢ A 1)) by (Def = from
=). By (Def = from =) x € K andy € Cn(K=(¢p A x) U{=(d A X)}).
Thelattergives—(¢p A x) = x € K=(¢ A x) by theDeductionTheoremand
(£1). Thereforey € K=(¢ A x). Henceby (=4) ¢ ¢ K=(¢ A x) andby
(+8) x € K=¢ asrequired. O

LEMMA 11. If = is a severe withdrawal function,thenthe two conditions
(Def S from =) and(Def S from =) are equivalent.

Proof. Inthecasewheret- ¢ bothconstructiongjive thespherg K. (For
theright-hand-sidaise(=2) and(=3) andLemma0(v)). Thereforewe have

to shaw that
K=y : [9] C 9]} = [K=¢]

wheneert/ ¢.

Left to right. Supposen € U{[K=%] : [¢] C [¢]}. Thenm € [K =]
for some[y)] C [¢]. We needto shaw thatm € [K=¢]. By (~4) ¢ & K=¢.
Now since[y] C [¢] wehavey F ¢ so,by (=1),9 & K=¢. Using(=9) we
hare K=¢ C K=4. In otherwords,[K =] C [K~¢| by LemmaO(v)) as
desired.

Right to left. Supposen € [K=¢|. We needto shavw m € [K =] for
some[y] C [¢]. Theresultfollows directly by choosingy to be ¢. O

LEMMA 12. S, S, S, andS,,; are all equivalent.

Proof. If - ¢, thenby (Defcs) wehavecs(—¢) = cs,(—¢) = cs, () =
cs,(—¢) = [K] andby (Def = from §) K~s¢ = K~5,¢ = K~s5,¢ =
K =g ,¢. Thisfactcanalsobeusedo shav fs(—¢) = fs,(—¢) = fs,(—¢) =
fs.,(—¢) andso, by (Def - from S), K-s¢ = K-5,¢ = K-=g,¢ =
K=s,¢.

Thereforewe considerthe casewherel/ ¢. Now by (54) (and(Def ¢s))
cs(—¢) exists. It follows directly by the definition of S; that cs(—¢) =
cs:(—9).

We now wantto shaw thatcs(—¢) = cs, (—¢). Supposeo the contrary
Without lossof generality sinceary spheren S is alsoin S, by definition,
supposéhat cs(—¢) C cs, (—¢). Thatis, thereis someS € S, suchthat
SN [-¢] #0andS C cs,. By definitionof S, thismeanghatthereis some
S" C SandS € S andS' C cs(—¢). But this contradictsthe definition
of cs(—¢) via (Def c¢s). Hencecs(—¢) = cs,(—¢). By (Def = from S)
andusingLemmaO(iv) we get K “s¢ = K=5,¢ = K=g,¢. We canshaw
K-s¢p =K-=5,¢ = K-—g, ¢.insimilarfashion.
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It now remainsto considerK ~s ¢ and K~ s, ¢. We begin by shaving
thatth([th(S)]) = th(S) for S C M, (*). Rightto left. Supposex € th(S).
Now [th(S)] = {m € M : th(S) C m}. Sincea € the(S), thena € m
for all m € [th(S)]. Thereforeax € N[th(S)] andhencex € th([th(S)]) as
desired Left to right. Supposex € th([th(S)]). Further supposdor reduc-
tionthata ¢ th(S). Thenthereis somem € M, suchthatth(S) C m and
-« € m by Lindenbaurs lemma.lt follows thatm € [th(S)]. Consequent-
ly, « & N[th(S)] = th([th(S)]) contradictingourinitial suppositionHence
a € th(S) asdesired.

Now th(fs,i(—¢)) = th([(cs(—¢))] N [~¢]) by thedefinitionof Scl and
thedefinitionof fs. By LemmaQ(iii) th([(cs(—¢))]N[=¢]) = Cn(th([th(cs(—¢))])U
{=¢}). Using (*) we have that th([th(c ( ?)]) = th(cs(—¢)). There-
fore Cn(th([th(cs(=¢))]) U {=¢}) = Cn(th( s( ¢)) U {~¢}) and by
LemmadO(iii) againCn(th(cs(—¢)) U {—|¢}) th(cs(—¢) N [~¢]). But
this latter partis just th(fs(—¢)). Thereforeth(fs ( ?)) = th(fs(—¢)).

We wantto shaw th([K] U fs(—¢)) = th([K] U fs.i(—¢)). Left to right.

Now supposesy € th([K] U fs(=¢)). Theny z "KTU fs(=4) b
definition. Thatis, ¢ € m for all me [K]| U fs(—¢) soy € m for all
m € [K] andy € m/ for allm’ € fs(—¢). It followsthaty € th(fs(—¢)).
Consequentlyby the above, th(fs,i(—¢)). Thereforeyp € m for all m €
fs.1(—¢) andit follows thaty € m for allm € [K] U fs.i(—¢). As aresult
P € th([K] U fs,i(—¢)). Rightto left is proved similarly. Henceby (Def -
from S) K-s,1¢ = K-s¢. Togethewith the resultsabore we nov have
K-s¢p=K-s5¢=K-s5,0=K-s5,¢.

Now th(cs,i(—¢)) = th([th(cs))]) andusing (*), asaboe, we have
th([th(cs))]) = th(cs). Thereforeth(cs,i(—¢)) = th(cs(—¢)) andby (Def
= from S) we get K=5, 190 = K-s¢. Togetherwith the resultsabore we
now have KZs¢p = K;5t¢ = Klsugb = K;Scl(ﬁ-

O

OBSERVATION 13. Let— and= becorrespondinddAGM contractionand
severe withdrawal functionseithervia (Def = from—) or via (Def - from =).
Then— and = leadto equivalensystem®f sphees,via (DefS from—) and
(DefS from=). More precisely the systenof spheesobtainedfrom = is the
topolagical closue of that obtainedfrom —.

Proof. Considerthe second_ewis-Groveanconstructionof S(—), given
by

, )  JWHIK=(¢AY)] : 9 € L} wheneer f ¢
(Def’ § from =) Xy = { (K] otherwise

andcomparet with the constructiorwe getusing(Def S from =) and(Def
= from =-):
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SW(+): X, =[K=¢]= { [N{K=(¢ A9): 4 € L}] wheneer i/ ¢

[K] otherwise

In orderto shav thatS(W(—)) is the topologicalclosureof S(—), we
provefor eachs that X, is thetopologicalclosureof Xy, i.e., X = [th(Xy)].
Ourclaimis that

[(ME=(¢A%) 9 € L}] = th( K- (6 A )] : p € L))

Now m is in theright-handsideiff m satisfie\(U{[K = (¢ A)] : ¥ € L}).
Thismeanghat

(i) m satisfiesall x whicharesatisfiedby all m’ thatarein [K (¢ A 9)]
for somey € L.

We aredoneif we canshav thatthis is equivalentto m’s beingin the left-
handsidewhich canbereformulatedhus:

(i) m satisfiesall x whicharecontainedn K ~(¢ A 4) forall ¢ € L.
To seethat (i) and(ii) areequialent,we finally shav that (i) and(iv) are
equialent:

(iii) x is satisfiedoy all m/ thatarein [K—(¢ A )] for somey € L.

(iv) x is containedn K—(¢ A ) forall ¢ € L.
That (iv) entails(iii) is trivial for if x is containedn all K=(¢ A ), then
all m' thatarein some[K (¢ A )] satisfyx. To seethat (iii) entails(iv),
supposehat(iv) is nottrue,i.e., thatthereis a1 suchthatx ¢ K-—=(¢ A ).
ThenK = (¢ A1) U {~x} is consistentsothereis anm” suchthat K - (¢ A
) U{=x} € m”, whichmeanghat(iii) is nottrue.

In sum,then,we have shavn thatS(W(=)) = (8(=))a-

Whereaghe constructiorjust consideredtartsfrom an AGM contraction
function—, we mightjustaswell startfrom a severewithdraval function—,
withoutchangingheresult. We know that— = C(~) isanAGM contraction,
so by the resultjust proved, we get (S(C(=)))a = S(W(C(=))), but the
latteris, by Obseration 1((ii), identicalwith S(-). O

OBSERVATION 15. (i) If § satisfies(S1) — (S4), thenthe function =

obtainedfromS by (Def = from S) is a severe withdrawal function.

(i) If = is a severe withdrawal function,then = can be representedas a
sphee-basedwithdrawal, wheee the sphee systemS on which = is based
is obtainedby (Def S from =) (or equivalentlyby (Def S from =)) and S

satisfieS1) — (54).

Proof (i) Let S satisfy(S1) — (S4) and = be obtainedby (Def = from
S). We needto shawv = is a severewithdrawval function(i.e., satisfieg~1) —
(+4), (=6), (=7a)and(=8)).
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(=1) Directly by (Def = from &) anddefinitionof functionth (seeSection
3).

(+2) By (Def = from S) we needto shaw th(cs(—¢)) C K. Now, if - ¢,
thenby (Defcs) wehave cs(—¢) = [K]. SoLemma0(i) givesth(cs(—¢)) =
th([K]) = K andtheresultholdstrivially. Otherwisel/ ¢ andby (S2) we
have that[K] is the C-minimumof S (i.e., [K] C cs(—¢)). Soby (Def cs)
andLemmaQ(iv) theresultis established.

(=3)Letp ¢ K ort ¢. In thelattercaseusing(Def ¢s), (Def = from S)
andLemma0(i) wehavethat K ~¢ = K andtheresultensueslirectly In the
formercaseandsupposind/ ¢ we have that[—¢] N [K] # 0. Thereforg(S2)
and(Def cs) give cs(—¢) = [K] andby (Def = from §) andLemma0(i) we
have K-¢ = K from whichthedesiredresultis obtained.

(£4) Letl/ ¢. By definitionof cs(—¢), [¢] N cs(—¢p) # (. Therefore,
usingLemmag(iv) and(Def = from §) we have ¢ ¢ th(cs(—¢)) = K=¢.

(£6) LetCn(¢) = Cn(v). Then[p] = [¢]. If - ¢, then ¢ and K ~¢ =
th([K]) = K=t. Otherwisel/ ¢ andl/ 1. However cs(—¢) = cs(—).
ThereforeK ~¢ = th(cs(—¢)) = th(cs(—y)) = K.

(=7a)Lett/ ¢. We needto shaw that K—¢ C K=(¢ A ). By (Def =
from S), we needto shaw thatth(cs(—¢)) C th(cs(—(¢ A 4))). Thatis,
by LemmaO(iv), cs(—(¢ A 1)) C cs(—¢) or, equivalently cs(—¢ V —p) C
cs(~¢). Sincelf ¢, theni/ ¢ Ap. Now [~] € [~p U] = [¢] U [-4], s
clearlycs(—¢ V ) C cs(—¢) asdesired.

(=8)Letp & K—(pA1)). By (Def = fromS), wehave K=¢ = th(cs(—¢)))
andK = (¢ A1) = th(cs(~(¢A1)))). Sinced & K= (¢ A1) = th(cs(=(pA
1)) = th(cs(~¢V—1p)), thencs(~¢V—)N[~¢] # 0. Therefore:s(~¢) C
cs(—¢ VvV =) andth(cs(—¢ V —1p)) C th(cs(—¢)) by LemmaO(iv). Thus
K=(¢ Np) C K—¢ asdesired.

(i) Let = be a severe withdrawal function (i.e., satisfies(=1) — (=4),
(+6), (=7a)and(—8)) andlet S be obtainedfrom = by (Def S from =) or,
equialently (Def S from =). We have to verify that(a) = obtainedrom S
using(Def = from §) is identicalto = and(b) thatS satisfieghe conditions
for asystemof spheregi.e.,(S1) — (54)).

We prove (b) first aspartof it will beusefulin shorteninghe proofof (a).

(b) We verify thatS is indeeda systemof spheresentredon [K].

(S81) Thenestednessf spheregollows directly from (Def S from =) and
Lemma2(j).

(S82) That[K] is a spherefollows via (Def S from =) andLemma0(v))
settingg = T (orary v € L suchthatt- 1)) sinceby (~3) and(-2) we have
K=T = K. That[K] is the C-minimal spherethenfollows by (Def S from
) using(=2) andLemma0(v)).

(83) That M, is a spherefollows directly by our constructionsas we
includeit asasphere.

(S4) Let tf —¢. We needto shav that thereis a spherel/ € S such
thatU N [¢] # 0 andV N [p] # 0 impliesU C V forall V € S. We
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shav thatU = [K—~—¢)] satisfiesthis condition.Sincel/ —¢, thenby (~4)
—¢ ¢ K=-¢ soclearly[K=—=¢] N [¢] # 0. Now supposeor reductiothere
is someV € S suchthatV N [¢] # 0 andU € V (i.e.,V C U by (S1)
which hasbeenshavn above to hold). Thatis, by (Def S from =), thereis
somey € L suchthat[K=¢] N [¢] # 0 and[K=y] C [K=~¢]. Since
[K=y]N[p] # 0, then—¢ ¢ K=1. It follows by (=9) that K =1 C K-—¢
or, in otherwords, by LemmaO(v)) [K~-¢] C [K=%] contradictingthe
above.

The proof of (§4) actuallyshaws that,for I/ —¢, cs(¢) = [K==¢] (or,
equialently thatl/ ¢ impliescs(—¢) = [K=¢]) which canbe corveniently
usedin theproof of (a).

(a) Wheneert ¢, thenK-~¢ = K by (=2) and(=3). Also, cs(—¢) =
[K] by (Def cs) andconsequently /¢ = K by (Def = from §) andLem-
maO(i). HenceK “¢ = K-'¢p = K.

Considerthen,the casewherel/ ¢.

Left to right. Suppose) € K-¢. We needto shaw 1p € K-'¢p. Now
clearly [K=¢] C [¢]. By following the proof of (54) we get [K=¢] is
a sphereand cs(—¢) = [K=¢]. Therefore,cs(—¢) C [¢]. Hencey €
th(cs(—¢)) andby Lemma0(iv)) v € K¢ by (Def = from S) asdesired.

Rightto left. (The proof follows essentiallybe reversingthatfor the pre-
vious case.)Suppose) € K='¢. We needto shav ¢ € K=¢. Sincey €
K='¢p, theny € th(cs(—¢)) by (Def = from S). Thereforecs(—¢) C [¢].
Now cs(—¢) = [K~¢] accordingto the proof of (§4). Hence[K ~¢] C [1/;]
andthusy € K=¢ asdesired.

LEMMA 16. If = is a severe withdrawal function,thenthe two conditions
(Def < from =) and(Def < from =) are equivalent.

Proof. We haveto shaw that
¢¢ K=(pAp) or = (pAY)

holdsjustin case
¢ K= or

holds. To shav that the former implies the latter let ¢ ¢ K-—(¢$ A 1) or
F (¢ A ¢) andassumehatt/ . Hencel/ (¢ A v). Theng ¢ K=(p A ).
Sincel/ 1, wegetK =y C K=(¢ A1), by (=7a).Sosincep ¢ K=(d A1),
¢ ¢ K=, asdesired.

For the converse,let ¢ ¢ K1 or - 9. Fromthe former we know that
I ¢, by (=1). Now if I 1, theng ¢ K=¢ = K=(¢ A1), by (34) and(=6).
Soletl/ ¢ andthus¢ ¢ K=1. Assumefor reductiothat¢ € K=(¢ A ).
Thenby (=8c) K=(¢ A ¢) C K=1. Butthen,since¢ ¢ K1, we getthat
¢ ¢ K=(¢ A1), andwe have a contradictionHence¢ ¢ K=(¢ A1), as
desired. O
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OBSERVATION 17. Let— and= becorrespondinddGM contractionand
severe withdrawal functionseithervia (Def = from =) or via (Def - from=).
Then—- and = leadto identical entendymentrelations,via (Def < from —)
and(Def < from=).

Proof Let - and= becorrespondindAGM contractiorandseverewith-
drawal functionseithervia (Def ~from =) or (Def —from =). It follows from
Obsenation10thatit doesnot matterwhich of thesedefinitionswe apply

Let < bethe epistemicentrenchmentelationthatarisesfrom — via (Def
< from ) and<’ betheepistemicentrenchmentelationarisingfrom = via
(Def < from =).

Wefirst shav ¢ < 1) implies¢ <’ 1. Supposep < 1. Now ¢ & K-(¢ A
) or = ¢ A 9 by (Def < from =). In the former case(andassuming/
otherwisethe resultis trivial) ¢ ¢ K= by (Def = from =). In the latter
casesurelyt- 1. In eithercaseg <’ ¢ by (Def < from ).

We now shawv ¢ <’ 1) implies¢ < 1. Supposep <’ 1. Theng ¢ K=
ork 9 by (Def < from 2). If F ¢, thenthe former caseis not possibleby
(+1) andthe latter casegivest ¢ A 1 wherebygp < 1) follows by (Def <
from =-).

Now let ¥ ¢. Considerfirst the casewhere¢p ¢ K=1. By (=4) ¢ &
K-=¢. Now it follows by LemmaZ2(ii) that¢ ¢ K-—(¢ A v). Equivalently
—(p ANY) = ¢ & K=(¢p A1) andconsequentlyby the DeductionTheorem,
dEZCN(K=(pNAY)U{~(dA)}). Thereforep ¢ K NCn(K=(p Atp) U
{~(¢ A)}) andby (Def = from =) ¢ ¢ K-(¢ A ) wherebyg < 1)
follows by (Def < from =). Considemow the casewheret . Thenty €
K-=(¢ A 1) by (—1) whichwe know to hold by Obseration9 andtherefore
¢ & K—(¢ A1) (—4) (again,this holdsby Obsenration9). (Def < from =)
now gives¢ < v asdesired. O

OBSERVATION 19. (i) If < satisfies(E1) — (E5), thenthe function =

obtainedfrom< by (Def = from <) is a severe withdrawal function.

(ii) If = is a severe withdrawal function,then= can be representedas an

entendhment-basedvithdrawal wheie the relation < on which = is based
is obtainedby (Def < from =) (or equivalentlyby (Def < from =)), and <

satisfiedE1)— (E5).

Proof

(i) Assumethat< satisfieE1)— (E5)andlet K=¢ = K N{¢: ¢ < 9}
when¢ € K andl/ ¢, and K-¢ = K otherwise We have to verify that =
satisfieghe postulatedor severewithdravals.

(=1) Let K=¢ + 1. We wantto shaw thaty € K-=¢. The casewhere
K¢ = K istrivial, sinceK is atheory Solet ¢ € K andl/ ¢. By compact-
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nesstherearex, ..., x, € K=¢ C K suchthaty; A...Ax, F 9. SinceK
isatheory x1 A...Ax, andy arein K. Soit remaingo shawv that¢ < 1. By
repeatedpplicationof (E3),thereis ani suchthaty; < x1 A-.. A xn. Since
x; IS in K=¢, we have ¢ < ;. Hence,by the transitivity condition(E1),
d< X1 Ao Axn.-BUutxy1 A ... Axn 1, S0by (E2),x1 A ... A xn < 9.
Hencepy (E1)again,¢ < v, soy isin K=¢.

(+2) and(=3) areimmediatefrom (Def = from <).

(+4) Assumdor reducticthatt/ ¢ and¢ € K-—¢. By thelatterand(Def =
from <), weget¢p € K. Soby (Def = from <) again,¢ < ¢, thatis ¢ < ¢
and¢ £ ¢ whichisimpossible.

(=6) If Cn(¢) = Cn(v), theng € K iff ¢ € K, andl/ ¢ iff i/ . It
remaingo shaw that¢ < x iff ¢ < x, for all . Butthisfollowsfrom ¢ < 4
andy < ¢, whichis implied by (E2), andtransitvity, (E1).

(=7a)Letl/ ¢, andthust/ (p A ). If pAY ¢ K, thenK=¢p C K =
K=(¢ Np) by (Def = from <). If ¢ A9y € K, andthus¢ € K, we need
to shaw that¢ < x implies¢ A ¢ < x for all x. But from (E2), we get
¢ N < ¢, sotheclaimfollows by transitisity, (E1).

(=8) Letp ¢ K—=(¢ A 7). Hencelf ¢, by (E1),andalsolf (¢ A 2). If
¢ K, soK=(¢p Np) C K = K=¢ by (Def = from <). Solet ¢ € K.
HenceK=(¢ A ) # K,s0¢ A € K.Hencep ¢ K=(¢ A 1) meanghat
d AN £ ¢. Now assumahaty € K=(¢ A1), i.e.,¢ A < x. We need
to shaw that¢ < x. Butsincegp Ay < ¢, by (E2),o Ay £ ¢ meanghat
¢ < ¢ AN1. Fromthisandg A ¢ < x, we getby transitvity (E1)thate < x
andthereforeyy € K¢ by (Def = from <), asdesired.

(i) Assumethat = satisfieq=1) — (=4), (<6), (=7a),(=8), andlet ¢ <
¢ if andonlyif ¢ ¢ K= or - 4. (Thatis, we useLemmal6 and base
the following on (Def < from =) ratherthandirectly on (Def < from =).)
We have to verify (a) thatthe withdrawal function =/ obtainedfrom < with
the help of (Def = from <) is identicalwith =, and(b) that < satisfieshe
definingconditionsfor epistemicentrenchment.

(a) Usingthedefinition (Def - from <) we getthaty € K-'¢ iff

z/)eKand{(MéKorHﬁ or

<
whichmeanshy thedefinition(Def < from =), that
p¢ Kort ¢ or
(+) wEKand{(qf)gEK:zp or ) andy € K¢ and i/ ¢

Firstweshav thaty € K~¢ impliesy € K-'¢. Supposehaty € K¢
holds.If - ¢ or ¢ ¢ K, thenby (=3)and(=2) K~¢ = K,soy € K
andy € K='¢ by the upperline of (x). Solett/ ¢ and¢ € K. We have
P € K=¢ C K, by (=2). For thelower line of (x), it remainsto shav that
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eithert- ¢ or ¢ ¢ K=4. If I/ 9, then,we needto shaw that¢ ¢ K. But
thisfollows from ¢ € K=¢ by Lemma2 (iii) (Expulsveness).

For the converse,we shav thaty € K-~'¢ impliesy € K=¢. Solet
() begiven.Fromtheupperline, we gety € K¢ with the helpof (=3).
So supposehat the lower line is true. But this line containsasa conjunct
1 € K=¢, whichis justwhatwe setoutto prove.

(b) Finally we shaw that< indeedsatisfiedE1) — (E5).

(El)Letp < v andy < yx, thatis, ¢ ¢ K=1) ort 1), andalsoy ¢ K-y
or - x by (Def < from =). We needto shav that¢ < x, i.e.¢ ¢ K=x or
F x. Assumethatl/ x. Theny ¢ K=y, andhenceby (=1), I/ 9. Sowe
alsohave ¢ ¢ K ~1). Weconcludegrom ¢ K- x with thehelpof (~9) that
K=x C K=1. Sincegp ¢ K=, wefinally get¢ ¢ K-y, asdesired.

(E2) Let ¢ F . In orderto seethat¢ < 1), we needto shaw that¢ ¢
K= or - 4. Assumel/ . Thenby (=4) ¢ ¢ K=. Henceby (-1),
¢ ¢ K=, asdesired.

(E3) In orderto seethateither¢ < ¢ A ory < ¢ A1, we needto shaw
thateither¢p ¢ K=(p Ap)or E oA, orp & K=(pAp)or b ¢ A,
Assumethatt/ ¢ A . Thenby (=4), ¢ A ¢ K=(¢p A1), soby (=1)in fact
eitherp ¢ K=(p Ap) oryp ¢ K=(p A ).

(E4)Assumehat K # L. Weneedo shav that¢ ¢ K justin casep < 1)
is truefor every+ € L. Thelatterconditionmeanspy (Def < from =), that

¢ ¢ K= or I, foreveryyp € L

Weknow from (=2) that¢ ¢ K is sufficientfor this condition.To shav that
¢ ¢ K is alsonecessarybsere thatthe conditionentailsthat¢y ¢ K= 1.
SinceK # L, weknow that L ¢ K.Soby (~3),K~1 =K.So¢ ¢ K, as
desired.

(E5) Assumethatty < ¢ for all » € L. Thismeanspy (Def < from =),
thateithery) ¢ K=¢ for all ¢» € L ort ¢. Theformercannotbe, however,
sinceif v isin Cn((), it will bein K¢ nomatterwhat K~ ¢ lookslike, by
(£1). Hencet ¢. O

LEMMA 20. For anyentendmentrelation< with respecto K, thesystem
of spheesS (<) satisfieconditions(S1) — (S4) with respecto [K].

Proof. Let < beanentrenchmentelation.We shav thatS(<) is indeed
asystenof spheresentredon K.

(S1) By theconnectednegsf < (whichfollowsfrom (E1)—(E3)— se€]9,
Lemmag3(i) p. 189]) we have thateither¢ < ¢ or¢ < ¢pfor ¢, ¥ € L. 1t
follows thateither{x : ¢ < x} C{p: v <plor{p: ¢ < p} C {x:
¢ < x}. Denoting[{x : ¢ < x}] by Sy and[{p : ¥ < p}] by Sy asin (Def
S from <), it follows by Lemma0(v) andthe factthe cutsaretheoriesthat
S¢ - Sw orS,/, C S¢ for S¢, Sw S S(S)
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(S2)If K # L,thenl ¢ K sinceK is abelief set.It follows by (E4)
that{¢ : L < ¢} = K. ThereforeS, = [{¢ : L < ¢}] = [K] and,by
(Def S from <), [K] € S(<). Now supposdor reductiothatthereis some
Sy € 8(<) suchthatS,, C [K]. Thatis [{x : ¥ < x}] C [{¢: L < ¢}]. By
LemmaQ(iv) and(i) (for cutsaretheories— see[29,p. 159]){¢: L < ¢} C
{x : ¥ < x}. Thatis thereissomep € {x : ¥ < x} butp & {¢: L < ¢}.
Thereforey < p but L £ p. By theconnectednessf < wehavep < 1 and,
by transitvity of < (E1),1 < L. Thiscontradict{E2)(for L + 1)). Henceno
suchSy existsand[ K] is the C-minimumsphereof S(<). OtherwiseK = L
and( € S by definition.

(83) Take thecut St. Now {) : T < 4} = () by (E5).So ST = [{¢ :
T <9} =[0] = M.

(84) Let x € £ andlf —x. It remainsto shaw thates(x) = [{¢ : —7x <
1} for all x.

It follows from the compactnessef Cn andfrom (E1) — (E3) thatthe set
{¢ : =x < 1} doesnot entail -y (see[29, proof of Lemmab5, p. 161]), so
[{v : ~x < 9}] intersectgx]. It remainsto shav thatevery S in S which
is a propersubsetof [{1) : —x < ¢}] doesnot intersect[x]. Supposehat
S in S is apropersubsetof [{¢ : =x < v}]. Thenthereis a p suchthat
S=[{v:p<y} and{y: p < 9} isapropersupersedf { : =x < }.
Leté bein {¢: p < ¢} — {3 : ~x < *}. Sincel ¢ { : —-x < ¢} and<
is connected{ < —x. Butthen,sincep < &, we canconcludewith thehelp
of (E1)thatp < —x aswell. Thus—x € {¢ : p < 9}, SO[{¢ : p < ¢}] does
notintersecty]. We concludethatindeedcs(x) = [{% : —=x < ¥}]. O

OBSERVATION 21. For anyentendimentrelation <, the AGM contrac-
tionsandthe severe withdrawalsgeneatedfrom < and S(<) are identical,
e, C(S(X)) =C(L) andW(S(K)) = W().

Proof. Let < beanentrenchmentelation.We know from Lemma20 that
S(<) isindeeda systemof spheresentredon K.

It remainsto shaw thatfor § = S(<) generatedy (Def S from <) it
holdsthat

N {p e K:¢d<¢Vip} =th([K]U fs(=¢))

(i) {+ € K : ¢ <9} = th(cs(=9))

We begin by shawing (ii): Using the proof of the Lemma20, the part
concerningS4, we know that for every ¢, the smallestsphereintersecting
[—¢], thatis cs(—¢), is identicalwith theset[{« : ¢ < 1}]. Moreover, since
{ : ¢ < ¢} is atheory(see[29, p. 159]), by LemmaO(i), th(cs(—¢) =
{% : ¢ < 1}. Furthermoreye concludefs(—¢) = cs(—¢) N [-d] = [{¢ :
¢ <9} U{=g}].
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Knowing this, we have to shaw for (i) that

th(KJU{: ¢ <} U{-¢}]) ={p € K: ¢ <pV}

To shawv thattheleft-hand-sidas includedin theright-hand-sidelet x €
mforallm € [K|U[{¢ : ¢ < 9} U{—¢}]. Weneedto shaw thaty € K and
¢ < ¢V x. Butwe know from theassumptiorthatx € m for all m € [K].
SinceK is atheory x € K. Moreover, x € mforallm € [{¢p : ¢ <
P} U {=¢}]. Hencep V x € m for all m € [{1 : ¢ < 9}]. Hence by the
completenesef Cn, {¢) : ¢ < ¥} - ¢V x. Since{y : ¢ < 1} is atheory
(se€[29, p. 159]),wegetthaty V x € {1 : ¢ < 9}, thatis, ¢ < ¢ V x.

To shawv corverselythatthe right-hand-sidds includedin the left-hand-
side,lety € K and¢ < ¢V x. Clearlyx € m forallm € [K], sincey € K.
It remainsto shav thaty € m forallm € [{¢ : ¢ < ¢} U {—¢}]. Letsuch
anm begiven.Since¢ < ¢ V x, we know thatfromm € [{¢ : ¢ < 9}]
we caninfer that¢ vV x € m. Butalso—¢ € m (since¢ & {¢ : ¢ < 9}
— se€g[29, proof of Lemmab, p. 161]). So,sincem is atheory xy € m. We
have shavn thaty € m for all m in [K]U [{¢ : ¢ < 9} U {—¢}]. Butbythe
definitionof ¢h, thisjustmeanghaty isin th([K]U [{¢ : ¢ <9} U{=¢}]),
asdesired. O

LEMMA 22. For anysystenof spheesS with respecto [K], theentrend-
mentrelation£(S) satisfiesconditions(E1)— (E5) with respecto K.

Proof. LetS beasystenof spheregentredon [K]. We shav that< isan
epistemicentrenchmentelationon K.

(El)Let ¢ < v andy < x. By (Def’ < from S) we have thatcs(—) €
[¢] andcs(—x) € [¢]. It follows thatcs(—v) N [-¢] # @ andcs(—x) N
[-¥] # 0. Consequentlyfrom the latter, cs(—¢) C c¢s(—x). Therefore
cs(=x) N [—¢] # 0. Hencecs(—x) Z [¢] and,by (Def’ < from 8) ¢ < x as
desired.

(E2) Let ¢ F 2. It follows that [¢] C [¢]. Supposefor reductiothat
cs(—p) C [¢]. It follows thatcs(—p) C [¢] which contradictsthe defini-
tion of cs(—)). Hencecs(—)) € [¢] asrequired.

(E3) Supposep £ ¢ A 1. We needto shaw thaty < ¢ A 1. Fromour
suppositionan (Def’ < from 8) it follows thatcs(—(¢ A ¥)) C [¢]. Now
[(pAY)] = [~V 9] = [~p]| U [—9]. Thereforecs(—(p A1) N [—p] # 0.
Consequently:s(—(¢ A 9)) Z [¢] andhenceby (Def’ < from S) we have
¥ < ¢ A1) asdesired.

(E4) Let K # L We needto shav ¢ < o) foreveryy € Liff ¢ ¢ K.

Left to right. we shall prove the contrapositie. Let ¢ € K. We needto
shav ¢ £ 1) for somey € L. By (Def’ < from S) thisamountgo shaving
cs(—p) C [¢] for somey € L. Considen) = —p. cs(——¢) = cs(p) = [K]
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by (§2)andsincep € K. Since¢ € K it followsthat[ K| C [¢] andtherefore
cs(¢) C [¢] asdesired.

Rightto left. We shall prove the contrapositie. Let ¢ < 1) for somey €
L. By (Def’ < from §), thereis somey € L suchthatcs(—y) C [¢)].
Consequentlpy (52), [K] C cs(—) C [¢]. Hencep € K asrequired.

(E5) Let t/ ¢. Again, we shaw this by consideringhe contrapositie. We
needto shav thaty £ ¢ for somey € S. Thatis, by (Def’ < from S),
we needto shav cs(—¢) C [¢] for somey € L. take ¢ = T. Clearly
cs(—¢) C [T] asdesired. O

OBSERVATION 23. Let< beanentendimentrelationandS a systenof
sphees.Then

() E(S(<) =<.

(i) S(E(S8)) isthetopolayical closue of thetrimmingof S, i.e., (St) -

Proof. (i) Let < beanentrenchmentelation.

Furthermorelet <' be £(S(<)). ThatS(<) is a systemof spheresvas
provedin Obseration21(i) andthat<'= £(S(<)) is anepistemicentrench-
mentrelationsubsequentlfollows by the proof of Obseration 24 below.

Now ¢ <" o iff cs(—1p) € [¢] iff by (Def’ < from S). Thisis the case

iff [{x : ¥ < x}] € [¢] by (Def S from <) (seebeginning of the proof of
Obsenration21(i)) which holdsiff {x : 1 < x} I/ ¢. Thisholdsiff 1) £ ¢ iff
(since{x : ¥ < x} is atheory(see[29, proof of Lemmab5, p. 161])) which
holdsiff ¢ < ) by the connectednessf < which follows from (E1)—(E3)
(se€[9, Lemma3(i) p. 189]) asdesired.
(i) LetS beasystenof spheresFurthermorelet S’ beS(E(S)). That&(S)
is indeedan epistemicentrenchmentelationhasbeenshavn in Lemma?22
andthat S(£(S)) is a systemof spheredollows by the proof of Obsera-
tion 21(i).

Now S is in &' iff thereis some¢ suchthatS = [{¢ : ¢ < 9}], by
(Def S from <). This holds, by (Def’ < from S), iff thereis some¢ such
thatS = [{¢ : cs(—¢) C [¢]}]. Now this holdsiff thereis some¢ suchthat
S = [{¢ : ¢ € th(cs(—¢))}], Simplifying, thisis the caseiff thereis some
¢ suchthatS = [th(cs(—¢))] asdesired.

Now thetrimming of S consistsexactly of all the setsof theform cs(x),
andthe operationof taking the topologicalclosureis just the onethattakes
every set X of worldsto [th(X)]. Thuswe have provedthatS’ is the topo-
logical closureof thetrimming of S. O

OBSERVATION 24. For any systenof spheesS, the AGM contractions
and the severe withdrawals geneated from S and £(S) are identical, i.e.,
C(E(S)) =C(S) andW(E(S)) = W(S).
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Proof. Let S be a systemof spheresentredon [K], and<= £(S) as
definedby (Def’ < from S). Noticethatsince< is connectedsee[9, Lem-
ma3(i) p. 189]), we have thaty < + if andonly if cs(—¢) C [¢].

Lemma22 shaved that < is indeedan epistemicentrenchmentelation
with respecto K.

For the limiting casewheretl- ¢ all contractionsand withdravals with
respecto ¢ aresetto K, sowe assumen thefollowing thatt/ ¢.

Since< = £(S) is anentrenchmentelation,we know from Obsenation
21thatC(£(S)) = C(S(E(S))). But sinceby Obseration 23, S(£(S)) =
(St) e, we concludewith Lemmal2thatC(E(S)) = C((St)a) = C(S).

Preciselythe sameagumentshavs thatW(E(S)) = W(S). 0

B. Twelve Methods of Withdrawing a Belief ¢

In this appendixwe contrastvariousmethodsfor withdraval of a belief ¢
from abeliefsetK currentlyfoundin theliterature We considetheprincipal
casewherel/ ¢ asthe majority of thesemethodssatisfythe failure property
(i.e.,F ¢ impliesK ~¢ = K).

Thefollowing tablelists anumberof proposaldogethemith anindication
of which—¢-worldsandwhich ¢-worldsarecontainedn [K ~¢]. Sy refersto
thesmallesispherantersectings (i.e.,cs(¢)). [K] is, of coursethesmallest
(innermost)sphere.

[K—~¢] ... within [~¢] ... within [¢]

1. AGM (transrel.) partialmeet[1] (] N Sy [K]

2. Severewithdraval [Section3] [~ N Sy 4] NSy

3. AGM maxichoicg1] single—¢-world [K]

4. Saturatableset[18, 14]) single—¢-world someX s.th.[K] C X C [¢]

5. Partial meetof saturatableets[14] [~ N Sy someX s.th.[K] C X C [¢]

6. lron-fistedwithdrawal [Section7] [~¢] N Sy [¢]

7. Levi —dampedypel [20] [=4] N Sy [¢] N Sp28

8. Cantwellfallback-base] [¢p] N Sy [¢] N S; for somei € {1,...,n}

9. Systematiavithdraval [26] [¢p] N Sy (] N Sg—_1
10. Lindstom andRabinavicz [22] [~ N Sy someX s.th.[K] C X C [¢] NSy
11. Semi-contractiofi6] [=¢] N Sy someX s.th.[K] C X C [¢] N S4*
12. Nayak[p.c.] (=] N Sy [#] N (S — Sp-1)*
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The diagramson the following pagesillustrate typical situationsfor these
variousproposalsNotethatFiguresl and2 appearedh Section3.
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- =

Figure 3. Maxichoice — pure minimal Figure 6. “Iron-fisted” withdraval — mini-
changgwrt C). mal revision equivalentwithdrawal

2
2

Figure4. Saturatableet(norecorery).  Figure7. Levi Contractiorvia dampednfor-
mationalvalueof typel.
v M

Figure 5. Partial meetof saturatablsets. Figure 8. Cantwell'fallback-based".
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2

Figure9. Meyeretal. systematievithdraval. Figure 11. Fermeé and Rodriguez semi-
contraction.

A
>

@) ©)

Figure 10. LindstomandRabinavicz (Inter-
polation). Figure 12. Nayak(personatommunication).

-4
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C. Interrelationship Between Methods

more genegl
PM saturatable i
Lindstdm-Rabinavicz
Cantwell
Nayak(p.c.) Iron-fisted
AGM PMC T Severe
Levi d.i.v.1 Meyeretal.
Maxichoice ® Saturatable
Y
lessgeneal
Notes

1 In the AGM literaturethesetwo termshave a precisemeaningdifferentiatingimportant
formsof beliefremoval, whichwe shallintroducelater. For thetime being,howvever, we defer
to the term contractionwhenreferringto ary operationremoving beliefs from an agents
epistemicstate.

2 Levi [18] refersto this ascoerced contraction (asdistinct from uncoeced contraction
whichrefersto beliefremoval for purposesiescribedn whatfollows).

3 Evenmoresoif oneconsidergherathertrivial natureof AGM expansion.

4 Thisgeneralisatiomllows usto retainthe spirit of theoriginal while notbeingtied down
to loadedtermssuchas'‘information’.
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5 A contractionof K by ¢ € L in the AGM framavork is maxicoiceif it leadsto a
maximalsubsebf K thatdoesnotimply ¢. It is partial meetf it is theintersectiorof select
maxichoicecontractions.

5 A revision function definedfrom a maxichoiceAGM contractionfunction via the Levi
Identity [8, p. 69] (K * ¢ = Cn(K—(—¢) U {¢})) alwaysreturnsa belief statewhich is
maximally consistenandthereforehasan opinionasto the truth or falsity of every sentence
in theobjectlanguage.

" Moreformally, K’ € K_1¢ if andonly if (i) K’ C K; (i) ¢ ¢ Cn(K’); and, (i) for
ary K" suchthatKr c K" C K, ¢ € Cn(K").

8 An AGM full meetcontractiormaybe constructedrom K asK —¢ = N(K Lg).

9 Strictly speakingGrove’s[12] constructiordealssolelywith syntacticyatherthanseman-
tic, objects;maximally consistentsetsof sentencetake the placeof worlds.It canbethought
of asfurnishinga semanticsn sofarasit providesa “picture” for thebeliefchangeprocess.

0 n traditional AGM terminology K¢ € K_1l¢ where K 1¢ is the setof maximal
subset®f K failing to imply ¢. Theconnectiorhasbeenestablishedy Grove [12].

11 RecentlyFermeandRodrigueZ7] have also,independentlyproposedinaxiomatisation
for severewithdrawval usingthe postulatg —9) — seeSection6.

12 Technically this canbe viewed asthe dual of the Grove ordering.SeeGardenfors[8,
Sectior4.8].

13 |t is easyto shaw thatanecessarandsufiicientconditionfor (Def - from <) to generate
maxichoicecontractiongs thattheentrenchmentelationsatisfieeither¢ < ¢ ory < (¢ —
¢), for all sentences and+ in £. SeeRott[31, Chapte8].

4 Oramongthosefor nonmonotoniconsequenceelations A nonmonotoniconsequence
relation |~ canbe definedfrom arevision operator« anda belief set(or rather expectation
set)K by puttingg v iff ¢ € K % ¢ [10]. Theparameteik is hereleft implicit.

5 However, via the so-calledHarperldentity — K~¢ = K N K * ~¢ — Recwery can
be linkedwith succesgor revision operationsandreflexivity for nonmonotoniconsequence
relations.

16 Cut:If ¢ fvop andg A ¢ b x, theng ~ x.

Cumulatve Monotory: If ¢ 1 andé  x, theng A ¢ b~ x.

Or:1f ¢ b x andy |~ x, theng V o b x.

RationalMonotory: If ¢ h¢ -2 and¢ |~ x, theng Ay v x.

For adetaileddiscussionye referthereaderto Makinsons [24] suney.

17 Rott [31] considersa slightly differentsetof postulatesn an attemptto remave refer
enceto the underlyinglogic. We shallremaincloserin spirit to the AGM asthis additional
generalitydoesnot affect our aimsin this paper

18 we aregratefulto Sven Ove Hanssorfor highlightingthis property

19 In fact,Makinsons [23] resultregardingthe maximality of AGM contractiorfunctions
bearshis outalso.

20 Thatis, X is in & iff it is a fixed point in the operationtaking every modelsetY to
U{K=¢]:Y € [}

21 For somepurposest is convenientto rephrasehis definitionin termsof contractionsof
conjunctsasfollows.

(Def’ Sfom=) X, = { l[%{{][K =6\ ]: 9 € L} whenser i/ g

22 |n modeltheoretiderms thespheresf theLewis-Grove constructiongre A X-elementary
but not A-elementary(see[3, p. 141]). If, however, their secondconstructionis appliedto
severewithdravals,theresultingspheresurn outto be A-elementary

2 Similarly all constructionsf systemsof spheresrom someentrenchmentelation <
(whichwill use“cuts” or “up-sets’with respecto <, seeSectionl2below) yield A-elementary
spheres.

24 Priestetal. [28] have pointedto anerrorin Grove’s [12, Theoreml] proofverifying that
therevision postulateanalogue®f (—7) and(-8) aresatisfiedby a revision functionderived



59

from a systemof spheresThey demonstrateneway to fix Grove’s proof. Alternatively, they
suggesthatevery spherdn M ¢ berequiredto beelementaryln ary case Grove’s statement
of theresultis notatfault.

%5 A generalisatiorf this theoremfor relationsof epistemicentrenchmenith incompa-
rabilities (and onesthat neednot satisfy Minimality and Maximality) is given in Rott [30,
Theoren?].

26 Underthe sameassumptiong alsoreducego whatmight be calledthe standardiefini-
tion in theliterature(cf. Gardenforg8, pp. 95-96]):

(Def” < fromS) ¢ < iff cs(=¢) C cs(—p).

2T We changethe notationof Kaluzhry andLehmannin orderto avoid confusionwith the
notationusedin this paper

30 8, refersto the secondsmallestspherethatis, that sphereX suchthat[K] C X and
X CYforalY # [K].

30 5,1 refersto the spherdmmediatelysmallerthan Sy, thatis, thatsphereX suchthat
X CSgandY C X foral Y C Sy.

30 Thisis for reasonableemi-contractiofunctions(see[6, Sections]). Otherwiseve have,
within [¢], someX s.th.[K] C X C M.
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