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Abstract. Theproblemof how to remove informationfrom an agent’s stockof beliefsis of
paramountconcernin thebeliefchangeliterature.An inquiringagentmayremovebeliefsfor a
varietyof reasons:abeliefmaybecalledinto doubtor theagentmaysimplywish to entertain
otherpossiblities.In theprominentAGM framework [1, 8] for belief change,uponwhich the
work hereis based,oneof thethreecentraloperations,contraction, addressesthisconcern(the
othertwo dealwith theincorporationof new information).Makinson[23] hasgeneralisedthis
work by introducingthenotionof awithdrawaloperation.

Underlyingtheaccountprofferedby AGM is the ideaof rational belief change.A belief
changeoperationshouldbe guidedby certainprinciplesor integrity constraintsin order to
characterisechangeby a rationalagent.Oneof themostnotedprincipleswithin thecontext
of AGM is the Principleof InformationalEconomy. However, adoptionof this principle in
its purestform hasbeenrejectedby AGM leadingto a morerelaxed interpretation.In this
paper, we arguethat this weakeningof thePrincipleof InformationalEconomysuggeststhat
it is only oneof anumberof principleswhichshouldbetakeninto account.Furthermore,this
weakeningpointstowardaPrincipleof Indifference.Thismotivatestheintroductionof anew
belief removal operationthatwecall severewithdrawal. Weprovide rationalitypostulatesfor
severewithdrawal andexplore its relationshipwith AGM contraction.Moreover, we furnish
possibleworldsandepistemicentrenchmentsemanticsfor severewithdrawals.

Key words: AGM, belief change,belief contraction,epistemicentrenchment,severewith-
drawal, systemsof spheres.
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1. Introduction

An inquiringagentmust,amongotherthings,dealwith theproblemof belief
change (or beliefrevision)— how to modify its currentepistemicstate(stock
of beliefs) in light of new information.Oneof the more popularaccounts
of belief changein recenttimes hasbeenthat introducedby Alchourŕon,
Gärdenforsand Makinson[1] (henceforthreferredto as the AGM frame-
work). The AGM framework for belief changedistinguishesthreetypesof
transformationson epistemicstates:belief contraction ( � .��� ) — removal
of belief � from epistemicstate � without additionof any further beliefs;
beliefexpansion( ��� � ) — additionof belief � andits consequenceswith-
out removal of any existing beliefs;and,belief revision ( ��� � ) — addition
of belief � andits consequenceswith possibleremoval of existing beliefsin
orderto maintainconsistency.

In this paperwe arepredominantlyconcernedwith the processof belief
removal — “contraction”and“withdrawal”. 	 It is our aim hereto introduce
a new, principled,belief removal operation.Although distinct from AGM
contraction,the two are relatedthroughtheir emergent revision behaviour.
Moreover, whenattentionis restrictedto all functionsrelatedin thiswayand
satisfyingcertainintuitive principles,we find that thesetwo proposalslie at
oppositeendsof thespectrumwith respectto their degreeof belief removal
measuredin termsof set-theoreticinclusion.Thealternative proposalintro-
ducedhereis contrastedwith AGM contractionwhich canbeseenasapoint
of referencein helpingto understandthe vagariesof this new approach.In
theAGM vein, rationalitypostulatesareprovided for our proposalandtwo
constructionsof centralimportanceto the AGM framework — systemsof
spheresandepistemicentrenchment— areadaptedandusedto furtherpro-
motethiscomparison.

Therearea numberof reasonswhy an inquiring agentwould be inter-
estedin removing beliefsfrom its currentepistemicstate.If theagentfinds
itself in an inconsistentstate— believing contradictoryinformation— then
it can give up certainbeliefs in an attemptto regain consistency. 
 On the
otherhand,an agentmay want to suspendbelief in a particularproposition
becauseit no longerhasany confidencein thatpropositionor simplybecause
it wouldlike to considerotherpossibilities.In eithercase,theoverridingcon-
cern is that the agentno longer includethe propositionin questionamong
its beliefs.Moreover, if one subscribesto Levi’s Commensurability Thesis
[18, p. 65] whichstatesthatany reasonabletransitionbetweentwo epistemic
statescanbe achieved througha sequenceof expansionsandcontractions,
thentheimportanceof contractionis clearlyevident.�

Principally, weareconcernedwith characterisingthatbeliefchangeunder-
goneby thoseagentswhichactin accordwith certainprinciplesor “integrity
constraints”commonlyreferredto asrationalitycriteria (seealsoGärdenfors
andRott [11, p. 38]). Arguablythemostwell known of thesecriteria(espe-
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cially in thecontext of theAGM framework) is thePrincipleof Informational
Economy[8] whichweshallpresentherein slightly moregeneralguiseasthe
Principleof Economy: � ThePrincipleof Economy:

Keeplossto a minimum.

Thisprinciplehas,in fact,becomelargelysynonymouswith theAGM frame-
work.A specialinstanceof thisconstraint,wherelossis measuredin termsof
set-theoreticinclusion(of epistemicstates),is known asthePrincipleof Con-
servatism[16]. It canbeconsideredthestartingpoint for theAGM account
of contraction;themotivatingconcernunderlyingtheAGM notionof “maxi-
choicecontraction”andthepathwayto thatof “partialmeetcontraction”[1]. �
An importantpoint to note is that sucha comparison,on the basisof set-
theoreticinclusion,presupposestheassociationof a positive valueof utility
with every singleitem of belief. The Principleof (Informational)Economy
(andconsequentlythatof Conservatism)is a restrictedcaseof thePrinciple
of Minimal Change [16] which statesthatadditionaswell aslossshouldbe
keptto a minimum.

It is our contentionherethat thePrincipleof Economyhasbeenseverely
compromisedin theAGM framework. In its purestform, asthePrincipleof
Conservatism,it hasbeenshown to leadto undesirableconsequenceswhen
appliedto logically closedbeliefsets[2]. � As aresultits impositionis effect-
edto amuchlessstringentdegree.Weclaimthatthisprincipleis not, in fact,
anoverridingcriterionbut, instead,mustbeappliedin combinationwith oth-
er, equallyimportant,principlesin orderto obtainan intuitively satisfactory
accountof belief change.Moreover, theseprinciplesarein a stateof tension
with respectto eachother(i.e., they have conflictingconcerns).In this paper
weadvocate,in particular, Principlesof IndifferenceandPreference. Briefly,
taken togetherthey statethat an objectheld in equalor higherregardthan
anothershouldbe treatedequallyor morefavourablythanthe latter. In fact,
we arguethat AGM contractiondoesembracetheseprinciplesto a limited
extent.However, thispartialadoptiondoesnotappearto beclearlymotivated
or even justified. Therefore,we proposea stricteradherenceto the Princi-
plesof IndifferenceandPreference.As a resultof this changein view, we
proposea new form of contractiondiffering from thatput forwardby AGM.
Moreover, the rationalitycriteriaproposedareequallyapplicableto the two
constructive modellingsthat we investigatehere— systemsof spheresand
epistemicentrenchmentorderings. Interestinglyenough,thisnew contraction
operationdoesnotaffect theAGM belief revisionoperation.

Let us returnour focusof attentionto the AGM developmentof belief
contraction.Applying thePrincipleof Economyin theform of thePrinciple
of Conservatism,it wasat first suggestedthat thecontractionof a belief set� by asentence� couldbeachievedby selectingsomemaximalsubsetof �
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that doesnot imply � . As mentionedabove, this proposalwasimmediately
abandonedasit hasundesirableconsequences.Instead,a selectionfunction� wasappliedto thesetof all suchmaximalnon-implyingsubsets,��� ��� , in
orderto selectasetof the“best” elementswhicharethenintersectedto obtain
apartial meetcontractionfunction( � .������� ��� ��� ��� ). It shouldbenoted
that the selectionfunction � is definedfor all sentences� but with � held
fixed(i.e.,for somebeliefset � , � maytakeasanargument��� � for any ��� 

). It is clearthat this developmentleadsaway from conservatism.Certain
objectsareunderscrutiny. A mechanismis usedto discriminateamongthem
althoughit may not be possibleto distinguishsomeapartandso theseare
all retainedandprocessedtogether. This leadsusto formulateIndifferenceas
follows: ThePrincipleof Indifference

Objectsheldin equalregard shouldbetreatedequally.

The situationin which all maximalnon-implyingsubsetsareheld in equal
regardis anAGM full meetcontraction! which standsat theoppositeendof
thespectrumto AGM maxichoicecontraction.

In settlingonpartialmeetwerealizethatthePrincipleof Economyandthe
Principleof Indifferencearein a stateof tensionwith respectto oneanoth-
er; Economyadvocatesthe selectionof a singleelementfrom ��� � while
Indiffencerecommendsto giveupmorethannecessaryif theselectionmech-
anismdoesnot singleout a unique“best” solution.Both of theseprinciples
figurein therationalebehindthechoiceof “best” elementsimplicitly adopt-
edin partialmeetcontraction.We shallextendthis strategy by acceptingthe
following, intuitively appealing,principle: ThePrincipleof StrictPreference

Objectsheld in higher regard shouldbeaffordeda more favourable
treatment.

Taken togetherwith thePrincipleof Indifference,this principlecanbeseen
asadvancingthefollowing rathergeneralprinciple: ThePrincipleof WeakPreference

If oneobjectis heldin equalor higherregard thananother, theformer
shouldbetreatednoworsethanthelatter.

Suchaprinciplecanalreadybeseento beatwork in AGM partialmeetcon-
traction with “importance” being judgedthroughthe selectionfunction � .
However, considerationis restrictedto theelementsof ��� � for a particular
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sentence�"�  . Our aim hereis to emphasisean alternative to AGM con-
tractionwhich we believe adheresmorefaithfully to thePrinciplesof Indif-
ferenceandPreference.However, adoptingtheAGM formatfor beliefchange
processes(i.e.,epistemicinputsassentencesfrom a suitableobjectlanguage
andepistemicstatesassetsof sentencesthat aredeductively closedunder
someconsequencerelation)allows usto effecta straightforwardcomparison
of thetwo proposals.

In the following sectionwe outlinesometechnicalpreliminaries.In sec-
tions3 and4 we presentanintuitive overview of two importantconstructive
modellingsfor AGM belief contraction.We describehow they fail to live up
to the requirementsdemandedby the Principlesof IndifferenceandPrefer-
enceandoutlineanapproachthatresolutelyfavourstheseprinciplesover the
Principleof Economy. A commonmethodof presentingAGM contraction
operationsis throughrationalitypostulateswhich wesurvey in section5 and
contrast,in section6, with rationalitypostulatesfor thebelief removal opera-
tion advocatedin thepresentpaper. TherelationshipbetweenAGM contrac-
tion operationsandour accountof belief removal is moredirectly addressed
in section7. In sections8 through11wereturnto theconstructivemodellings
discussedin sections3and4, investigatingthetechnicalaspectsof theirappli-
cationin ourbelief removal operation.This leadsusto aninvestigationof the
relationshipbetweenthe two constructive modellingsadoptedhere— sys-
temsof spheresandepistemicentrenchment— in section12. We conclude
with adiscussionof theinsightsstemmingfrom ourapproach,its relationship
to otherwork in the literature(section13) and,in section14, a summaryof
thecontributionsmadehere.

2. Technical Preliminaries

Throughoutthispaperweassumeafixedpropositionallanguage
 

with count-
ably many propositionalsymbols.We assumethat

 
avails of the standard

logical connectives,namely #%$'&%$'(%$')*$ and + , togetherwith theproposi-
tionalconstants, (truth)and � (falsum).Theunderlyinglogic will beiden-
tified with its consequenceoperator Cn -/.102) .10 which is assumedto
satisfythefollowing properties.354

Cn � 3 � (Inclusion)
If
36487

, thenCn � 3 � 4 Cn � 7 � (Monotonicity)
Cn � 3 �9� Cn � Cn � 3 �:� (Iteration)
If � canbederivedfrom

3
by classical

truth-functionallogic, then �;� Cn � 3 � (Supraclassicality)< � Cn � 3�=?> �A@B� if andonly if � � ) < �C� Cn � 3 � (Deduction)
If �;� Cn � 3 � , then �;� Cn � 3AD � for somefinite

subset
3 D 4E3

(Compactness)
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Weoftenwrite
3GF � to mean��� Cn � 3 � and

F � for H F � .
We refer to any setof sentences� in

 
asa belief setor theory if � is

closedunderCn (i.e., � � Cn � � � ). Onespecialbelief set is the absurd
belief set �JI containingall sentencesin

 
. A belief set � is consistentin 

if andonly if it doesnot containsentences� and # � for any �K�  , i.e.,
if � doesnot equal �JI . A belief set is completein

 
if either �L� � or# �K� � for every �E�  . Thesetof all belief setsis denotedM . We adopt

theconventionof denotingsentencesby lower caseGreekletters � $ < $ONPNPN
andsetsof sentencesby uppercaseRomanlettersQ;$R�;$SNPNPN .

3. Sphere-Based Withdrawal

An interestingwayof viewing theprocessof beliefchangeis in termsof pos-
sibleworlds.A constructionin this vein, specificallyfocussedon the AGM
framework,hasbeenproposedby Grove[12] whoadaptedLewis’ [21] possi-
bleworldsmodellingfor counterfactualconditionals.Thisapproachpossess-
esahighly intuitive appealthroughthepictorial representationby systemsof
spheres.T In this sectionwe concentrateon motivatingour approachthrough
this intuition, deferringthemaintechnicaldetailsto section8.

Grove [12] characterisesthecurrentbeliefsof anagentby thecollection
of thosepossibleworldsthatareconsistentwith theagent’s beliefs.But this
is nottheentirerepresentationof anepistemicstate.Theremainingworlds—
thoseinconsistentwith theagent’s currentbeliefs— aregroupedaroundthis
corecollection in decreasingorderof plausibility. This resultsin a system
of spherescentredon the setof worlds consistentwith the agent’s beliefs.
Changein belief involves the determinationof thoseworlds characterising
theagent’s new beliefsandis guidedby thepreferenceorderingoverworlds.

More specifically, we denotethepossibleworldsconsistentwith a setof
sentences� by U �?V andthesetof all possibleworldsby W . Wealsoadoptthe
shorthandU � V for U > �A@ V . A sphere is simplyasetof possibleworlds X 4 W .
A systemof spherescentred on U �;V is a setof nestedspheres(in the sense
of set inclusion) in which the smallestor innermostsphereis U �;V and the
outermostsphereis W . This is ageneralisationof Lewis [21] whosesystems
of spheresarecentredon a singleworld Y � W (the actualworld) if we
allow ourselves to neglect the fact that Lewis doesnot require W to be an
elementof every systemof spheres.Essentially, a systemof spherescentred
on U �;V ordersthoseworlds inconsistentwith the agent’s epistemicstate� .
Intuitively, theagentbelievestheactualworld to beoneof the � -worldsbut
doesnot have sufficient information to establishwhich one.However, the
agentmaybemistaken,in whichcaseit believesthattheactualworld is most
likely to be one of thosein the next greatersphereand so on. As such,a
systemof spherescanbeconsideredanorderingof plausibility over worlds;
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Figure1. Spheresemanticsfor AGM belief contractionshowing ^ _ .`Aa1b shaded.

the moreplausibleworlds lying further towardsthe centreof the systemof
spheres.

This orderingprovidesuswith a powerful tool for investigatingthepro-
cessof beliefchange.In thispaperweconcernourselveswith theoperationof
belief contraction.Thatis, thesituationin which anagentwishesto suspend
one of its beliefs. In this scenario,information is being removed, opening
up morepossibilities.In otherwords,theagent’s candidateworlds increase;
moreworldsbeingaddedto U �;V . In orderto suspendbelief in a sentence�
the agentmusthave somecandidateworlds in which � is falseand there-
fore,consideringtheprincipalcasein which � is initially believed( �6� � ),
it mustat leastintroducesome # � -worlds into U �?V . The AGM approachto
this problemis motivatedto a largeextentby thePrincipleof Informational
Econcomy. Accordingly, simply theclosest# � -worlds— thosein thesmall-
estspherecontaining# � -worlds— areaddedto U �;V . This situationis illus-
tratedin Figure1. If by cBd � ��� we denotethe � -worldsclosestto � andwe
introducea function e:f that returnsthe belief setcorrespondingto a setof
worlds,thenwehave thefollowing methodfor defininganAGM contraction
function .� from asystemof spheres:

(Def .� from g ) � .�h�i� ejf � U �?V = c d � # �k�:�
It will alsobeconvenientto referto thesmallestsphereintersecting� which
wedenoteby l d � �k� . Then c d � �k� is givenby l d � �k�nm U � V .

Now, if one were to apply the Principle of InformationalEconomyin
its unadulteratedform (i.e., Conservatism), then the aim of contraction—
removal of a belief � from epistemicstate� — would beachieved through
theadditionof a single # � -world to U �;V ratherthana numberof # � -worlds
asdepictedin Figure1. This form of contractioncorrespondsto maxichoice
contraction in theAGM literature[1], i.e., the ideaof takingbelief contrac-
tion of � by � to be somemaximal subsetof � that fails to imply � . 	po
However, this proposalhasbeenshown to possessa numberof drawbacks.
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Foremostamongtheseis thefactthatany revisionfunctiondefinedfrom such
a contractionfunctionvia theLevi Identity would alwaysleadto a complete
theory, i.e.,Cn � � .��� =�> # �n@B� is maximallyconsistent.Thisindicatesthattoo
little informationis beingremoved.As aresult,thePrincipleof Informational
Economyis imposedon a muchweaker level asindicatedabove. Insteadof
includingonly one # � -world in contraction,AGM incorporatea numberof# � -worlds— thoseheld to be mostplausible— into the agent’s epistemic
state.However, noneof therationalitypostulatesmentionedthusfar specify
preciselyhow to dealwith worldsthatareequallypreferredby theagent.As
aremedy, wesuggesttheemploymentof thePrincipleof Indifference.As we
haveseen,AGM havegonepartof thewayto adoptingsuchaprinciple.How-
ever, they limit their embracementof sucha strategy to theareacoveredby# � -worldsonly. Presumably, this is dueto adesireto remainasfaithful to the
Principleof InformationalEconomyaspossible,despiteits recognisedshort-
comings.Yet thePrincipleof InformationalEconomyhasbeencompromised
andits relevancecalledinto question.Weproposeto placestill lessemphasis
on its applicationandsubordinateit to thePrincipleof Indifference.

Another principle, relating to the preferencestructuresuppliedby the
spheremodelling,thatwe suggestto respectis thePrincipleof Strict Prefer-
ence.Accordingto thisprinciple,worldsconsideredmoreplausibleshouldbe
givenmorefavourabletreatment.Whencontractingits beliefsetwith respect
to � , the agentmustat leastincludesome(one,at any rate) # � -world into
its epistemicstate.But theaforementionedprinciples,asappliedto possible
worlds and systemsof spheres,advocatethat any � -worlds just as plausi-
ble astheinnermost# � -worldsshouldbeincludedalso.Thus,togetherthey
sanctionthefollowing specialisationof thePrincipleof WeakPreference:

If oneworld is consideredat leastasplausibleasanother, thentheformer
shouldbeadmittedin theagent’s epistemicstateif thelatter is.

ThePrincipleof InformationalEconomy, in aweakform,canbeviewedas
limiting theextentof changeto thatspherecontainingtheclosest# � -worlds
andnot beyond.ThePrincipleof WeakPreferencedetermineswhich worlds
insidethis limited regionshouldbeincludedin thenew epistemicstate.With-
outany furtherrestrictionsit suggeststhatall worldsinsidethisregionshould
form partof thecontractedepistemicstate.In away, evenAGM appealto this
principle.There,however, theprincipleis only appliedrelative to # � -worlds,
notall worldsin W . However, noprincipleauthorisingarestrictedimposition
of this principle is established.The new situationis illustratedin Figure2.
The agenthasdetermineda preferenceover worldsanddoesnot preferthe
(closest)# � -worlds over the (closer) � -worlds just becauseit is giving up
belief in � . Its preferencesareestablishedprior to thechangeandweassume
thatthereis noreasonto alterthemin light of thenew information(epistemic
input). It is for this reasonthat the Principleof Conservatism(the Principle



9Z\[

[    φ]¬

[K]

c  (    )]          φ      ¬

Figure2. Spheresemanticsfor severewithdrawal showing ^ _ ..`Aaqb shaded.

of InformationalEconomyin its pureform) mustgive way. Weshallreferto
this typeof belief removal assevere withdrawal.

Denotingby lrd � ��� theclosestsphereto � containing� -worlds,asmen-
tionedabove,weobtainaseverewithdrawal functionasfollows:

(Def
..� from g ) � ..�h�i� ejf � lsd � # �k�:�

It is thestudyof thisclassof functionsto whichwedevoteourselveshere.
Whenconsideredin a commonsetting,this form of belief removal hasbeen
independentlyadvocatedby Levi [20] who refersto suchfunctionsasmild
contractions. Levi arguesfor mild contractionsin termsof an information
theoreticargument.Weshallreturnto aconsiderationof Levi’s argumentsin
thediscussion(in Section13).	:	

4. Entrenchment-Based Withdrawals

Lewis [21, Section2.5] was perhapsthe first to realisethat a total order-
ing over possibleworldscouldberephrasedasa total orderingover thesen-
tencesof a language.Grove [12] providessuchanorderingbasedonsystems
of spherescentredon U �;V . GärdenforsandMakinson[9] alsointroducean
orderingover sentencesknown asan epistemicentrenchment. 	 
 Intuitively,
anepistemicentrenchmentrelation t is anorderingover theagent’s beliefs
whichreflectstheplausibilitiesor degreesof retractabilityfrom agivenbelief
state� . Therelation � t < canbe readas“it is at leastashardto discard<

thanit is to discard� .” Epistemicentrenchmentrelationsarethoughtof as
satisfyinga numberof structuralconstraintswhich we needpresentonly in
Section11.

Now let a relation t of epistemicentrenchmentbegiven,andlet u beits
asymmetricpart.Thenthecontractionbasedon u assuggestedbyGärdenfors
andMakinson[9, (C-) condition)]is asfollows.
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(Def .� from t ) � .�h�i�wv � m > < - � u � ( < @ if ��� � and xF �� otherwise

AlthoughGärdenforsandMakinson[9, p. 89] offer amotivationfor thisdef-
inition, it is ratherhardto understand.Besides,asGärdenforsandMakinson
point out, their argumentin supportof (Def .� from t ) dependson thecon-
troversialpostulateof recovery whichwewill discussbelow.

In contraction,abasicideaseemsto bethatlessepistemicallyentrenched
sentencesare to be given up in favour of more entrenchedsentences[8,
pp.17–18,75,87]. Suchaninterpretationis vaguelyreminiscentof animpo-
sition of thePrincipleof Preference.In a relatedfashion,a morestraightfor-
wardway of using t wasairedby Rott [29] (alsocompareGärdenforsand
Rott [11, p. 73]):

(Def ..� from t ) � ..�h�i�wv � m > < - � u < @ if ��� � and xF �� otherwise

Weshallseethatcondition(Def ..� from t ) canin factbeusedin bothdirec-
tions.Onthereversereading,� is epistemicallylessentrenchedthen

<
, exact-

ly whenthe successfulremoval of � from epistemicstate � resultsin the
retentionof

<
.

As in thecaseof Groveansphere-basedcontractions(aliasAGM contrac-
tions),thepureideaof minimisingtheamountof informationlost is compro-
misedin GM entrenchment-basedcontractionsdeterminedby (Def .� fromt ). In general,the resultof an entrenchmentcontractionis not a maximal
subsetof the theory � that doesnot entail � . 	p� If � is in � , then every
suchmaximalnon-implyingsubsetincludeseither � ( < or � (i# < ; if it did
not, thenit would not be maximalby disjunctive reasoning(which follows
from our assumptionsfor Cn). However, it neednot be the casethat either� u � ( � � ( < � or � u � ( � � (i# < � . Thereasonfor this is thattheremay
be ties in the plausibility of beliefs— just astherewereties in the plausi-
bility of models.In the technicalframework usedfor relationsof epistemic
entrenchment,thesituationthatneither � ( < nor � (;# < is in thecontrac-
tion of � with respectto � arisesjust in case� ( < is asequallyplausible
or entrenchedas � (�# < . So GärdenforsandMakinsonarereadyto let the
“Principleof Indifference”overridethePrincipleof Minimal Changeat least
asfarasdisjunctionsof � andsomeothersentenceareconcerned.However, it
is generallynot thecasethatif

<
remainsuntouchedin � .��� and y is equal-

ly or moreentrenchedthan
<

, then y remainsuntouchedin � .�h� aswell.
ThusthePrinciplesof IndifferenceandPreferenceareviolated.Weshallful-
ly install theseprinciplesfor the entrenchment-basedremoval of beliefsby
endorsing(Def

..� from t ) in this paper. Accordingto this definition,only
preferencesmatter, thecontentof thebeliefsremainstotally disregarded.
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5. The AGM Postulates for Contraction

In theprecedingtwo sectionswehavediscussed,from anintuitivestandpoint,
two constructive modellingsfor AGM belief change.Thesemodellingsare
moreoften characterisedby rationality postulateswhich specifyaxiomatic
constraintsthatshouldbesatisfiedby any contractionoperatorof thatpartic-
ular type.As with theconstructive modellings,they areguidedby theratio-
nality criteriaoutlinedin theintroduction.Thefollowing postulatesarethose
for AGM contractionover abelief set � .

( .� 1) � .�h�i� Cn � � .�z���
( .� 2) � .�h� 4 �
( .� 3) If �K{� � , then � 4 � .�h�
( .� 4) If xF � , then �K{� � .���
( .� 5) � 4 Cn �:� � .�z��� =;> �A@B�
( .� 6) If Cn � �k�9� Cn � < � , then � .�h�i� � .� <
( .� 7) � .�h�|m � .� < 4 � .� � � & < �
( .� 8) If �K{� � .� � � & < � , then � .� � � & < � 4 � .���

The readerfamiliar with the AGM postulatesfor contractionwill notice
thatpostulate( .� 3) is givenin aslightlyweakerform thanusual[8, p.61].The
usualconsequent,� .���8� � , is easilyrecoveredwith the help of ( .� 2). It
alsofollows from ( .� 1), ( .� 2) and( .� 5) that � .�h�i� � for every �;� Cn � H � .
Thisconditionis sometimesreferredto asFailure (c.f. [14, p. 109]).

The most controversial of the AGM postulatesfor contractionis ( .� 5)
which is commonlyreferredto as Recovery. In the presenceof postulates
( .� 1) and( .� 2) it implies that � � Cn �:� � .���k� =}> �A@B� if � is in � . That
is, removing a sentence� andthenrestoringit leadsto theoriginal belief set
whenever � is in thatbelief setto begin with. Interestingly, recovery hasno
counterpartamongthepostulatesfor AGM revision	 � which maybedefined
from contractionvia theLevi Identity. 	 � We shallnot enterinto thepolemic
surroundingtherecovery propertybut, instead,refer the interestedreaderto
therelevantliterature[13, 18,22,23,25].

We find it importantto also considerthe following weaker versionsof
( .� 7) and( .� 8). We note,given postulates( .� 1) — ( .� 6), that ( .� 7) implies
( .� 7c)and( .� 8) implies( .� 8c) (see[30, Lemma1]).

( .� 7c) If
< � � .� � � & < � , then � .��� 4 � .� � � & < �

( .� 8c) If
< � � .� � � & < � , then � .� � � & < � 4 � .�z�
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The derivation of (
.� 7c) from (

.� 7) uses(
.� 5), while the derivation of

(
.� 8c)from(

.� 8) uses(
.� 4) andFailure.Postulates(

.� 7) and(
.� 8) are,respec-

tively, the contractioncounterpartsof the rulesOr andRationalMonotony
usedin nonmonotonicreasoning.On the otherhand,postulates( .� 7c) and
( .� 8c)arethecontractioncounterpartsof therulesCutandCumulativeMonotony
respectively. 	p� In nonmonotonicreasoning,Cut andCumulative Monotony
areconsideredtobemuchmorefundamentalthanOrandRationalMonotony.
Postulates( .� 7c) and( .� 8c) areindeedexceedinglyplausiblein the context
of belief revision aswell. Taken together, they statethat if

<
is still present

aftertheremoval of � & < , thenthatremoval just boils down to theremoval
of � .

6. Postulates for Severe Withdrawals

As we shall soonsee,the following postulatescharacterisethe new belief
removal operationadvocatedin sections3 and4.Themostobviousdifference
with AGM contractionsis markedby theabsenceof theRecoverypostulate.	 �
( ..� 1) � ..�h�i� Cn � � ..�z���
( ..� 2) � ..�h� 4 �
( ..� 3) If �K{� � or

F � , then � 4 � ..���
( ..� 4) If xF � , then �K{� � ..���
( ..� 6) If Cn � �k�9� Cn � < � , then � ..�h�i� � ..� <
( ..� 7a) If xF � , then � ..�h� 4 � ..� � � & < �
( ..� 8) If �K{� � ..� � � & < � , then � ..� � � & < � 4 � ..���

Postulates( ..� 1), ( ..� 2) ( ..� 4), ( ..� 6) and ( ..� 8) are simply thosefor AGM
contractionover � . Postulate( ..� 3) containsanadditionalantecedentin order
to take careof the limiting caseof Failure (which waspreviously handled
with theaidof Recovery).Weshallcall thecollection( ..� 1), ( ..� 2), ( ..� 3), ( ..� 4)
and( ..� 6) thebasicpostulates.Postulate( ..� 7) hasbeenreplacedby themuch
strongerantitonycondition( ..� 7a). It statesthat anything that is given up in
orderto removeastrongsentence(theconjunctionof � and

<
) shouldalsobe

givenup whenremoving a weaker sentence( � ) from thebelief set,provided
the latter is not logically true. Intuitively, this makesquitea bit of sense.In
giving up � & < at leastoneof � or

<
mustbeabandoned.If � is givenup in� ..� � � & < � , wecansimplyachieve � ..��� by abandoningthesamebeliefs.If<

is givenup instead,we mayhave to give up more.If we areseriousabout
adheringto the Principlesof PreferenceandIndifferencewe shouldat least
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give up asmuchbecause
<

andthebeliefsthathave beengivenup thusfar
wereapparentlyheldin lower regard.

Clearly, the postulateof recovery doesnot follow from the presentcol-
lectionof postulates.Makinson[23] refersto belief removal operationssat-
isfying postulates( .� 1) – ( .� 4) and ( .� 6), but not necessarilyRecovery, as
withdrawal functions. In this sense,any withdrawal functionwould becon-
sideredweaker thanan AGM contractionfunction. On the other hand,we
have decisively strengthened( .� 7) throughits replacementby ( ..� 7a). In this
respect(andby theintroductionof theFailureconditionin ( ..� 3)), theresult-
ing withdrawal function is strongerthanan AGM contractionfunction.For
reasonsthatwill becomeclearlater, we call theoperationscharacterisedby
theabove setof postulatessevere withdrawal functions.

Noticealso,in thecontext of thebasicpostulates( ..� 1) – ( ..� 4) and( ..� 6),
that (

..� 7a) implies (
..� 7c) and(

..� 8) implies (
..� 8c). Recovery is not required

for thesederivations.
An alternative axiomatisationof severewithdrawal is givenby Pagnucco

[27]. It consistsof theAGM postulates( ..� 1) – ( ..� 4) and( ..� 6) togetherwith
thefollowing two postulates:

( ..� 9) If �K{� � ..� < , then � ..� < 4 � ..���
( ..� 10) If xF � and �;� � ..� < , then � ..�h� 4 � ..� <
It is shown thatpostulates( ..� 7) and( ..� 8) follow fromthesepostulates.In fact,
postulate( ..� 10)is redundantasweshow below. Weshallsoonsee(Lemma3)
thatthesepostulatesdonothold in generalfor AGM contraction.

Postulate( ..� 9)statesthat,if � isgivenupin removing
<

from � , thenany-
thinggivenupin removing � from � shouldalsobegivenupwhenremoving<

from � . Castingour thoughtsbackto theprinciplesoutlinedat theoutset,
theantecedenttellsusthat � is heldin nohigherregardthan

<
(possiblylow-

er)andthereforenomore(perhapsless)needbegivenup in orderto remove<
whencomparedto removing � . That is, at leastasmuchwork needsto

bedonein removing
<

asis requiredto remove � from � . Postulate( ..� 10)
statesthat,if anon-tautologicalsentence� is retainedwhenremoving

<
from� , thenwhatever is givenup to remove

<
shouldalsobegivenup to remove� from � . When � is held in higherregardthan

<
, morework mayneedto

bedonein giving up � thanis requiredto give up
<

.
Thefollowing lemmashows that thesetwo proposedaxiomatisationsare

equivalent.

LEMMA 1. Let thebasicpostulates( ..� 1) – ( ..� 4) and( ..� 6) begiven.Then
(i) ( ..� 7a)and( ..� 8) takentogetherare equivalentwith ( ..� 9);
(ii) ( ..� 7a)and( ..� 8) imply ( ..� 10).

Thesecondpartshows thatpostulate(
..� 10) is indeedredundantandwe can

omit it from furtherconsiderationalthoughit is of courseapropertyof severe
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withdrawals. Let us briefly look at somefurther propertiesfollowing from
ourpostulatesin orderto gainaclearerinsightinto thenatureof severewith-
drawal.

LEMMA 2. Let
..� bea severe withdrawal functionover � . Then

(i) Either � ..�z� 4 � ..� < or � ..� < 4 � ..��� .
(ii) Either � ..� � � & < �9� � ..��� or � ..� � � & < �9� � ..� < .
(iii) If � ..�h� & < 4 � ..� < , then

< {� � ..��� or
F � or

F <
.

(iv) If xF � and xF < , theneither � x� � ..� < or
< x� � ..�z� .

The first part of the lemmatells us that severewithdrawals arenestedone
within theother. Thisatteststo thestrengthof theintroducedpostulates.The
secondpart statesthat withdrawal by a conjunctionis equivalent to with-
drawal by of one its conjuncts(give up the leastpreferred).This factoring
condition,calledDecomposition[1, p. 525], characterisesmaxichoicecon-
tractionwithin theclassof AGM partialmeetcontractionfunctions[1, Obser-
vation6.3(a)].In the currentcontext however, we areconcernedwith with-
drawal functionsandthusrecovery is lacking.Thethird partof thelemmais
theconditioncalledConverseConjunctiveInclusionin FerḿeandRodriguez
[7, p. 4]. Our proof shows thatthis conditionis redundantin theaxiomatisa-
tion of theseauthors(which includes( ..� 9)). The last propertyis referredto
asExpulsiveness[15, Observation2.52].	p! It saysthat for any two arbitrary
non-theorems� and

<
, in theremoval of oneof themtheotherwill alsobe

removed.Expulsivenessis anundesirablepropertysincewedonotnecessari-
ly wantsentencesthatintuitively havenothingto dowith oneanotherto affect
eachotherin belief contractions.This is thebitter pill we have to swallow if
wewantto adhereto thePrinciplesof IndifferenceandPreference.

Beforewe progressit will beusefulto adoptsomeuniform terminology
in orderto betterclassifythebelief removal operationswe have comeacross
thusfar. Thiswill alsoservetogiveaclearerpictureof how severewithdrawal
fits into theoverall schemeof suchfunctions.

DEFINITION 1. Any function .� satisfying( .� 1) – ( .� 4), ( .� 6) is referredto
asa withdrawal function. Moreover, any function .� satisfying( .� 1) – ( .� 4),
( .� 6) and~��� ���

� .�z� l � $ � .��� l �� .�z�q� $ � .�O� l �� .�z�q� $ � .������ ..����� $ � ..���B���A���n� � .�����
� ������ is called a

~��� ��� cumulativewithdrawal
preferential withdrawal

rational (or AGM) withdrawal
severe withdrawal

� ������
function.
Any withdrawal functionsatisfyingthe Recovery postulate(

.� 5) is calleda
contractionfunction.

It shouldbe clear from the foregoing discussionthat the classof with-
drawals(without recovery) form a linearhierarchy. Thelabels‘cumulative’,
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‘preferential’and‘rational’ areborrowed from thecorrespondingnotionsin
thetheoryof nonmonotonicreasoning[24,30].Severewithdrawal is themost
restrictedclassof thosepresentandthen,in orderof increasinggenerality, we
have rational (or, AGM) withdrawals, preferentialwithdrawals, cumulative
withdrawalsand(unrestricted)withdrawals.Adding recovery to a withdraw-
al function leadsto the correspondingcontractionfunction. What, then, is
thenatureof theevenmorerestrictedclassof severe contraction functions?
Significantly, nosuchcontractionfunctionexists(onpainof triviality).

LEMMA 3. There is no contraction functionover a non-trivial beliefset �
thatsatisfiespostulates( .� 1) – ( .� 8) and( ..� 9).

Herewe call a belief set � trivial if it doesnot containa non-tautological
sentence� thatdoesnotalreadyaxiomatise� , i.e., for which ��x� Cn � ��� .

We arethusfacedwith genuinealternatives.It is clearthat ( ..� 7a) is not
satisfiedbyAGM contractions.Unabletoobtainahybridof AGM contraction
and severe withdrawal however, we devote the remainderof this paperto
explainingtherelationshipbetweenthetwo andproviding two preciseAGM-
like constructive modellingsfor severewithdrawal functions.

7. Relating AGM Contraction and Severe Withdrawals

Thus far we have motivatedour investigationof belief removal primarily
throughthe intuition behindtwo constructive modellingsdealtwith in Sec-
tions3 and4 andtheway in which they satisfycertainprinciplesof rational-
ity. However, we canstudythe correspondencebetweenAGM contractions
andseverewithdrawalswithout referenceto systemsof spheresor entrench-
mentrelationsand,in fact,without referenceto any constructive modelling
atall. Severewithdrawalsarefar more“skeptical” thanAGM contractionsin
that they leadto theoriesthataresmallerin termsof set-theoreticinclusion.
This is but oneof theinterestingrelationshipsbetweenthetwo.

Makinson[23] observesthatwithdrawal functionscanbepartitionedinto
revisionequivalentclasses.Two withdrawal functions, .� and ..� say, arerevi-
sion equivalentif the correspondingrevision functions,definedfrom them
via theLevi Identity, areequivalent,i.e., if � .� �6� Cn �:� � .� # �k� =�> �n@B�z�
Cn �:� � ..� # ��� =�> �A@B�S� � ..� � for all � in

 
. Moreover, henoted[23, Obser-

vationp. 389] thatin eachrevisionequivalentclassU .� V , themaximalelement
(in termsof set-theoreticinclusion)wasanAGM (partialmeet)contraction
function.

Theproblemaddressedin thissectionis tofind thecorrespondencebetween
revision equivalentAGM contractionfunctionsandseverewithdrawal func-
tions. The idea at the back of our minds is that the relationshipbetween
matchingfunctionsshouldbe exactly asthat in the constructionsby means
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of systemsof spheresor entrenchmentrelations.Whentalkingaboutthecor-
respondencewe presupposethatthereis auniqueAGM contractionfunction
andauniqueseverewithdrawal functionin eachclassU .� V of revisionequiva-
lentwithdrawal functions.Thefollowing lemmashows thatthis is indeedthe
case.

LEMMA 4. Let .� and .� D be two withdrawal functionsthat are revision
equivalent.Then .� and .� D are identical whenever either of the following
twoclausesholds:

(i)
.� and

.� D satisfy(
.� 1), (

.� 2) andRecovery(
.� 5);

(ii) .� and .� D are severe withdrawal functions.

Buildingonearlierresultsof Gärdenfors,Makinson[23,p.389]givesasome-
whatroundaboutproofof thefactthatthereis only oneelementin U .� V which
satisfies( .� 1) – ( .� 6).Part(i) of theabovelemmashowsthatRecoveryalmost
aloneguaranteesanidentityin thiscase.Ontheotherhand,lackingRecovery,
theproof for severewithdrawals in part(ii) makesessentialuseof postulates
(

.� 7a)and(
.� 8c).

Theconstructivemodellingsconsideredin Sections3 and4 haveindicated
that, for a severe withdrawal function ..� and its revision equivalent AGM
contractionfunction .� , thebelief set � ..�h� will containnomorebeliefsthan� .�h� . 	 T Letting .� beanAGM contractionfunction,thecorrespondingsevere
withdrawal function ..� canbedefinedasfollows.

(Def ..� from .� ) � ..�h�i�wv > < - < � � .� � � & < ��@ if xF �� otherwise

Intuitively, in giving up � , (Def ..� from .� ) tells us to retain thosebeliefs<
that would be retainedwhengiven a choiceto remove either � or

<
(or

both).If
<

is consideredmoreimportantthan � whenthereis apossibilityof
decidingbetweenthem,thenthis considerationshouldalsobekept in mind
whendecidingwhatto remove in theseverewithdrawal of � by � .

An alternative ideais expressedby thefollowing definition.

(Def
D ..� from .� ) � ..�h����v � > � .� � � & < � - < �  @ if xF �� otherwise

Accordingto (Def
D ..� from

.� ), in giving up � we shouldretainthosebeliefs
thatarealwaysretainedwhengivenachoicebetweengiving up � or another
belief.That is, we retainthosebeliefsthatarealwaysretainedwhenthereis
thepossibilityof removing either � or anothersentence(or both).

It turnsout thatthesetwo approachesare,in fact,equivalent.

LEMMA 5. If .� satisfies( .� 1), ( .� 2), ( .� 5), ( .� 6), ( .� 7) and( .� 8), then(Def
..� from

.� ) and(Def
D ..� from

.� ) areequivalent.



17

It remains,however, to show thatthesedefinitionsarein factadequate.More-
over, we oughtto show that revision equivalentseverewithdrawalsare(set-
theoretically)smallerthanAGM contractions.The relevant result is asfol-
lows. result.

OBSERVATION 6. If .� is anAGM contractionfunction,then ..� asobtained
by (Def ..� from .� ) is a severe withdrawal functionrevisionequivalentto .� ,
and � ..�h� 4 � .�h� for all ���  .

To indicatethat severewithdrawals are in fact very severecomparedto
otherwithdrawals in regardto the volumeof beliefsremoved, we notethe
following result.

OBSERVATION 7. Let
.� bean AGM contraction function.Thenthesevere

withdrawal function ..� definedfrom .� by definition(Def ..� from .� ) is the
smallestwithdrawal function satisfyingpostulate( .� 8c) which is revision
equivalentto .� .

Smallnessis measuredherein termsof set-theoreticinclusion.Thus,severe
withdrawal removesmorebeliefsthana large classof (revision equivalent)
withdrawals which encompassescumulative, preferentialandrationalwith-
drawals(aswell astheircontractioncounterpartsof course).This is aninter-
estingand significant classof belief removal functions becausethey sat-
isfy the contractioncounterpart( .� 8c) of Cumulative Monotony which is
an importantand widely acceptedproperty in the study of (nonmonoton-
ic)consequencerelations.

However, severewithdrawals arenot the smallestwithdrawal functions.
Thisdistinctionbelongsto amoreiron-fistedor procrusteanwithdrawal func-
tion whichmaybedefinedasfollows.

(Def ...� from .� ) � ...�h�i� v Cn � �k�nm � .�h� if ��� � and xF �� otherwise

This definitionwould work equallywell with ..� substitutedfor .� . It deter-
minesanexcessive typeof belief removal. Firstweshow thatit is, in fact,the
smallestrevision equivalentwithdrawal function.

OBSERVATION 8. Let .� be an AGM contraction function.Thenthe with-
drawalfunction...� definedfrom .� bydefinition(Def...� from .� ) is thesmallest
withdrawal functionwhich is revisionequivalentto .� .

From (Def ...� from .� ) it is easyto seethat the following propertyholds: If�;� � and xF � , then � ...�h� 4 Cn � �k� . Suchawithdrawal, uniformly applied,
is drasticindeedandit is alsocounterintuitive. Why shouldwe retainonly
consequencesof theverybeliefwewantto retract?

Returningto ourdiscussionof therelationshipbetweenseverewithdrawal
andAGM contraction,goingbackin theotherdirection(i.e., from

..� to
.� ) is
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quitesimple.Let
..� beaseverewithdrawal function.Thenthecorresponding

AGM contractionfunction
.� is definedby

(Def
.� from

..� ) � .�h�i� v � m Cn � � ..�h� =;> # �A@B� if xF �� otherwise

This methodconsistsof consecutively applyingtheLevi andHarperidenti-
ties.It hasbeenadvocatedasa trick of enforcingtheRecovery postulateby
Makinson[23, pp.389,391]. Its adequacy is demonstratedby thefollowing
result.

OBSERVATION 9. If ..� is a severe withdrawal function,then .� asobtained
by (Def .� from ..� ) is an AGM contractionfunctionrevisionequivalentto .� ,
and � ..�h� 4 � .�h� for all ���  .

Theappropriatenessof thedefinitionsin thissectionis furtherindicatedby
thefollowing resultdemonstratingthat .� and..� induceisomorphicstructures
[5] via thedefinitionsabove.Thefirst partstatesthatsuccessive applications
of (Def

..� from
.� ) and(Def

.� from
..� ), in thatorder, resultin thesameAGM

contractionfunction. The secondpart statesthat the correspondingresult,
mutatismutandis,holdsfor severewithdrawal functions.

OBSERVATION 10. (i) If westartwith anAGM contractionfunction .� , turn
it into a severe withdrawal function ..� by (Def ..� from .� ) andturn thelatter
into anAGM contractionfunction

.� D by(Def
.� from

..� ), thenweendupwith
.� D � .� .
(ii) If we start with a severe withdrawal function ..� , turn it into an AGM
contraction function .� by (Def .� from ..� ) and turn the latter into a severe
withdrawal function ..� D by(Def ..� from .� ), thenweendupwith ..� D � ..� .

This resultimplies that (Def
..� from

.� ) and(Def
.� from

..� ) inducea one-
one correspondencebetween(revision equivalent) AGM contractionfunc-
tionsandseverewithdrawal functions.

In thissectionwehavetakenacloserlook at theinterrelationshipbetween
AGM contractionandseverewithdrawal. Onevery importantpoint to notice
is that,althoughwe arecontrastingdifferentbelief removal behaviour, there
is no effect on therespective revision operationsobtainedvia theLevi Iden-
tity. Sincedifferentrevision behaviour is not, in general,linked with identi-
cal belief removal operations,thereis a greaterdegreeof freedomin belief
removal thanin belief revision functions.It is our aim hereto indicatethat
therearetypesof belief removal behaviour, differing from AGM contraction
yet revision equivalentto it, thatcanbemotivatedby rationalmeans.In fact,
ourmainaimis to promoteseverewithdrawal asahighly principledmember
of thiscommunity. Wehavealsowitnessedanothermember— viz. the“iron-
fisted”withdrawal — which is thesmallestwithdrawal functionin a classof
revision equivalentwithdrawals.Makinson[23, p. 389]pointsout thatAGM
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contractionis thelargestwithdrawal functionin thisclass.Otherpossibilities
to befoundin theliteratureincludeLevi’s[18] saturatablecontractions(using
undampedinformationalvalue)andthepartialmeetvarietystudiedby Hans-
sonandOlsson[14], Levi [18, 20] contractionusingdampedinformational
valueof type 1, Levi [19] contractionusingdampedinformationalvalueof
type 2 (i.e., mild contractionsor, using our terminology, severe withdraw-
al), Cantwell’s [4] fallback-basedcontraction,Meyeretal.’ssystematicwith-
drawal [26], Lindstr̈om andRabinowicz’s [22] interpolationoperator, Ferḿe
andRodriguez’s [6] semi-contractionoperatorandNayak’s [p.c.] withdraw-
al.AppendixB briefly contraststhesevariousapproachesin termsof systems
of spheres.

Having investigatedtherelationshipbetweenseverewithdrawal andAGM
contractionfunctions,wenow returnto thesystemof spheresconstructionfor
belief removal functions.

8. Retrieving Systems of Spheres from Rational Withdrawals

In this sectionwe elaborateuponthe ideaspresentedin Section3 in a more
technicalmanner. Grove [12] views maximally consistentsetsof sentences
(consistentcompletetheories)as“possibleworlds”.An orderingis thenimposed
over the setof all suchpossibleworlds � 0 . The setof all possibleworlds
consistentwith a set of sentences� (not necessarilyclosedunderCn) is
denotedU �;V andmaybedeterminedas U �;V � >�� � � 0 -A� 4�� @ . We
use U � V asa shorthandfor U > �A@ V . We alsodefinea function e:fK-A.\����)�M
mappingsetsof possibleworlds to belief setsby putting ejf � X ��� � X for
any X 4 � 0 .

Now recallthatasystemof spheresis anestedcollectionof setsof worlds
in which U �;V is thesmallestsphereand � 0 is thelargest.Formally, wehave
thefollowing definitiondueto AdamGrove.

DEFINITION 2. [12] Let g be any collection of subsetsof � 0 . We callg a systemof spheres,centredon X 4 � 0 , if it satisfiesthe following
conditions:

( g 1) g is totally orderedby
4

; thatis, if �%$�� � g , then � 4 � or � 4 �
( g 2) X is the

4
-minimumof g

( g 3) � 0 is the
4

-maximumof g
( g 4) If �G�  and xF # � , thenthereis a smallestspherein g intersectingU � V

(i.e., thereis a sphere� � g suchthat � m U � V�x� H , and � m U � V�x� H
implies � 4 � for all � � g )
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Thatspheresarenestedis specifiedby condition( g 1). Condition( g 4) guar-
anteesthat thereis a smallestor innermostsphereintersectingU � V for any�K�  . This correspondsto Lewis’ [21, p. 19] limit assumption.We denote
thisspherelrd � �k� (cf. Section3).Moreformally wehaveafunction lrd;-  ). � � definedasfollows:

(Def lrd � lrd � �k�9�
~��� ��� thesphere� � g suchthat� m U � V'x� H and � m U � V�x� H

implies � 4 � for all � � g whenever xF # �U �;V otherwise

This allows usto formally definea function cBd�-  ) . � � returningthe � -
worldsclosestto U �;V (cf. Section3). With eachsystemof spheresg centred
on U �;V we canassociatea function c d � �k�¡� U � V m l d � ��� . Note that, in the
casewhere

F � , by (Def lrd ), weautomaticallyhave via (Def .� from g ) and
(Def ..� from g ) that � .�h�i� � ..�h��� � .

Our main interestin this sectionis themethodusedto constructthesys-
temof spherescentredon U �?V correspondingtoanAGM contractionor severe
withdrawal function.Beforeturningto severewithdrawal functions,we first
adaptLewis’ [21, pp.59 and133–134]andGrove’s [12, p. 162] methodsof
constructingsystemsof spheresfrom counterfactualsandrevisions,respec-
tively, to thecontext of AGM contractionfunctions.The ideais to specifya
methodby whicheachsphereX|¢ (theminimalsphereintersectingU£# � V ) can
bedetermined.A systemof spheresg is thenobtainedby accumulatingall
setsX|¢ sodeterminedandtheset � 0 of all worldsjust in caseit is not iden-
tified with oneof the X|¢ ’s. More specifically, g � > X|¢?- �5�  @ =�> � 0 @
whenever � x�  and g � > X|¢¤- ���  @ =�> � 0 @ =?> H @ otherwise.

A setof possibleworlds X 4 � 0 is in the Lewis-Groveansystemof
spheresg (i.e., is aspherein g ) derivedfrom .� if andonly if

X 4¥>�� - thereis a � suchthat � .�h� 4E� @ and

for all
< $ if X m U£# < V9x� H then U � .� < V 4 X?N

Thiscondition,which we shallreferto asthefirst constructionof Lewis and
Grove,canberephrasedby thefollowing equation:X is in g if andonly if X ��¦ > U � .� < V§-qX x4 U < V @ 
 o .

However, this is not what is actuallyusedin the completenessproofsof
Lewis andGrove. ThespheresX|¢ they needfor their proofs(Lewis [21, p.
59], Grove [12, p. 162])have thefollowing form, hereagaintransferredfrom
thecontext of counterfactualsandrevisionsto thecontext of contractions.A
set X|¢ of worldsis in g obtainedfrom .� if andonly if

(Def g from
.� ) X|¢ � v ¦ > U � .� < VA-¨U < V 4 U � V @ whenever xF �U �;V otherwise
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We shall refer to this condition as the secondconstructionof Lewis and
Grove. Every X|¢ thusconstructedis a Lewis-Groveansphereaccordingto
thefirst constructionandit is actuallythe

4
-minimalsuchsphereintersect-

ing U£# � V . 
 	 However, thereis no guaranteethat all spheresof the first con-
structioncanbecapturedby the X|¢ ’s. Usingeitherof thefirst or thesecond
Lewis-Grove constructionresultsin a systemof sphereswhereeachsphere
canberepresentedastheunionof modelsetsof a certaincollectionof theo-
ries.

Thesituationchangesif we considerseverewithdrawal insteadof AGM
contraction.If thesecondconstructionis appliedto severewithdrawals,then
weshallseethateachsphereconsistsof themodelsetof exactlyonetheory. 
:


In orderto constructa systemof spheresg centredon U �?V from a severe
withdrawal function ..� over � , we essentiallyidentify a spherein g with
thecollection U � ..��� V for some�}�  . Any worldsnot accountedfor in this
manner(i.e.,“irrelevantworlds” — seebelow) arethrown into theoutermost
sphere� 0 (by theconstructionof g notedabove).Moreprecisely, wehave:

(Def g from ..� ) X|¢ � U � ..�h� V
Note that we do not needa specialcasefor xF � becausein this scenario,
dueto the Failure propertycapturedby postulates( ..� 2) and( ..� 3), we have� ..�h�i� � so X|¢ � U �;V . Wenow show thatfor severewithdrawal functions
..� , this definition coincideswith the secondLewis-Grove condition(Def g
from .� ).

LEMMA 11. If
..� is a severe withdrawal function,thenthe two conditions

(Def g from .� ) and(Def g from ..� ) areequivalent.

This resultalsohighlightsthespecialnatureof severewithdrawal functions.
Dueto theirproperties,weobtainamuchsimplifiedwayto constructsystems
of spheres.

Wenow briefly investigateseveraltransformationsthatmaybeappliedtoa
systemof sphereswithoutaffectingtheAGM contractionor severewithdraw-
al generatedfrom it. They give riseto systemsof spheresthatareequivalent
in thesenseof thefollowing definition.

DEFINITION 3. Let g and g D be two systemsof spheres,let .� and .� D be
the contractionfunctionsbasedon g and g D and ..� and ..� D be the severe
withdrawal functionsbasedon g and g D , respectively. Then g and g D are
calledequivalentif andonly if for every sentence� it holds that � .���©�� .� D � and � ..����� � ..� D � .

Consider, now, thefollowing operationsonsystemsof spheres.

DEFINITION 4. Let g beasystemof spherescentredon U �?V . Then
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that « is never the smallestsphereintersectingU � V , i.e., all « suchthat«"x� lrd � �k� for all �;�  .gk¬ (theclosure underunionsof g ) is obtainedby addingto g all theunions� of classesof spheresin g , i.e., all � suchthat � � ¦ g D for some
subsetg D of g .gn¯® (thetopological closure of g ) is obtainedby replacingall spheres« ing by the setsof worlds (models)that satisfy the theoryof « , i.e., by
replacingall « in g by U e:f � « � V .

In this last casewe candefineanoperatorl±° on setsof worlds (models)
as l±° � « �/� U e:f � « � V . This operationis clearlya closureoperator, i.e., (i) « 4l±° � « � , (ii) l±° � l±° � « �:� 4 l±° � « � and(iii) « 4 « D implies l±° � « � 4 lr° � « D � . More-
over, « and l±° � « � have thesametheory, e:f � « �h� ejf � lr° � « �:� . Noticethat for
every ���  , e:f � lrd � �k�:�%� e:f � lrdB²´³ � �k�:� and ejf � cBd � �k�:��� ejf � cBd\²µ³ � ���:� . Clear-
ly, all the operationson g result in systemsof spheres,and g ª 4 g 4 g ¬ ,
but gn¯® is in generalnot comparableto any of theothersystemsof spheres.
Nevertheless,we have the following result relatingsystemsof spheresand
transformationsappliedto them.

LEMMA 12. g , gkª , gk¬ and gn¯® are all equivalent.

Thefinal resultin thissectionlendsfurtherweightto thesuitabilityof the
pairing of AGM contractionsandsevere withdrawals that we suggestedin
Section7. It shows thatany two functionsrelatedby theappropriatedefini-
tionsgenerateequivalentsystemsof spheres.

OBSERVATION 13. Let .� and ..� be correspondingAGM contraction and
severe withdrawal functionseither via (Def ..� from .� ) or via (Def .� from
..� ). Then .� and ..� leadto equivalentsystemsof spheres,via (Def g from .� )
and(Def g from ..� ). More precisely, thesystemof spheresobtainedfrom ..�
is thetopological closure of thatobtainedfrom .� .

For a contractionor withdrawal function .� , call a world
�

irrelevant
(with respectto .� ) if thereis no �¶�  suchthat

�
contains� .�h� (i.e.,� x� U � .��� V ). Lewis-Grove spheresrelegateirrelevant worlds to the out-

ermostsphere,therebysacrificing the
7

-elementarityof their spheres.In
severe withdrawal we, as it were, add the irrelevant worlds to the Lewis-
Grove spheresin sucha way thatthey “make no difference”for withdrawals
but makesurethattheresultingspheresare

7
-elementary. 
 �

9. Representation Theorems for Sphere-Based Withdrawals

The following analoguesof Grove’s resultsconcerningbelief contraction
(whichwestatewithoutproof)show thattheconstructionin termsof systems
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of spheresoutlinedin Sections3 and8 is in factanappropriaterenderingof
theAGM rationalitypostulatesfor beliefcontractionover � . 
j� Thefirst part
of theobservationstatesthatthemethodof addingtheinnermost# � -worlds
to U �;V asdescribedby (Def .� from g ) doesindeedproduceanAGM contrac-
tion function.Thesecondpartshows thatfor any AGM contractionfunction
andbelief set � , onecanconstructa systemof spheresg centredon U �;V
using(Def g from .� ) for which theadditionof the innermost# � -worldstoU �;V correspondsto thecontractionof � by � .

OBSERVATION 14. [12, Theorems1 and2] (i) If g satisfies( g 1) – ( g 4),
thenthefunction .� obtainedfrom g by (Def .� from g ) is an AGM contrac-
tion function.
(ii) If .� is an AGM contraction function,then .� can be representedas a
sphere-basedcontraction,where thesphere systemg on which .� is basedis
obtainedby (Def g from .� ) and g satisfies( g 1) – ( g 4).

This result shows the mutualadequacy of definitions(Def
.� from g ) and

(Def g from
.� ) introducedhere.Thecorrespondingrepresentationtheorem

cannow beestablishedfor severewithdrawal over � .

OBSERVATION 15. (i) If g satisfies( g 1) –( g 4), thenthefunction..� obtained
from g by (Def ..� from g ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function,then ..� can be representedas a
sphere-basedwithdrawal, where the sphere systemg on which ..� is based
is obtainedby (Def g from .� ) (or equivalently, by (Def g from ..� )) and g
satisfies( g 1) – ( g 4).

Thefirst part shows that themethodof taking thesmallestsphereintersect-
ing U£# � V , expoundedby (Def ..� from g ) is anaccuraterenderingof a severe
withdrawal function. The secondpart statesthat the methodfor construct-
ing systemsof spheresvia (Def g from ..� ) or, equivalently (Def g from .� )
by Lemma11, doesgive a systemof spheresfor which thesmallestsphere
intersectingU£# � V correspondsto � ..�h� .

This concludesour directtreatmentof severewithdrawal in termsof sys-
temsof spheres.We shall returnto systemsof spheresin a slightly different
context later.

10. Retrieving Epistemic Entrenchment Relations from Rational
Withdrawals

While systemsof spheresencodeanorderingonworlds(consistentandcom-
pletesetsof sentences),epistemicentrenchmentorderssentences.In thissec-
tion we concentrateon themethodsusedto generateanepistemicentrench-
ment (relative to � ) from a given AGM contractionor severe withdrawal
function(over � ).
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The fundamentalideaof how to retrieve an entrenchmentrelationfrom
beliefchangebehaviour is this.A sentence� is epistemicallylessentrenched
in a belief state� thana sentence

<
if andonly if anagentin belief state�

who is forcedto give up either � or
<

will give up � andhold on to
<

. This
ideacanbesetin motionwhenwe realisethat to give up either � or

<
can

very well be rephrasedasthe taskof giving up � & < . So let a contraction
function .� (of any kind) begiven.

(Def u from .� ) � u < if f
< � � .� � � & < � and ��{� � .� � � & < �

Thesecondclauseis necessarysincetheagentmayjustrefuseto withdraw� & < . Rott[11,30,31]arguesthatit is indeedbestto workwith strictrelationsu of epistemicentrenchmentprovided oneis interestedin having the flexi-
bility to sensiblyweaken the postulatesinvolved (in particular, to drop the
requirementthateverythingis comparablein termsof entrenchment)andin
findingone-to-onecorrespondencesbetweenpostulatesfor entrenchmentand
postulatesrelatingto contractionbehaviour or to rationalchoices.We shall
not, however, pursuethis projectfurtherherebut keepto theoriginal, more
simple,if lessflexible, accountof GärdenforsandMakinson.Thuswe shall
work with non-strictrelations t which may be thoughtof as the converse
complementsof the above-mentionedstrict relationsandwe usethe postu-
late ( ..� 4) to restrict refusalof contractionto logically true sentences.The
following is theoriginaldefinitionof GärdenforsandMakinson[9, p. 89].

(Def t from .� ) � t < if f �K{� � .� � � & < � or
F � & <

As with systemsof spheres,if ..� is a severe withdrawal function, then
theprocessof retrieving entrenchmentsfrom contractionscanbesimplified
considerably.

(Def t from ..� ) � t < if f �K{� � ..� < or
F <

This essentiallymeansthat the condition (Def ..� from t ) (seesection4)
canbeusedin bothdirections.Exceptfor somelimiting cases,

<
is in � ..�h�

if andonly if � u < . This greatlysimplifiesthe transitionbetweensevere
withdrawal functionsandtheir associatedepistemicentrenchmentrelations.

Wenow show thatthetwo conditionsaboveareequivalentasfarassevere
withdrawalsareconcerned.Again,asin thecasefor systemsof spheres,this
is dueto thepropertiesinducedby thepostulatesfor severewithdrawal.

LEMMA 16. If ..� is a severe withdrawal function,thenthe two conditions
(Def t from .� ) and(Def t from ..� ) are equivalent.

In orderto prove theseandsubsequentresults,we recall thedefinitionof
epistemicentrenchmentasintroducedby GärdenforsandMakinson[8, 9].
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DEFINITION 5. Let t be an orderingof the sentencesof
 

. We call t a
relationof epistemicentrenchmentwith respectto somebelief set � , if it
satisfiesthefollowing conditions:
(E1) If � t < and

< tKy then � tKy (Transitivity)

(E2) If � F < then � t < (Dominance)

(E3) � t � & < or
< t � & < (Conjunctiveness)

(E4) If ��x�  then: � t < for every
< �  if f �·{� � (Minimality)

(E5) If
< t � for every

< �  , then
F � (Maximality)

It follows from (E1) – (E5) that an epistemicentrenchmentis a total pre-
orderover sentencesin which tautologiesaregreatestwhile non-beliefsare
smallestelements.While anentrenchmentorderingis anorderingof beliefs
in � , systemsof spherescanbeseenasorderingworldsoutsideU �;V . Weshall
returnto therelationshipbetweenentrenchmentandsystemsof spheresin a
subsequentsection.

The final result in this sectionlendsfurther weight to our claim that the
pairing of AGM contractionsandsevere withdrawals that we suggestedin
Section7 is theright one.Theresultshows thatany two functionsrelatedby
theappropriatedefinitionsgenerateidenticalrelationsof epistemicentrench-
ment.

OBSERVATION 17. Let .� and ..� be correspondingAGM contraction and
severe withdrawal functionseither via (Def ..� from .� ) or via (Def .� from
..� ). Then .� and ..� leadto identicalentrenchmentrelations,via (Def t from
.� ) and(Def t from ..� ).

11. Representation Theorems for Entrenchment-Based Withdrawals

In thissectionweturnto moretechnicalresultsconcerningthenotionof epis-
temicentrenchment.In essence,we would like to formally show theappro-
priatenessof (Def ..� from t ) and(Def t from ..� ) introducedin Sections4
and10 just aswe wereableto do for analogousdefinitionsin termsof sys-
temsof spheresin Section9. Thefollowing representationtheoremis dueto
GärdenforsandMakinson.
:�
OBSERVATION 18. [9, Theorems4and5] (i) If t satisfies(E1)– (E5),then
the function .� obtainedfrom t by (Def .� from t ) is an AGM contraction
function,that is, it satisfies( .� 1) – ( .� 8).
(ii) If .� is an AGM contraction function,then .� can be representedasan
entrenchment-basedcontractionwhere therelation t onwhich .� is basedis
obtainedby (Def t from

.� ) and t satisfies(E1)– (E5).
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Thefirst partstatesthatthemethodof retaining
<

in contracting� when � ( <
is strictly moreentrenchedthan � givesanAGM entrenchmentrelation.The
secondpartshowsthattheappropriateentrenchmentrelationcanbeobtained
from an AGM contractionfunction usingthe recipegiven by (Def t from
.� ).

Wecannow formulateanentirelyparallelrepresentationtheoremfor severe
withdrawals.This resultis theepistemicentrenchmentanalogueof Observa-
tion 15 for systemsof spheres.

OBSERVATION 19. (i) If t satisfies(E1)– (E5),thenthefunction..� obtained
from t by (Def ..� from t ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function,then ..� can be representedas an
entrenchment-basedwithdrawal where the relation t on which ..� is based
is obtainedby (Def t from .� ) (or equivalently, by (Def t from ..� )), and t
satisfies(E1)– (E5).

Thefirst part shows that the techniqueof retaining
<

whenever it is strictly
moreentrenchedthan � , i.e., the techniqueexpoundedin (Def

..� from t ),
givesaseverewithdrawal function.Thesecondpartstatesthatthemethodfor
constructingentrenchmentrelationsvia (Def t from .� ), or equivalentlyvia
(Def t from ..� ), givesanentrenchmentrelationfor which thesetof beliefs
moreentrenchedthan � is � ..��� .

Thisresultshowsthatwecanusethesamesortof entrenchmentrelationas
GärdenforsandMakinsonbut weapplyit in adifferentmannerwhichfavours
the Principlesof PreferenceandIndifferenceover the Principleof Minimal
Change— therebyviolating Recovery. We can retain the samedefinition
(Def t from .� ) as in the Gärdenfors-Makinsonframework to reconstruct
theunderlyingentrenchmentrelationfrom someobservedseverewithdraw-
al behaviour; in our framework, however, thedefinitioncanbesimplifiedto
(Def t from ..� ). Like GärdenforsandMakinsonfor thecaseof AGM con-
tractions,weobtainaperfectmatchbetweenseverewithdrawal functionsand
entrenchmentrelations.

12. Relating Spheres and Entrenchments

Up till now wehavebeenstudyingAGM contractionsandseverewithdrawals
from the point of view of both spheresemanticsandentrenchmentseman-
tics;two importantconstructivemodellingsin thesettingof AGM-stylebelief
change.Wehavefoundthatthereis afar-reachingparallelbetweenthesetwo
kindsof semanticsor constructionsfor beliefchangefunctions.Now wewant
to giveanexplanationof thatparallelin termsof adirectbridgebetweensys-
temsof spheresandentrenchmentrelations,bypassingany particulartypeof
beliefchangefunction.
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We begin by consideringhow to retrieve systemsof spheresfrom epis-
temicentrenchmentrelations.Givensomeentrenchmentrelation t , we con-
structthecorrespondingsystemof spheresg � t � asfollows(thatis, weaccu-
mulateall such «�¢ ’sand � 0 asin Section8):

(Def g from t ) «�¢ � U > < - � u < @ V
Thesetof sentences

> < - � u < @ ontheright-hand-sideof (Def g from t ) is
acut in thesenseof [29, p. 159].Firstwehave to checkwhetherweactually
obtainasystemof spheresfrom thisconstruction.

LEMMA 20. For anyentrenchmentrelation t with respectto � , thesystem
of spheres g � t � satisfiesconditions( g 1) – ( g 4) with respectto U �?V .

Next we show that the systemof spheresobtainedfrom an entrench-
ment relation in this way is equivalent with the latter in the sensethat it
leadsto the sameAGM contractionand the sameseverewithdrawal func-
tion. More precisely, we show that the AGM contractionfunction (respec-
tively, severewithdrawal function)obtainedfrom a systemof spheresg � t �
derivedfrom anentrenchmentrelation t is thesameastheAGM contraction
function(respectively, severewithdrawal function)obtaineddirectlyfrom the
entrenchmentrelation t .

OBSERVATION 21. For anyentrenchmentrelation t , theAGMcontractions
and the severe withdrawalsgenerated from t and g � t � are identical, i.e.,¸ � g � t �:�'� ¸ � t � and W � g � t �:�'� W � t � .
Here,̧ � t � refersto theAGM contractionfunctionobtainedfromtheentrench-
mentrelation t bymeansof (Def

.� from t ). Similarly,
¸ � g � t �:� is theAGM

contractionfunction obtainedfrom the systemof spheresg � t � via (Def
.�

from g ). Again, W � t � and W � g � t �:� referto theseverewithdrawal function
obtainedby therelevantdefinitionsin Sections3 and4.

Let usnow turn ourattentionto thereverseproblemof obtaininganepis-
temicentrenchmentrelationfrom asystemof spheres.Givensomesystemof
spheresg , we constructthecorrespondingentrenchmentrelation t �º¹ � g �
asfollows.

(Def t from g ) � t < if f for all « � g if « 4 U � V then « 4 U < V
We checkwhetherwe actuallyobtainanentrenchmentrelationfrom this

construction.

LEMMA 22. For anysystemof spheres g with respectto U �?V , theentrench-
mentrelation ¹ � g � satisfiesconditions(E1)– (E5)with respectto � .

Given the nestedness( g 1) andthe limit assumption( g 4) for systemsof
spheres,thisconditionreducesto thefollowing.
 �
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(Def
D t from g ) � t < if f lrd � # < � x4 U � V

Wefirst show thatthisdefinitionfits togetherwith theonefor theconverse
directionintroducedabove.Thenotationemployedin thefollowing observa-
tion shouldbeself-explanatoryby now.

OBSERVATION 23. Let t be an entrenchmentrelation and g a systemof
spheres.Then

(i) ¹ � g � t �:�'� t .
(ii) g � ¹ � g �:� is thetopological closure of thetrimmingof g , i.e., � gkª � ¯® .

The first part of this resultexposesa strongconnectionbetweenepistemic
entrenchmentand systemsof spheres.The secondresult, while not quite
asstrong,shows that applying(Def

D t from g ) followed by (Def g fromt ) leadsto an equivalent (althoughnot necessarilyidentical — seeLem-
ma 12) systemof spheres.Togetherthey indicatean isomorphismbetween
epistemicentrenchmentanda particularsubclass(thosetrimmedandtopo-
logically closed)of systemsof spheres.

We finally show thesphereanalogueof Observation21. That is, that the
AGM contractionfunction(respectively, severewithdrawal function)obtained
fromanentrenchmentrelation¹ � g � derivedfromasystemof spheresg is the
sameasthatobtaineddirectly from g itself.

OBSERVATION 24. For anysystemof spheres g , theAGM contractionsand
theseverewithdrawalsgeneratedfrom g and ¹ � g � areidentical,i.e.,

¸ � ¹ � g �:�'�¸ � g � and W � ¹ � g �:�'� W � g � .
Taken together, theseresultsdemonstratethe appropriatenessof the defini-
tionsintroducedin thissection.

13. Discussion

Levi [18] advocatesa constructionfor belief removal basedon saturatable
setsrather than AGM’s maximal consistentsubsetsof � not implying �
(denoted��� � ). He notesthat all elements� D of ��� � have the property
that Cn � � Dk=K> # �A@B� is a consistentcompletetheory (i.e., obey the maxi-
choiceproperty).Yet, thereare subsetsof � not in ��� � alsopossessing
this property. ThesesetsLevi refersto assaturatablesets(the collectionof
which we denote���»� � here).More precisely, � D � ���»� � if andonly if
(i) � D 4 � , (ii ) � x� � D , and (iii ) Cn � � D =·> # �n@B� is a consistentcom-
plete theory. HanssonandOlsson[14] placethis work in context with the
AGM showing thata selectionfunctionappliedto thesetof saturatablesets
generatesa withdrawal function that satisfiespostulates(

.� 1) – (
.� 4), (

.� 6)
andFailure. In otherwords,this constructioncanbe seenascapturingthat
of a withdrawal function satisfyingthe Failure property. They extend this
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work by showing thata selectionfunctiondefinedvia a real-valuedmeasure
(satisfyinga weak monotonicitycondition) gives a constructionsatisfying
thesupplementarypostulates( .� 7) and( .� 8). However, they do not supplya
“completeness”resultfor thisextendedsetof postulates.In light of thework
presentedhere,severewithdrawal is a furtherrestrictedconstructionthatcan
begivena completecharacterisation.Thatis, a severewithdrawal represents
anaxiomatisablesubclassof thosebeliefremoval operationscharacterisedby
HanssonandOlsson’s real-valuedmeasureselectionfunctionconstruction.

Let us,however, returnto Levi’s argumentson this subject.Levi usesthe
termcontractionto denoteany functionremoving, say, � from � . In Makin-
son’s [23] terminologywhich asadoptedin our Definition 1 suchfunctions
are termedwithdrawals; contraction being reserved for thosewithdrawals
satisfyingtheadditionalRecoverypostulate( .� 5)andcharacterisableviameets
of maximalnon-implyingsubsets.Theclassof withdrawalscanbeobtained
by takingmeetsof saturatablecontractionsremoving � but notmeetsof max-
imal subsetsnot implying � . For this reasonLevi maintainsthatoneshould
considermeetsof saturatablecontractionsratherthanmerelymeetsof maxi-
malnon-implyingsubsets.While AGM begin with theconceptof amaximal
non-implyingsubsetas a way of achieving a minimal (in the senseof set
inclusion)changein removing � from � beforesettlingon(partial)meetsof
suchsets,Levi beginsat the“other end.” He embracessaturatablesetssince
meetsof thesewill captureall withdrawal behaviour. Of course,admitting
saturatablesets,andmeetsof them,violatesRecovery(seeFigures4 and5 in
AppendixB) — apostulateLevi is stronglyopposedto.

Now Levi’s major concernin contractionfollows the broadaimsof the
Principleof Minimal Changeand,morespecifically, the Principleof Infor-
mationalEconomy;that is, to minimisethe lossof informationalvalue.As
such,it is importantto specifyhow informationalvalue is measured.Levi
considersthreedifferentmeasuresat variousstagesduring thedevelopment
of his ideas.Initially he consideredundamped(or probability-based)infor-
mationalvalue[18, p. 127]wherethelossof informationalvalueof themeet
of asetof saturatablecontractionsis calculatedusingthesumof thelossesof
informationalvalueof theminimal(in thesenseof setinclusion)membersof
this set.He rejectedthis proposalimmediatelyasit leadsto a saturatedcon-
tractionin every caseandthereforesatisfiesthemaxichoicepropertywhich
bothLevi andAGM agreeis unreasonable.In its placeheadvocateddamped
informationalvalue(version1) [18, 20] in whichintersections(meets)of sat-
uratablecontractionsincur a lossof informationalvalueequalto the largest
loss incurredby a memberof the set. However, Levi [20, p. 32] cites an
examplewhereheclaimsthata classof version1 contractionswhich satisfy
Recovery arecounterintuitive. Moreover, Levi claimslack of uniformity in
thatdampedinformationalvalue(version1) equalsundampedinformational
valuein somecasesbut thetwo divergein others.As a result,thiswassuper-
sededby dampedinformationalvalue(version 2) [19] wherelossof infor-
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mationalvalue is minimisedby taking the meetof thosemaximal subsets
of � not implying � with minimal undampedinformationalvalueandother
saturatablecontractionswith (undamped)informationalvaluenogreaterthan
this.In theselattertwo methodsLevi adoptsaRulefor Tieswhere“whentwo
or moreoptionstie for optimality oneshouldadoptthe intersectionof all of
them” [20, p. 27] with theproviso thatsucha “tie breaking”mechanismbe
adoptedonly whentheresultantoptionis optimal.This lastclassof contrac-
tion functionsarereferredto asmild contractionsby Levi [20]. It turnsout
that,whenplacedin acommonsetting,mild contractionscoincidewith severe
withdrawals.Interestinglyenoughit hasturnedout,by our observationssur-
rounding(Def

D ..� from .� ), thatLevi couldhavecaptured“mild contractions”
by consideringmeetsof maximalnon-implyingsubsets— although,to con-
tract � by � youwouldneedto considermeetsof certainmaximalsubsetsof� not implying � & < for all

< �  .
Levi [20] criticisesour choiceof terminologybecauseit is basedon a

measureof lossin termsof subsetinclusion(which we do not deny) andhe
maintainsthatinformationalvalueshouldnotbemeasuredin theseterms;loss
of dampedinformationalvalueof type2 is minimisedandthusthecontrac-
tion (or withdrawal) is mild. We wish to emphasise,however, thatwhile our
terminologyis influencedby thefactthatseverewithdrawalstendto remove
morebeliefsthanotherrevisionequivalentproposals(seeObservation7),our
argumentsin favour of severewithdrawal in this paperarenot motivatedby
thisfactoratall (nor, of course,by InformationalEconomy)but, rather, by the
concernsof principledbelief removal behaviour and,mostof all, respecting
of IndifferenceandPreference.

In anelegantpaper, Kaluzhny andLehmann[17] giveacharacterisationof
nonmonotonicinferenceoperationsInf for which Inf � 7 � canberepresented
asthesetof all monotonicconsequencestogetherwith somesetAss� 7 � of
assumptionsthat are“compatible”with

7
: Inf � 7 �¼� Cn � 7¶= Ass� 7 �:� . 
 �

Their intuitive ideais thattheassumptionoperatorAss� 7 � is antitonicin the
sensethatfor

7½4*3
wegetAss� 3 � 4 Ass� 7 � . Themorepremises,theless

assumptionsarecompatiblewith them.
Giventhewell-known connectionsbetweennonmonotonicreasoningand

belief revision (seefor instance[10, 11]), it is easyto recognisethatfor finite7¾4  
, Kaluzhny andLehmann’sassumptionsetAss� 7 � correspondsto our

severewithdrawal � ..� � #¤¿ 7 � , with � � Inf � H � left implicit. Their condi-
tion of antitony is theanalogueof ourcondition( ..� 7a).Theconstructionsfor
Ass� 7 � they usein their Theorems2.1 and2.2,viz. Ass� 7 ��� � > Inf � 3 � -3}4�7 @ andAss� 7 ���2� > Inf � 3 � - 3�4 Cn � 7 ��@ respectively, arereminis-
centof our definition (Def

D ..� from .� ). But therearealsoimportantdiffer-
ences.They work on thelevel of postulatesonly withoutconsideringexplicit
constructionsof nonmonotonicinferenceoperationsor thegeneralprinciples
thatmightmotivatethem.They work in contexts thatdonotvalidatetherule
of RationalMonotony whichcorrespondsto thebeliefrevisionpostulate(

.�h� )
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alias(
..��� ). And, perhapsmostimportantly, nonmonotonicinferencerelations

correspondto revisionsratherthanremovals of beliefs.Due to the revision
equivalenceof belief contractionsandwithdrawals, then,the distinctionwe
aremostinterestedin vanishes.To put it differently, Kaluzhny andLehmann
donotpresenta studyof theirAssoperationin its own right.

14. Conclusions

The AGM accountof belief changeis guidedby principlesof rationality.
However, contraryto thepopularperceptiongivenby theliterature,thePrin-
ciple of InformationalEconomycannotbe given unrestrainedprominence
over otherrationalityprinciples.It mustbeseenasonly oneof a numberof
factorsto betakeninto considerationwhendecidingwhichbeliefsto discard.
In fact, it works in combinationwith principlessuchas thoseof Indiffer-
enceandPreferencein this regard.Oncethis is accepted,it canbeseenthat
AGM arein factapplyingthelatterprinciplesonly in sofarasthe # � -worlds
areconcernedanddisregardingthe � -worlds.Thispositionseemsdifficult to
motivateandsupport.As a result,we proposea new form of belief removal
operation,severewithdrawal, which appliestheseprinciplesuniformly over
all possibleworlds.Thecontentiouspostulateof recovery is not satisfiedby
severewithdrawal.

In the presentwork we have attempteda comprehensive treatmentof an
alternative to AGM contractionwhich takes the Principlesof Indifference
andPreferenceinto account;wecall thisseverewithdrawal. Weshowedhow
theseprinciplespoint toward a differentway of usingtwo importantAGM
constructions:systemsof spheresandepistemicentrenchment.In thesecon-
structionstheobjectsto which theprinciplesareappliedare,in thefirst case,
worlds(or models)and,in thesecond,sentencesof theobjectlanguage.Both
methodsleadto simplemechanismsfor constructingremovalsof belief.

Interestinglyenough,if oneprefersto focusonbelief revision ratherthen
belief removal, thentheeffects,via theLevi identity, areunnoticeable.That
is, in any revisionequivalentclassof withdrawal functionstherewill beexact-
ly oneAGM contractionfunction [23] andoneseverewithdrawal function.
Severewithdrawal functionscanbe seenassettinga lower boundon inter-
estingwithdrawal behaviour within eachof theserevisionequivalentclasses.
We furnisheda way of moving backwardsand forwardsbetweenthe cor-
respondingAGM contractionfunction andseverewithdrawal function in a
givenclass.We alsosuppliedmethodsfor obtainingthedesiredseverewith-
drawal behaviour from theconstructive modellingsof systemsof spheresand
epistemicentrenchmentrelations.Furthermore,mechanismsfor going back
theotherway — extractingtherelevantunderlyingstructure(total pre-order
on worlds or one on sentences)— were given. It is interestingto note in
regard to this latter point that the definitionsfor AGM contractioncan be
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usedfor severewithdrawal to achieve thesameeffectbut, in general,maybe
simplified.Finallymethodsweregivenfor mappingdirectlybetweensystems
of spheresandepistemicentrenchmentrelationsthat leadto thesameAGM
contractionor severewithdrawal function.

One last, and important,moral can be drawn from this expositionwith
regardto theconstructive modellings.Clearlytheunderlyingstructure(asys-
temsof spheresor anepistemicentrenchmentrelation)is importantin achiev-
ing belief removal (or belief changein generalfor thatmatter).However, the
way we usethis structureis also very crucial. Startingwith a fixed struc-
ture,differentprinciplesgive rise to differentbehaviour. More importantly,
this behaviour, throughthe principlesthat bring it about,canbe motivated
by rational means.Here, the Principlesof Indifferenceand Preference—
arguablyrationalintegrity constraints— leadto severewithdrawal.

Acknowledgements

The authorswould particularly like to thankIsaacLevi for sharingvarious
manuscriptsof hiswork andproviding generouscommentson thework con-
tainedhere-in.They wouldalsoliketo thankAllen Courtney, EduardoFerḿe,
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Appendix

A. Proofs

We reproducethe following propertiesof e:f*-9. � �·) M , listed by Grove
[12], for reference.They will beusefulfor someof theproofsthatfollow.

LEMMA 0. Propertiesof ejf [12].

(i) e:f � U �;V �9� � for all beliefsets(i.e., theories)� if theunderlyinglogic is
compact

(ii) e:f � X � x� �JI if andonly if X is nonempty
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(iii) For anysentence�?�  and X 4 � 0 , e:f � X m U � V �9� Cn � ejf � X � =O> �A@B�
(iv) For X?$RX D 4 � 0 , if X 4 X D , then e:f � X D � 4 e:f � X �
(v) For �?$�� D � M , if � 4 � D , then U � D V 4 U �;V
LEMMA 1. Let thebasicpostulates( ..� 1) – ( ..� 4) and( ..� 6) begiven.Then

(i) ( ..� 7a)and( ..� 8) takentogetherare equivalentwith ( ..� 9);
(ii) ( ..� 7a)and( ..� 8) takentogetherimply ( ..� 10).

Proof. Assumethat thebasicpostulates( ..� 1) – ( ..� 4) and( ..� 6) aresatis-
fied.

(i) ( ..� 9) implies ( ..� 7a):Let xF � . Thenby ( ..� 4), �À{� � ..��� , soby ( ..� 1),� & < {� � ..��� . Hence,by ( ..� 9), � ..�h� 4 � ..� � � & < � .
( ..� 9) implies( ..� 8): This is immediateonsubstituting� & < for

<
.

( ..� 7a) and ( ..� 8) imply ( ..� 9): Let �Á{� � ..� < . With the help of ( .� 8c),��{� � ..� � � & < � . Hence,by ( ..� 8), � ..� � � & < � 4 � ..�h� . But by ( ..� 7a),� ..� < 4 � ..� � � & < � whenever xF < andhence� ..� < 4 � ..�z� asdesired.
If
F � , then � ..� < � � by (

..� 2) and(
..� 3). Now � 4 � ..��� by (

..� 2) and
therefore� ..� < 4 � ..�h� trivially.

(ii) Let xF � and �;� � ..� < . If
F <

, then � 4 � ..� < by ( ..� 3), so � ..�h� 4� ..� < follows from ( ..� 2). So let
<

be suchthat xF < . From �"� � ..� < and
( ..� 7a),weconcludethat �;� � ..� � � & < � . Since xF � & < , ( ..� 1) and( ..� 4) give
us
< {� � ..� � � & < � . Hence,by ( ..� 8), � ..� � � & < � 4 � ..� < . On the other

hand,by ( ..� 7a), � ..�h� 4 � ..� � � & < � . Hence� ..�h� 4 � ..� < , asdesired. Â
LEMMA 2. Let ..� bea severe withdrawal functionover � . Then

(i) Either � ..�z� 4 � ..� < or � ..� < 4 � ..��� .
(ii) Either � ..� � � & < �9� � ..��� or � ..� � � & < �9� � ..� < .
(iii) If � ..�h� & < 4 � ..� < , then

< {� � ..��� or
F � or

F <
.

(iv) If xF � and xF < , theneither � x� � ..� < or
< x� � ..�z� .

Proof. (i) Considertwo cases:(a) � x� � ..� < and(b) ��� � ..� < In the
formercase( ..� 9) gives � ..� < 4 � ..�z� . In thelattercase,if xF � , then( ..� 10)
gives � ..�h� 4 � ..� < . Otherwise,

F � andby ( ..� 3) � 4 � ..�h� , andby ( ..� 2)� ..� < 4 � so � ..� < 4 � ..�h� .
(ii) Using( .� 7c) and( .� 8c) it is easilyseenthat if

< � � ..� � � & < � , then� ..� � � & < ��� � ..�h� , andif �8� � ..� � � & < � , then � ..� � � & < ��� � ..� < .
A similarsituationholdsfor �;� � ..� � � & < � . Considerthen,thecasewhere� $ < x� � ..� � � & < � . By two applicationsof ( ..� 8), � ..� � � & < � 4 � ..�h� and� ..� � � & < � 4 � ..� < . Now considertwo furthersubcases:(a)at leastoneofxF � or xF < holds,and(b) both

F � and
F <

hold. In theformercase,either� ..�h� 4 � ..� � � & < � or � ..� < 4 � ..� � � & < � holdsby (
..� 7a). It follows
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thateither � ..�h�6� � ..� � � & < � or � ..� < � � ..� � � & < � . In the lattercase,� ..�h�i� � ..� < � � ..� � � & < � , by (
..� 2) and(

..� 3).
(iii) Let � ..�h� & < 4 � ..� < and xF � and xF < . Supposefor reductiothat< � � ..�h� . Thenby ( ..� 7a)

< � � ..� � � & < � . Sosince � ..�h� & < 4 � ..� < ,
wealsoget

< � � ..� < , contradicting( ..� 4).
(iv) Let xF � and xF < . Supposefor contradictionthatboth ��� � ..� < and< � � ..��� . Thenby ( ..� 10), � ..�h�·� � ..� < , so �8� � ..�h� and

< � � ..� < ,
contradicting( ..� 4). Â
LEMMA 3. There is nocontractionfunctionovera non-trivial beliefset �
thatsatisfiespostulates( .� 1) – ( .� 8) and( ..� 9).

Proof. Supposethereis a contractionfunction
.� over � thatsatisfiesall

of (
.� 1) – (

.� 8) and(
..� 9).Supposefurtherthat � is non-trivial, i.e.,thatthere

is a � suchthat �;� ��Ã Cn � H � and ��x4 Cn � �k� . Wefirst show that � .�h�i�
Cn � H � . Suppose,for reductioad absurdum, that thereis a

< x� Cn � H � such
that

< � � .��� . Now
< � � by ( .� 2). It followsby ( ..� 10),whichweshowed

to follow from ( .� 1) – ( .� 8) and( ..� 9) (in Lemma1(i) and(ii)), that � .� < 4� .�h� . By ( .� 5), ( .� 1) andtheDeductionTheorem
< ) ��� � .� < 4 � .�h� .

However, by ( .� 4), � x� � .��� soby ( .� 1),
< x� � .�h� contradictingour initial

supposition.Therefore� .�h�K� Cn � H � . Consequently, � x4 Cn �:� � .�z�k� => �A@B�9� Cn � �k� violatingrecovery ( .� 5). Â
LEMMA 4. Let .� and .� D be two withdrawal functionsthat are revision
equivalent.Then .� and .� D are identicalwhenevereitherof thefollowingtwo
clausesholds:

(i) .� and .� D satisfy( .� 1), ( .� 2) andRecovery( .� 5);
(ii)

.� and
.� D are severe withdrawal functions.

Proof. Let .� and .� D berevisionequivalentwithdrawal functions.
(i) Let .� and .� D satisfy( .� 1), ( .� 2) andRecovery ( .� 5). Weneedto show

that .�¶� .� D . Left to right inclusion.Suppose
< � � .�h� . We needto show

that
< � � .� D � aswell. First we show that # � ) < � � .� D � . From

< �� .�h� , weconcludeusingmonotonicityof Cn andtheLevi identity that
< �

Cn �:� � .���k� =G> # �A@B�C� �Ä�/# � . By revision equivalence,we get
< � �Å� D� # �k�Æ� Cn �:� � .� D ��� =·> # �A@B� , so by the DeductionTheoremfor Cn and

( .� 1), # � ) < � � .� D � . On theotherhand,we know from ( .� 2) that
< �� .�h� 4 � . So by ( .� 5) and( .� 1), � ) <

is in � .� D � . From this andthe
previouslyestablishedfactthat # � ) <

is in � .� D � , we concludewith ( .� 1)
that

<
is in factin � .� D � , asdesired.

Theright to left inclusioncanbeproved in thesamefashionwith
.� and

.� D exchanged.
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(ii) Let
.� and

.� D beseverewithdrawal functions.We needto show that
.�¶� .� D . Left to right inclusion.Suppose

< � � .��� . We needto show that< � � .� D � aswell. If �·� Cn � H � , then � .�h�}� � � � .� D � , by ( ..� 2) and
( ..� 3).Solet �K{� Cn � H � . Thenit followsfrom

< � � .��� that
< � � .� � � & < � ,

by ( ..� 7a).Thusalso
< � Cn � � .� � � & < � =�> # � � & < ��@B�C� �Å�S# � � & < � ,

usingthemonotonicityof Cn andtheLevi identity. By revisionequivalence,
then

< � �À� D # � � & < �9� Cn � � .� D � � & < � =¼> # � � & < ��@B� . By theDeduction
Theoremfor Cn and( ..� 1), wegetthat # � � & < � ) < � � .� D � � & < � , which
means,by ( ..� 1) again,that

< � � .� D � � & < � . Using( .� 8c) (or alternatively,
( ..� 4) and( ..� 8)), we get that � .� D � � & < � 4 � .� D � andthus

< � � .� D � , as
desired.

Theright to left inclusioncanbeproved in thesamefashionwith .� and
.� D exchanged. Â
LEMMA 5. (Def

..� from
.� ) and(Def

D .� from
..� ) are equivalent.

Proof. It is sufficient to show, for every ���  suchthat xF � , that y �� .� � � &Æy � if f y � � > � .� � � & < � - < �  @ .
Right to left is trivial. Let y � � > � .� � � & < � - < �  @ . Consequently,y � � .� � � & < � for all

< �  . Choosing
<8Ç y weget y � � .� � � &�y � as

desired.
Fromleft to right, let y � � .� � � &|y � . Weneedto show y � � > � .� � � &< � - < �  @ . We cando soby showing that y � � .� � � & < � for arbitrary< �  . Now y¼(È# � (¡# < � � .� � � &�y ��� � .� �:� y¼(¡# � (È# < � & �:� � &�y � (� � & < �:�:� using( .� 1) for the former part and( .� 6) for the latter. It follows

by (
.� 8c) and(

.� 6) that � .� � � &Gy � 4 � �:� � &Gy � ( � � & < �:� . Therefore,y � � .� �:� � &Æy � ( � � & < �:� . Fromour initial suppositionand(
.� 2), y � �

giving by (
.� 5) and(

.� 1) that � < (i#Éy � )Êy � � .� � < (i#Éy � . Consequentlyy � � .� � < (�#Ry � by ( .� 1). It thereforefollows by ( .� 7) andour previous
reasoningthat y � � .� �:�:� � &iy � ( � � & < �:� & � < (�#Ry �:� . Hence,by ( .� 6)y � � .� � � & < � asdesired. Â
OBSERVATION 6. If .� isanAGMcontractionfunction,then..� asobtained
by (Def ..� from .� ) is a severe withdrawal functionrevisionequivalentto .� ,
and � ..�h� 4 � .�h� for all ���  .

Proof. Let .� beanAGM contractionfunctionand ..� beobtainedfrom .�
via (Def

..� from
.� ). We first show that

..� is a severewithdrawal function.
(By Lemma5, (Def

..� from
.� ) and(Def

D ..� from
.� ) areequivalentso we

canmakeuseof bothdefinitionsto simplify theproof.)
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(
..� 1) If xF � , then � ..���i� � > � .� � � & < � - < �  @ by (Def

D ..� from
.� ).

Since� .� � � & < � is a theoryfor every
< �  by (

.� 1), thenclearly � ..�h� is
too.Otherwise,

F � in whichcase� ..�h��� � andagain� ..�h� is a theory.
( ..� 2) If xF � , then � ..���i� � > � .� � � & < � - < �  @ by (Def

D ..� from .� ).
Since� .� � � & < � 4 � for all

< �  by ( .� 2) clearly � ..�h� 4 � . Otherwise,F � andby (Def
D ..� from .� ) � ..�z��� � therefore� ..�h� 4 � trivially.

( ..� 3) If
F � , � ..�h�i� � by (Def ..� from .� ) andthedesiredresultfollows

trivially. Otherwise,xF � and � x� � . Then � ..�h�i� � > � .� � � & < � - < �  @
by (Def ..� from .� ). Since � x� � , then � & < x� � for all

< �  . Therefore� 4 � .� � � & < � for all
< �  by ( .� 3). Hence� 4 � ..�z� asdesired.

( ..� 4) Let xF � . Now � x� � .��� by ( .� 4). It follows by ( .� 6) that � x�� .� � � & �k� . Therefore,� x� � ..�h� by (Def ..� from .� ).
( ..� 6) Follows trivially using( .� 6).
(
..� 7a) Let xF � . Supposey � � ..�h� . Then via (Def

..� from
.� ) y �� .� � � &�y � . It followsby (

.� 7) that y � � .� �:� � &�y � & < � . (Actually this last
partfollowsmoredirectlyfrom condition(

.� P) � .���Sm Cn � �k� 4 � .� � � & < �
— with � Ç � & < and

<©Ç2<
— which is equivalentto ( .� 7) [1, Observa-

tion 3.3p. 516]).Hencey � � .��� & < by ( .� 6) and(Def ..� from .� ).
( ..� 8) Let � x� � ..� � � & < � . Weneedto show that � ..� � � & < � 4 � ..�h� . IfF � , then� ..�h��� � by (Def ..� from .� ) and� ..� � � & < � 4 � by ( ..� 2) which

wasshown above to hold. Therefore,it follows directly that � ..� � � & < � 4� ..�h� . Otherwise xF � . Therefore,by (Def ..� from .� ) � ..� � � & < �¼� > yº-y � � .� �:� � & < � &�y ��@ and � ..���L� > yË-�y � � .� � � &�y ��@ . Supposey � � ..� � � & < � . Weneedto show that y � � ..��� andcandosoby showing
that y � � .� � � &'y � . Sincey � � ..� � � & < � wehave y � � .� �:� � & < � &'y � ( � )
by (Def ..� from .� ). It followsthat � & < x� � .� �:� � & < � &�y � by ( .� 4) and( .� 8)
subsequentlygives � .� �:� � & < � &9y � 4 � .� � � & < � (#).Ourinitial assumption
that � x� � ..� � � & < � and(Def

..� from
.� ) give � x� � .� �:� � & < � & �k� which

by (
.� 6) means� x� � .� � � & < � . Usingthecontrapositive of (#) we getthat� x� � .� �:� � & < � &Gy � and(

.� 1) thengives � &GyÅx� � .� �:� � & < � &Gy � .
Applying ( .� 8) again(andan applicationof ( .� 6) to the left-hand-side)we
seethat � .� �:� � & < � &�y � 4 � .� � � &�y � . It thereforefollows from ( � ) thaty � � .� � � &Æy � asrequired.

Wenow show that .� and ..� arerevision equivalent.Thatis, weshow that� .� �6� � ..� � . Now � .� �6� Cn � � .� # �¤m > �A@B� and � ..� �6� Cn � � ..� # �Jm> �A@B� by the Levi identity. We first prove left to right holds.Supposey �� .� � . Then � )Ìy � � .� # � by theLevi identity, DeductionTheoremand
( .� 1). Now

F U£# � & � � )Íy � Vk+Î# � soby ( .� 6), � )Êy � � .� � # � & � � )y �:� ( � ). We considertwo cases: (a) xF # � ; and, (b)
F # � . In the former

case,it follows by (Def ..� from .� ) and( � ) that � )Îy � � ..� # � . Usingthe
DeductionTheorem,y � Cn � � ..� # � =�> �A@B� . Hencey � � ..� � asrequired.
In thelattercase� .� # ��� � � � ..� # � by (

.� 1) and(
.� 5) and(Def

..� from
.� ) respectively. It follows that � )Êy � � ..� # � andconsequentlyy � � ..� �
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via applicationsof theDeductionTheoremandtheLevi identityasrequired.
Right to left is similar.

It remainsto show that � ..��� 4 � .�h� . This follows straightforwardly
from the resultby Makinson[23, Observation p. 389] however we include
a proof in termsof our own definitions.Supposey � � ..�h� . If

F � , then� ..�h�E� � � � .��� by (Def ..� from .� ) for the formerpart and( .� 1) and
( .� 5) for the latterandtheresultfollows trivially. Otherwise xF � . Now y �� .� � � &iy � by (Def ..� from .� ). By ( .� 8c) � .� � � &iy � 4 � .�h� . Thereforey � � .�h� asdesired. Â
OBSERVATION 7. Let .� beanAGM contractionfunction.Thenthesevere
withdrawal function ..� definedfrom .� by definition(Def ..� from .� ) is the
smallestwithdrawal function in termsof set-theoretic inclusion satisfying
postulate( .� 8c)which is revisionequivalentto .� .

Proof. Let .� beanAGM contractionfunctionand ..� definedfrom .� via
(Def ..� from .� ). Let � beany withdrawal functionsatisfying( .� 8c)which is
revisionequivalentto .� (andtherefore..� alsoby Observation6). Weneedto
show that � ..��� 4 � �5� .

Suppose
< � � ..�h� . If

F � , then � ..����� � .�h�©� � (the former by
( ..� 3) which is satisfiedby Observation 6 andthe latter by ( .� 1) and( .� 5)).
Since � satisfiesFailure � �5�i� � and

< � � �5� asdesired.Otherwise,xF � . By (Def ..� from .� ),
< � � .� � � & < � soby theLevi identity # � & < �� .�B# � � & < �C� � .�1# � � & < � . By therevision equivalenceof .� and � (and

..� ), # � & < � �Ï��# � � & < � where � is definedfrom � via theLevi identity.
UsingtheLevi identity again,# � � & < � ) � # � & < ��� � � � � & < � . That
is, by (

.� 1),
< � � � � � & < � . But thenby (

.� 8c), � � � � & < � 4 � �·� .
Hence

< � � �5� asrequired. Â
OBSERVATION 8. Let .� beanAGM contractionfunction.Thenthewith-
drawalfunction...� definedfrom .� bydefinition(Def ...� from .� ) is thesmallest
withdrawal functionwhich is revisionequivalentto .� .

Proof. Let .� beanAGM contractionfunctionand...� definedfrom .� via
(Def ...� from .� ). Wefirst verify that...� is awithdrawal function(i.e.,satisfies
( .� 1) – ( .� 4) and( .� 5)).

( .� 1) If �?� � and xF � , wehave � ...����� Cn � �k�¨m � .��� by (Def ...� from
.� ) which is obviously closedby ( .� 1) andthepropertiesof Cn. Otherwise,� x� � or

F � by (Def
...� from

.� ). Again � ...��� is closed.
(

.� 2) If � x� � or
F � (Def

...� from
.� ) gives � ...�h�·� � in which case

the desiredresult follows trivially. Otherwise,��� � and xF � so � ...�z�8�
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Cn � �k�Sm � .�z� by (Def
...� from

.� ). Now by (
.� 2) � .�h� 4 � so clearly

Cn � �k�nm � .�h� 4 � andtherefore� ...�h� 4 � .
( .� 3) Let � x� � . By (Def ...� from .� ) � ...���i� � and � 4 � ...�z� follows

trivially.
( .� 4)Let xF � . If � x� � , thenby (Def ...� from .� ) � ...�h��� � so � x� � ...�h� .

Otherwise,�;� � and � ...�h�i� Cn � �k�Bm � .�O� by (Def ...� from .� ). However,� x� � .�h� by ( .� 2) andtherefore� x� Cn � �k�nm � .�h��� � ...��� .
( .� 6) Let

F � + <
. If � x� � and

F � thenclearly
< x� � and

F <
. By

(Def ...� from .� ) we have � ...����� � � � ...� < asdesired.Otherwise��� �
and xF � . Clearly then

< � � and xF < . Now � ...�h�K� Cn � �k�9m � .�h� and� ...� < � Cn � < �Am � .� < . Moreover, Cn � ���C� Cn � < � by our suppositionat
the outsetand � .�h�8� � .� < by ( .� 6). Hence � ...�h�8� Cn � �k�9m � .�z�8�
Cn � < �nm � .� < � � ...� < asdesired.

(Note:it is easilyshown that
...� satisfiesFailurealso.)

Next weshow that...� and .� arerevisionequivalent.Left to right.Supposey � � ...� � . Then � ) y � � ...� # � by theLevi identity, DeductionTheorem
and( .� 1) (which hasbeenshown above to hold). If # � x� � or

F # � , then� ...� # �}� � by (Def ...� from .� ) and � .� # �}� � by ( .� 2) and( .� 3)/( .� 1)
and( .� 5). Therefore,� ) y � � .� # � and �w� � .� � by the Deduction
Theoremandthe Levi identity. Otherwise,# �¥� � and

F # � . By (Def
...�

from
.� ), � ...� # �E� Cn � # �k��m � .� # � andagainit follows that � )�y �� .� # � wherebyweproceedasabove.

Right to left. Supposey � � .�B# � . Then � )Ðy � � .� # � by the Levi
identity, DeductionTheoremand( .� 1). If # � x� � or

F # � , then � ...� # ���� � � .� # � asabove andtherefore� )Ñy � � ...� # � wherebytheDeduc-
tion TheoremandtheLevi identity give �5� � ...� � . Otherwise,# �5� � andF # � . Now clearly � ) y � Cn � # �k� . So � ) y � Cn � # �k�Am � .� # � and
by (Def ...� from .� ) � )Áy � � ...� # � . Henceby theDeductionTheoremand
theLevi identity y � � ...��� asdesired.

Finally, weshow that...� is thesmallestwithdrawal functionrevisionequiv-
alentto .� . Suppose

< � � ...��� . We needto show that
< � � �E� for any

withdrawal function � revision equivalentto .� . Now
< � � by ( .� 2) which

...� wasshown to satisfyabove. If
F � or � x� � , then � .���·� � by ( .� 1)

and(
.� 5)/(

.� 2) and(
.� 3). Since � satisfiesFailureand(

.� 2) and(
.� 3) (since

it is a withdrawal function) � �·��� � and
< � � �·� asdesired.Other-

wise, xF � or � x� � . By (Def ...� from .� ),
< � Cn � �k��m � .�h� . Therefore,< � Cn � �k� (i.e., � F < ) and

< � � .�z� . It follows that # � & < � � .�B# �G�
Cn � � .��� =5> # �A@B� . The revision equivalenceof of .� and � (and...� ) gives# � & < � ���É# � . Thatis, # � & < � Cn � � �;� =Æ> # �A@B� andtheDeduction
Theoremand( .� 1) give # � ) � # � & < �%� � �6� . By ( .� 1) againweobtain� ( < � � �5� but since � F < wehave

< � � �5� asrequired. Â
OBSERVATION 9. If ..� is aseverewithdrawalfunction,then .� asobtained
by (Def

.� from
..� ) is an AGM contraction function,and � ..�h� 4 � .�h� for
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all ���  .

Proof. Let ..� bea severewithdrawal functionand .� beobtainedfrom ..�
via (Def .� from ..� ).

Wefirst show that .� is anAGM contractionfunction.
( .� 1) In thecasethat xF � , wehave � .�h�i� � m Cn � � ..��� =S> # �A@B� by (Def

.� from ..� ) whichis obviouslyclosedby thepropertiesof Cn. Otherwise,
F �

and � .�h�i� � by (Def .� from ..� ). Again, � .��� is closed.
( .� 2) If

F � , then� .�h�i� � by(Def .� from ..� ) andsoobviously � .�h� 4� . Otherwise, xF � and(Def .� from ..� ) gives � .�h�À� � m Cn � � ..��� => # �A@B� . Clearly � .�h��� � m Cn � � ..�z� =�> # �A@B� 4 � so � .��� 4 � .
( .� 3) Let �·� � . If

F � , then � .���}� � by (Def .� from ..� ) and � 4� .�h� . Otherwise,
F � and � .����� � m Cn � � ..��� =�> # �n@B� . Now by (

..� 3)
wehave � 4 � ..�h� andtherefore,by monotonicityof Cn, � 4 Cn � � ..�h� => # �A@B� . Hence� 4 � m Cn � � ..��� =�> # �A@B� andconsequently� 4 � .�h�
asdesired.

( .� 4) Let xF � . Then � .�h�*� � m Cn � � ..�z� =�> # �A@B� by (Def .� from
..� ). Suppose��� � .�z� . Then ��� Cn � � ..�z� =�> # �A@B� by themonotonicity
of Cn. By theDeductionTheorem,and( ..� 1) # � ) �5� � ..�h� or, againby
( ..� 1), �?� � ..�z� contradicting( ..� 4). It follows that � x� � .�h� .

( .� 5) If xF � , then � .���º� � m Cn � � ..��� =K> # �A@B� . By (Def .� from
..� ). Supposefor reductioadabsurdumthat thereis a

< � � suchthat
< x�

Cn � � .��� =6> �A@B� . That is,
< x� Cn �:� � m Cn � � ..��� =6> # �n@B�:� =6> �n@B� . By

theDeductionTheorem� ) < x� Cn � � m Cn � � ..��� =;> # �A@B�:� . Now either� ) < x� � or � ) < x� Cn � � ..�h� =6> # �n@B� . In the formercasewe have
animmediatecontradictionsince

< � � implies � ) < � � . In the latter
casewe have # � ) � � ) < � x� � ..�h� by theDeductionTheoremand(

..� 1).
Equivalently ,Òx� � ..�h� contradicting(

..� 1). Otherwise
F � in which case� .�h�i� � and � 4 Cn � � =;> �A@B��� Cn � � .��� =;> �A@B� by monotonicity.

( .� 6) Let
F � + <

. SupposexF � , then xF < . We have by (Def .� from ..� )
that � .�h�?� � m Cn � � ..�h� =�> # �A@B��� � m Cn � � ..� < =;> # < @B�S� � .� < .
Otherwise,xF � implying xF < and � .�h��� � � � .� < by (Def .� from ..� ).

( .� 7) Supposethat xF � and xF < . We needto show that � .�h�Æm � .� < 4� .� � � & < � . By (Def .� from ..� ) we have the following: � .�h�Ï� � m
Cn � � ..� =E> # �n@B� , � .� < � � m Cn � � ..� =8> # < @B� and � .� � � & < ���� m Cn � � ..� =;> # � � & < ��@B� . Supposey � � .�h�|m � .� < . Then y � � .�h�
and y � � .� < . So y � � by ( ..� 2) and y � Cn � � ..��� =*> # �A@B� andy � Cn � � ..� < =�> # < @B� by themonotonicityof Cn. By theDeductionThe-
oremand( ..� 1) # � )Óy � � ..�h� and # < )Òy � � ..� < . We needto show
that y � � .� � � & < � . We can do so by showing that y � � and y �
Cn � � ..� � � & < � =Ô> # � � & < ��@B� (i.e.,by theDeductionTheorem,# � � & < � )y � � ..� � � & < � or, equivalently, � # � )�y � & � # < )Õy �È� � ..� � � & < �
). By (

..� 7a)andour reasoningabove we have that # � )Öy � � ..� � � & < �
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and # < )Áy � � ..� � � & < � . Therefore,by (
..� 1), � # � )Íy � & � # < )Íy �S�� ..� � � & < � asdesired.

Otherwise,at leastoneof
F � , or

F <
holds.If both

F � and
F <

holdand
therefore

F � & < , (Def .� from ..� ) gives � .���¤m � .� < � � m � � � �� .� � � & < � with theresultholdingtrivially. Soassumeonly oneof
F � , F <

holds.Without lossof generality, suppose
F � and xF < . Now � .�h��� � by

(Def .� from ..� ). It alsofollowsby ( .� 2),whichwehaveshown aboveto hold,
that � .� < 4 � . Therefore,� .����m � .� < � � m � .� < � � .� < 4 � � & < �
(thelastof theseby ( .� 7a)).

( .� 8) Let � x� � .� � � & < � . If
F � & < , then(Def .� from ..� ) gives � .� � � &< �9� � . It followsby our initial assumptionthat � x� � . But thiscontradicts

thefactthat
F � & < sothiscaseis notpossible.OtherwisexF � & < . Moreover,

we canassumethat xF � for, otherwise,� .�h�5� � by (Def .� from ..� ) and
theresultfollows directlyvia (

.� 2) whichwasshown above to hold.Suppose
now that y � � .� � � & < � . By (Def

.� from
..� ) we have � .� � � & < ��� � m

Cn � � ..� � � & < � =�> # � � & < ��@B� . This latterfact,togetherwith theDeduction
Theoremand( ..� 1) give # � � & < � ) y � � ..� � � & < � or, in otherwords
(againappealingto ( ..� 1)) � # � ) y � & � # < ) y �/� � � � & < � (#). We also
know that either � x� � or � x� Cn � � ..� � � & < � =6> # � � & < ��@B� usingthe
assumptionat the outsetof this proof. The former doesnot hold underour
currentassumptionssothe lattermusthold and,via theDeductionTheorem
and( ..� 1), we have # � � & < � ) � x� � ..� � � & < � or, in otherwords � x�� ..� � � & < � . Now ( ..� 8) and(#) give � # � )Óy � & � # < )Óy ��� � ..�z� . So,
in particular # � ) y � � ..�h� by ( ..� 1) andthe DeductionTheoremgivesy � Cn � � ..��� =·> # �A@B� . Since y � � we have via (Def .� from ..� ) thaty � � .�h� asrequired.

We now show that .� is revision equivalent to ..� . That is, we show that� .� �6� � ..� � . Now � .� �6� Cn � � .� # � =�> �A@B� and � ..� �6� Cn � � ..� # � => �A@B� Left to right. Supposey � � .� �L� Cn � � .� # � =·> �n@B� . Now � )y � � .� # � by theDeductionTheoremand(
.� 1) whichwasshown above to

hold.Weconsidercases(a)
F # � ; and,(b) xF # � . In theformercase,by (Def

..� from .� ) � .� # ��� � andby ( .� 1) and( .� 5) � ..� # ��� � . Clearly then� )Áy � � ..� # � andby theDeductionTheoremy � Cn � � ..� # � =�> �n@B�%�� ..� � . In the lattercase,we have � )Òy � � .� # � by theLevi identity and
( .� 1). Right to left. Now supposey � � ..� �E� Cn � � ..� # � =6> �A@B� . By the
DeductionTheoremand( ..� 1) � )Òy � � ..� # � . We considertwo cases(a)F # � ; and,(b)

F # � . In theformercase,by (Def .� from ..� ) � .� # ��� � and
by ( ..� 3) � ..� # ��� � . Clearly � )Êy � � .� # � andtheDeductionTheorem
gives y � Cn � � .��� =;> �A@B�'� � .� � .

Now, in thelattercase,by (Def .� from ..� ) � .� # �;� � m Cn � � ..� # � => �A@B� . By themonotonicityof Cn, � )Êy � Cn � � ..� # � =z> �A@B� and � )Êy �� . Therefore,� ) y � � .� # � by (
.� 2). Hencey � Cn � � .� # � =�> �A@B�/�� .� � by theDeductionTheoremandtheLevi identityasdesired.
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It remainsto show that � ..�h� 4 � .�h� for all � . This follows straight-
forwardly from Makinson’s [23, Observation p. 389] result. However, we
includea proof in termsof our definitionshere.Considertwo cases.(a)

F � ;
and(b) xF � . In the former case,by (Def .� from ..� ) we have � .�h�©� �
andtheresultfollowsstraightforwardly by ( ..� 2). In thelattercase,by (Def .�
from ..� ) we have � .���}� � m � � ..��� =�> # �n@B� . Now supposey � � ..�h� .
Clearly y � � by ( ..� 2) and y � Cn � � ..�h� =?> # �A@B� by monotonicityof Cn.
It thereforefollows that y � � .�h� . Â
OBSERVATION 10. (i) If we start with an AGM contraction function .� ,
turn it into a severe withdrawal function ..� by (Def ..� from .� ) andturn the
latter into an AGM contractionfunction .� D by (Def .� from ..� ), thenweend
upwith .� D � .� .

(ii) If westart with a severe withdrawal function ..� , turn it into an AGM
contraction function

.� by (Def
.� from

..� ) and turn the latter into a severe
withdrawal function

..� D by (Def
..� from

.� ), thenweendupwith
..� D � ..� .

Proof. Let .� , ..� and .� D bedefinedasin thestatementabove.
(i) Left to right. Supposey � � .�h� . We needto show that y � � .� D � .

If
F � , then � .����� � ..�h�·� � and � .� D �·� � by ( .� 1) and( .� 5), (Def

..� from .� ) and (Def .� from ..� ) respectively. Otherwise xF � . By (Def ..�
from .� ) � ..�h��� > < - < � � .� � � & < ��@ andby (Def .� from ..� ) � .� D ���� m Cn � � ..��� =G> # �A@B� . Sincey � � .��� we have � (�y � � .�h� by ( .� 1).
Using ( .� 6) we have � (5y � � .� � � ( � � &�y �:� and so � (6y � � ..�h�
by (Def ..� from .� ). That is, by ( ..� 1) (which is satisfiedby Observation 6),# � ) y � � ..�h� . The DeductionTheoremgives y � Cn � � ..��� =6> # �A@B�
andby (

..� 2) y � � . Hencey � � .� D � by (Def
.� from

..� ) asdesired.
Right to left. Supposey � � .� D � . If

F � we canreasonexactly asabove.
Otherwise xF � . Now y � � and y � Cn � � ..��� =6> # �A@B� by (Def

.� from
..� ). As a resultof applyingtheDeductionTheoremand( ..� 1) wehave # � )y � � ..�h� . Therefore# � )Áy � � .� � � & � # � ) < �:�%� � .�h� (theformer
partby (Def ..� from .� ) andthelatterpartby ( .� 6)). But ( .� 5) and( .� 1) give� ) y � � .�h� . Puttingthesetogetherwe get by ( .� 1) that y � � .��� as
required.

(ii) Let ..� , .� and ..� D bedefinedasin thestatementabove.If
F � wereason

alongthe linesof (i). Otherwise,xF � . Left to right. Supposey � � ..��� . By
(Def .� from ..� ) � .�h�·� � m Cn � � ..��� =6> # �A@B� andby (Def ..� from .� )� ..� D �;� > y·-�y � � .� � � & < ��@ . Now clearly y � � by ( ..� 2). Sowe know
that � &|y � � and xF � &¤y . Weneedto show that y � � ..� D � whichwecan
do,accordingto (Def ..� from .� ), by showing that y � � .� � � &Æy � . Thiswe
cando,accordingto (Def

.� from
..� ) by showing that y � � m Cn � � ..� � � &< � =�> # � � & < ��@B� . Wehave alreadyshown that y � � soit remainsto show

that y � Cn � � ..� � � & < � =�> # � � & < ��@B� or equivalently, by theDeduction
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Theoremand(
..� 1), that # � � &zy � )Êy � � ..� � � & < � . Thatis,by (

..� 1) again,y � � ..� � � & < � . Since xF � and y � � ..��� , this factfollows by (
..� 7a).

Right to left. Supposey � � ..� D � . Now y � � .� � � & < � by (Def ..� from
.� ). By (Def .� from ..� ) y � � and y � Cn � � ..� � � &;y � =5> # � � &;y ��@B� .
Thelattergives # � � &¼y � )Êy � � ..� � � &¼y � by theDeductionTheoremand
( ..� 1). Thereforey � � ..� � � &;y � . Henceby ( ..� 4) � x� � ..� � � &;y � andby
( ..� 8) y � � ..�z� asrequired. Â
LEMMA 11. If ..� is a severe withdrawal function,thenthetwo conditions
(Def g from .� ) and(Def g from ..� ) areequivalent.

Proof. In thecasewhere
F � bothconstructionsgive thesphereU �;V . (For

theright-hand-sideuse( ..� 2) and( ..� 3) andLemma0(v)). Therefore,wehave
to show that × > U � ..� < VA-ÔU < V 4 U � V @O� U � ..��� V
whenever xF � .

Left to right. Suppose
� �E¦ > U � ..� < VC-�U < V 4 U � V @ . Then

� � U � ..� < V
for some U < V 4 U � V . We needto show that

� � U � ..�h� V . By (
..� 4) � x� � ..�h� .

Now since U < V 4 U � V we have
< F � so,by (

..� 1),
< x� � ..�z� . Using(

..� 9) we
have � ..��� 4 � ..� < . In otherwords, U � ..� < V 4 U � ..�h� V by Lemma0(v)) as
desired.

Right to left. Suppose
� � U � ..�h� V . We needto show

� � U � ..� < V for
someU < V 4 U � V . Theresultfollows directlyby choosing

<
to be � . Â

LEMMA 12. g , gkª , gk¬ and gnp® are all equivalent.

Proof. If
F � , thenby (Def l d ) wehave l d � # �k�9� l d1Ø � # �k�9� l d1Ù � # �k�9�lrdB²´³ � # �k�È� U �;V andby (Def

..� from g ) � ..� d �"� � ..� dBØ �"� � ..� dBÙ �"�� ..� d ²´³ � . Thisfactcanalsobeusedtoshow c d � # �k�9� c d1Ø � # �k�9� c dBÙ � # �k�9�cBdB²´³ � # �k� and so, by (Def .� from g ), � .� d �Ë� � .� dBØ �Ë� � .� d1Ù �Ë�� .� dB²´³ � .
Thereforewe considerthecasewhere xF � . Now by ( g 4) (and(Def lrd ))lrd � # ��� exists. It follows directly by the definition of gkª that lrd � # �k�E�l d1Ø � # �k� .
We now want to show that lrd � # �k�O� lsd1Ù � # �k� . Supposeto thecontrary.

Without lossof generality, sinceany spherein g is alsoin gk¬ by definition,
supposethat lrd � # �k�JÚ lrdBÙ � # �k� . That is, thereis some « � gk¬ suchthat« m U£# � V9x� H and « Ú lrd Ù . By definitionof gk¬ thismeansthatthereis some« DO4 « and « D � g and « D Ú l d � # �k� . But this contradictsthe definition
of lrd � # �k� via (Def lsd ). Hence lrd � # �k�G� lrdBÙ � # ��� . By (Def

..� from g )
andusingLemma0(iv) we get � ..� d ��� � ..� d Ø ��� � ..� d Ù � . We canshow� .� d ��� � .� d1Ø �i� � .� d1Ù � . in similar fashion.
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It now remainsto consider� .� d\²µ³ � and � ..� dB²´³ � . We begin by showing
that e:f � U e:f � « � V �'� e:f � « � for « 4 � 0 (*). Rightto left. SupposeÛ � e:f � « � .
Now U e:f � « � V � >�� � � 0 -Üe:f � « � 4L� @ . Since Û � e:fÜÝ � « � , then Û � �
for all

� � U e:f � « � V . ThereforeÛ � � U ejf � « � V andhenceÛ � e:f � U e:f � « � V � as
desired.Left to right. SupposeÛ � e:f � U e:f � « � V � . Further, supposefor reduc-
tion that Û¥x� e:f � « � . Thenthereis some

� � � 0 suchthat ejf � « � 4*� and#ÉÛ � � by Lindenbaum’s lemma.It follows that
� � U e:f � « � V . Consequent-

ly, Û©x� � U ejf � « � V � e:f � U e:f � « � V � contradictingour initial supposition.HenceÛ � e:f � « � asdesired.
Now e:f � c d ² ® � # ���:�C� e:f � U � lrd � # �k�:� V m U£# � V � by thedefinitionof g�l±° and

thedefinitionof cBd . By Lemma0(iii) e:f � U � lrd � # �k�:� V m U£# � V �9� Cn � ejf � U ejf � lrd � # �k�:� V � => # �A@B� . Using (*) we have that ejf � U ejf � l d � # �k�:� V �E� ejf � l d � # �k�:� . There-
fore Cn � ejf � U ejf � lsd � # �k�:� V � =¥> # �A@B�8� Cn � ejf � lrd � # �k�:� =¥> # �A@B� and by
Lemma0(iii) againCn � e:f � lrd � # ���:� =*> # �A@B��� ejf � lsd � # �k�/m U£# � V � . But
this latter part is just ejf � cBd � # �k�:� . Thereforee:f � c d ² ® � # �k�:�J� e:f � cBd � # ���:� .
We want to show e:f � U �;V = cBd � # ���:�J� e:f � U �;V = c d ² ® � # �k�:� . Left to right.
Now suppose

< � ejf � U �?V = cBd � # ���:� . Then
< �Þ� � U �;V = cBd � # �k�:� by

definition. That is,
< � � for all m � U �;V = cBd � # �k� so

< � � for all� � U �?V and
< � ��D for all

��D � c d � # ��� . It follows that
< � e:f � c d � # ���:� .

Consequently, by the above, e:f � c d ² ® � # �k�:� . Therefore
< � � for all

� �c d ² ® � # �k� andit follows that
< � � for all

� � U �;V = c d ² ® � # �k� . As a result< � ejf � U �;V = c d ² ® � # �k�:� . Right to left is provedsimilarly. Henceby (Def .�
from g ) � .� d ² ® �"� � .� d � . Togetherwith the resultsabove we now have� .� d ��� � .� d1Ø �i� � .� d1Ù ��� � .� d ² ® � .

Now e:f � l d ² ® � # �k�:�·� e:f � U e:f � lrd �:� V � and using (*), as above, we havee:f � U e:f � lrd �:� V �%� e:f � lrd � . Thereforee:f � l d ² ® � # �k�:�%� e:f � lrd � # �k�:� andby (Def
..� from g ) we get � ..� d ² ® �¥� � ..� d � . Togetherwith the resultsabove we
now have � ..� d ��� � ..� d Ø ��� � ..� d Ù �i� � ..� d ² ® � . Â
OBSERVATION 13. Let .� and ..� becorrespondingAGM contractionand
severewithdrawal functionseithervia (Def ..� from .� ) or via (Def .� from ..� ).
Then .� and ..� leadto equivalentsystemsof spheres,via (Def g from .� ) and
(Def g from ..� ). Moreprecisely, thesystemof spheresobtainedfrom ..� is the
topological closure of thatobtainedfrom .� .

Proof. Considerthe secondLewis-Groveanconstructionof g � .�z� , given
by

(Def
D g from .� ) X|¢ �wv ¦ > U � .� � � & < � VR- < �  @ whenever xF �U �;V otherwise

andcompareit with theconstructionwe getusing(Def g from
..� ) and(Def

..� from
.� ):
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g � W � .�z�:� : X D¢ � U � ..�z� V ��v U � > � .� � � & < � - < �  @ V whenever xF �U �;V otherwise

In order to show that g � W � .���:� is the topologicalclosureof g � .�z� , we
provefor each� that X D¢ is thetopologicalclosureof X|¢ , i.e., X D¢ � U ejf � X|¢ � V .
Ourclaim is thatU£ß > � .� � � & < � - < �  @ V � U ejf � × > U � .� � � & < � VA- < �  @B� V
Now

�
is in theright-handsideiff

�
satisfies� � ¦ > U � .� � � & < � VA- < �  @B� .

Thismeansthat

(i)
�

satisfiesall y whicharesatisfiedby all
� D

thatarein U � .� � � & < � V
for some

< �  .

We aredoneif we canshow that this is equivalentto
�

’s beingin the left-
handsidewhichcanbereformulatedthus:

(ii)
�

satisfiesall y whicharecontainedin � .� � � & < � for all
< �  .

To seethat (i) and(ii) areequivalent,we finally show that (iii) and(iv) are
equivalent:

(iii) y is satisfiedby all
� D

thatarein U � .� � � & < � V for some
< �  .

(iv) y is containedin � .� � � & < � for all
< �  .

That (iv) entails(iii) is trivial for if y is containedin all � .� � � & < � , then
all
��D

thatarein some U � .� � � & < � V satisfy y . To seethat (iii) entails(iv),
supposethat(iv) is not true,i.e., thatthereis a

<
suchthat y {� � .� � � & < � .

Then � .� � � & < � =?> #Ry @ is consistent,sothereis an
��D D

suchthat � .� � � &< � =;> #Ry @ 4K� D D , whichmeansthat(iii) is not true.
In sum,then,wehave shown that g � W � .�O�:�'� � g � .�z�:� p® .
Whereastheconstructionjustconsideredstartsfrom anAGM contraction

function .� , we might just aswell startfrom a severewithdrawal function ..� ,
withoutchangingtheresult.Weknow that .�*� ¸ � ..�z� is anAGM contraction,
so by the result just proved, we get � g � ¸ � ..�z�:�:� ¯® � g � W � ¸ � ..�O�:�:� , but the
latteris, by Observation10(ii) , identicalwith g � ..�z� . Â
OBSERVATION 15. (i) If g satisfies( g 1) – ( g 4), then the function ..�
obtainedfrom g by (Def ..� from g ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function,then ..� can be representedas a
sphere-basedwithdrawal, where the sphere systemg on which ..� is based
is obtainedby (Def g from

.� ) (or equivalently, by (Def g from
..� )) and g

satisfies( g 1) – ( g 4).

Proof. (i) Let g satisfy( g 1) – ( g 4) and
..� be obtainedby (Def

..� fromg ). We needto show
..� is a severewithdrawal function(i.e., satisfies(

..� 1) –
(
..� 4), (

..� 6), (
..� 7a)and(

..� 8)).
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(
..� 1) Directlyby (Def

..� from g ) anddefinitionof function ejf (seeSection
3).

( ..� 2) By (Def ..� from g ) weneedto show e:f � lrd � # ���:� 4 � . Now, if
F � ,

thenby (Def lrd ) wehave lrd � # ���'� U �;V . SoLemma0(i) givese:f � lrd � # �k�:�'�e:f � U �;V ��� � andthe resultholdstrivially. Otherwise xF � andby ( g 2) we
have that U �;V is the

4
-minimumof g (i.e., U �?V 4 lrd � # �k� ). Soby (Def lrd )

andLemma0(iv) theresultis established.
( ..� 3) Let � x� � or

F � . In thelattercase,using(Def lsd ), (Def ..� from g )
andLemma0(i) wehavethat � ..����� � andtheresultensuesdirectly. In the
formercaseandsupposingxF � wehave that U£# � V m U �;V'x� H . Therefore( g 2)
and(Def lsd ) give lrd � # �k��� U �;V andby (Def ..� from g ) andLemma0(i) we
have � ..�h�i� � from whichthedesiredresultis obtained.

( ..� 4) Let xF � . By definitionof lsd � # �k� , U£# � V m lrd � # ��� x� H . Therefore,
usingLemma0(iv) and(Def

..� from g ) wehave � x� e:f � lrd � # �k�:�9� � ..��� .
(
..� 6) Let Cn � �k�9� Cn � < � . Then U � V � U < V . If

F � , then
F <

and � ..�h�i�e:f � U �;V ��� � ..� < . Otherwise xF � and xF < . However lrd � # �k��� lsd � # < � .
Therefore� ..�h�i� e:f � lrd � # �k�:�9� e:f � lrd � # < �:�9� � ..� < .

( ..� 7a)Let xF � . We needto show that � ..��� 4 � ..� � � & < � . By (Def ..�
from g ), we needto show that ejf � l d � # �k�:� 4 ejf � l d � # � � & < �:�:� . That is,
by Lemma0(iv), lsd � # � � & < �:� 4 lrd � # �k� or, equivalently, lrd � # � (?# < � 4lrd � # ��� . Since xF � , then xF � & < . Now U£# � V 4 U£# � = # < V � U£# � V = U£# < V , so
clearly lrd � # � (?# < � 4 lsd � # �k� asdesired.

( ..� 8)Let � x� � ..� � � & < � . By (Def ..� from g ), wehave � ..����� e:f � lrd � # �k�:�:�
and � ..� � � & < �9� ejf � l d � # � � & < �:�:� . Since� x� � ..� � � & < �9� e:f � l d � # � � &< �:�:�9� e:f � lrd � # � (C# < �:� , thenlrd � # � (C# < �±m U£# � V9x� H . Thereforelsd � # �k� 4lrd � # � (�# < � and e:f � lrd � # � (�# < �:� 4 e:f � lrd � # �k�:� by Lemma0(iv). Thus� ..� � � & < � 4 � ..�h� asdesired.

(ii) Let
..� be a severe withdrawal function (i.e., satisfies(

..� 1) – (
..� 4),

(
..� 6), (

..� 7a)and(
..� 8)) andlet g beobtainedfrom

..� by (Def g from
.� ) or,

equivalently, (Def g from
..� ). We have to verify that(a)

..� D obtainedfrom g
using(Def ..� from g ) is identicalto ..� and(b) that g satisfiestheconditions
for asystemof spheres(i.e.,( g 1) – ( g 4)).

Weprove (b) first aspartof it will beusefulin shorteningtheproofof (a).
(b) Weverify that g is indeedasystemof spherescentredon U �;V .
( g 1) Thenestednessof spheresfollowsdirectly from (Def g from ..� ) and

Lemma2(i).
( g 2) That U �?V is a spherefollows via (Def g from ..� ) andLemma0(v))

setting� Ç , (or any
< �  suchthat

F <
) sinceby ( ..� 3) and( ..� 2) wehave� ..� , � � . That U �;V is the

4
-minimalspherethenfollows by (Def g from

..� ) using( ..� 2) andLemma0(v)).
( g 3) That � 0 is a spherefollows directly by our constructionsas we

includeit asasphere.
( g 4) Let xF # � . We needto show that there is a sphere� � g such

that � m U � VGx� H and � m U � VGx� H implies � 4 � for all � � g . We
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show that � � U � ..� # � V satisfiesthis condition.Since xF # � , thenby (
..� 4)# � x� � ..� # � soclearly U � ..� # � V m U � V%x� H . Now supposefor reductiothere

is some � � g suchthat � m U � V|x� H and �Îx4 � (i.e., � Ú � by ( g 1)
which hasbeenshown above to hold). That is, by (Def g from ..� ), thereis
some

< �  suchthat U � ..� < V m U � V�x� H and U � ..� < V Ú U � ..� # � V . SinceU � ..� < V m U � V'x� H , then # � x� � ..� < . It followsby ( ..� 9) that � ..� < 4 � ..� # �
or, in other words,by Lemma0(v)) U � ..� # � V 4 U � ..� < V contradictingthe
above.

The proof of ( g 4) actuallyshows that, for xF # � , lrd � �k��� U � ..� # � V (or,
equivalently, that xF � implies lrd � # �k��� U � ..��� V ) which canbeconveniently
usedin theproofof (a).

(a) Whenever
F � , then � ..����� � by ( ..� 2) and( ..� 3). Also, l d � # �k���U �;V by (Def lrd ) andconsequently� ..� D �i� � by (Def ..� from g ) andLem-

ma0(i). Hence� ..����� � ..� D ��� � .
Consider, then,thecasewhere xF � .
Left to right. Suppose

< � � ..�z� . We needto show
< � � ..� D � . Now

clearly U � ..��� V 4 U < V . By following the proof of ( g 4) we get U � ..��� V is
a sphereand lsd � # �k��� U � ..��� V . Therefore, lrd � # ��� 4 U < V . Hence

< �e:f � l d � # ���:� andby Lemma0(iv))
< � � ..� D � by (Def ..� from g ) asdesired.

Right to left. (Theproof follows essentiallybereversingthat for thepre-
viouscase.)Suppose

< � � ..� D � . We needto show
< � � ..��� . Since

< �� ..� D � , then
< � e:f � lrd � # �k�:� by (Def ..� from g ). Therefore,lrd � # �k� 4 U < V .

Now lrd � # �k�S� U � ..�h� V accordingto theproof of ( g 4). Hence U � ..��� V 4 U < V
andthus

< � � ..�h� asdesired. Â
LEMMA 16. If ..� is a severe withdrawal function,thenthetwo conditions
(Def t from .� ) and(Def t from ..� ) are equivalent.

Proof. Wehave to show that�·{� � ..� � � & < � or
F � � & < �

holdsjust in case �·{� � ..� < or
F <

holds.To show that the former implies the latter, let ��{� � .� � � & < � orF � � & < � andassumethat xF < . Hence xF � � & < � . Then �L{� � .� � � & < � .
Since xF < , weget � ..� < 4 � ..� � � & < � , by ( ..� 7a).Sosince�K{� � ..� � � & < � ,�·{� � ..� < , asdesired.

For theconverse,let �º{� � .� < or
F <

. Fromthe former, we know thatxF � , by ( ..� 1). Now if
F <

, then ��{� � ..�h�i� � ..� � � & < � , by ( ..� 4) and( ..� 6).
So let xF < andthus �À{� � ..� < . Assumefor reductiothat �·� � ..� � � & < � .
Thenby (

..� 8c) � ..� � � & < � 4 � ..� < . But then,since �K{� � ..� < , we getthat�2{� � ..� � � & < � , andwe have a contradiction.Hence�2{� � ..� � � & < � , as
desired. Â
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OBSERVATION 17. Let
.� and

..� becorrespondingAGM contractionand
severewithdrawal functionseithervia (Def

..� from
.� ) or via (Def

.� from
..� ).

Then .� and ..� leadto identicalentrenchmentrelations,via (Def t from .� )
and(Def t from ..� ).

Proof. Let .� and ..� becorrespondingAGM contractionandseverewith-
drawal functionseithervia (Def ..� from .� ) or (Def .� from ..� ). It followsfrom
Observation10 thatit doesnotmatterwhichof thesedefinitionsweapply.

Let t betheepistemicentrenchmentrelationthatarisesfrom .� via (Deft from .� ) and t D betheepistemicentrenchmentrelationarisingfrom ..� via
(Def t from ..� ).

Wefirst show � t < implies � t D < . Suppose� t < . Now � x� � .� � � &< � or
F � & < by (Def t from

.� ). In the former case(andassumingxF <
otherwisethe result is trivial) � x� � ..� < by (Def

..� from
.� ). In the latter

case,surely
F <

. In eithercase,� t D < by (Def t from
..� ).

We now show � t D < implies � t < . Suppose� t D < . Then � x� � ..� <
or
F <

by (Def t from ..� ). If
F � , thenthe formercaseis not possibleby

( ..� 1) andthe latter casegives
F � & < whereby � t < follows by (Def t

from .� ).
Now let xF � . Considerfirst the casewhere � x� � ..� < . By ( ..� 4) � x�� ..�h� . Now it follows by Lemma2(ii) that � x� � ..� � � & < � . Equivalently,# � � & < � ) � x� � ..� � � & < � andconsequently, by theDeductionTheorem,� x� Cn � � ..� � � & < � =;> # � � & < ��@B� . Therefore� x� � m Cn � � ..� � � & < � => # � � & < ��@B� and by (Def .� from ..� ) � x� � .� � � & < � whereby � t <

follows by (Def t from .� ). Considernow the casewhere
F <

. Then
< �� .� � � & < � by ( .� 1) which weknow to holdby Observation9 andtherefore� x� � .� � � & < � (

.� 4) (again,this holdsby Observation9). (Def t from
.� )

now gives � t < asdesired. Â
OBSERVATION 19. (i) If t satisfies(E1) – (E5), then the function ..�
obtainedfrom t by (Def ..� from t ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function,then ..� can be representedas an
entrenchment-basedwithdrawal where the relation t on which ..� is based
is obtainedby (Def t from .� ) (or equivalently, by (Def t from ..� )), and t
satisfies(E1)– (E5).

Proof.
(i) Assumethat t satisfies(E1)– (E5)andlet � ..�h��� � m > < - � u < @

when ��� � and xF � , and � ..���6� � otherwise.We have to verify that ..�
satisfiesthepostulatesfor severewithdrawals.

(
..� 1) Let � ..��� F < . We want to show that

< � � ..�h� . The casewhere� ..�h�i� � is trivial, since� is a theory. Solet �;� � and xF � . By compact-
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ness,therearey 	 $PNPNPNà$:yAá � � ..�h� 4 � suchthat y 	 &�NPNPN¯&Cy§á F < . Since�
is atheory, y 	 &�NPNPNµ&/yAá and

<
arein � . Soit remainsto show that � u < . By

repeatedapplicationof (E3),thereis an â suchthat yAãRtKy 	 &�NPNPNr&¡yAá . Sincey§ã is in � ..��� , we have � u�yAã . Hence,by the transitivity condition(E1),� u*y 	 &GNPNPN�&�y§á . But y 	 &�NPNPN1&�yAá F < , soby (E2), y 	 &�NPNPN1&�yAáit < .
Hence,by (E1)again,� u < , so

<
is in � ..�h� .

( ..� 2) and( ..� 3) areimmediatefrom (Def ..� from t ).
( ..� 4)Assumefor reductiothat xF � and�;� � ..��� . By thelatterand(Def ..�

from t ), we get �6� � . Soby (Def ..� from t ) again,� u � , that is � t �
and � xt � which is impossible.

( ..� 6) If Cn � �k�|� Cn � < � , then �À� � if f
< � � , and xF � if f xF < . It

remainsto show that � uKy if f
< uKy , for all y . But this follows from � t <

and
< t � , which is impliedby (E2),andtransitivity, (E1).

(
..� 7a)Let xF � , andthus xF � � & < � . If � & < {� � , then � ..��� 4 � �� ..� � � & < � by (Def

..� from t ). If � & < � � , andthus �*� � , we need
to show that � uÅy implies � & < uÅy for all y . But from (E2), we get� & < t � , sotheclaimfollows by transitivity, (E1).

( ..� 8) Let �w{� � ..� � � & < � . Hence xF � , by (E1), andalso xF � � & < � . If�º{� � , so � ..� � � & < � 4 � � � ..�h� by (Def ..� from t ). So let �*� � .
Hence� ..� � � & < � x� � , so � & < � � . Hence� x� � ..� � � & < � meansthat� & < xu � . Now assumethat y � � ..� � � & < � , i.e., � & < uwy . We need
to show that � uLy . But since � & < t � , by (E2), � & < xu � meansthat� t � & < . Fromthis and � & < uEy , wegetby transitivity (E1) that � u8y
andtherefore

< � � ..�h� by (Def ..� from t ), asdesired.

(ii) Assumethat ..� satisfies( ..� 1) – ( ..� 4), ( ..� 6), ( ..� 7a),( ..� 8), andlet � t<
if andonly if ��{� � ..� < or

F <
. (That is, we useLemma16 andbase

the following on (Def t from
..� ) ratherthandirectly on (Def t from

.� ).)
We have to verify (a) that thewithdrawal function ..� D obtainedfrom t with
thehelp of (Def ..� from t ) is identicalwith ..� , and(b) that t satisfiesthe
definingconditionsfor epistemicentrenchment.

(a)Usingthedefinition(Def ..� from t ) wegetthat
< � � ..� D � if f< � � and v �K{� � or

F � or� u <
whichmeans,by thedefinition(Def t from ..� ), that

� � � < � � and v �K{� � or
F � or� �K{� � ..� < or

F < � and
< � � ..��� and xF �

Firstweshow that
< � � ..�h� implies

< � � ..� D � . Supposethat
< � � ..�h�

holds.If
F � or �Å{� � , thenby (

..� 3) and(
..� 2) � ..�h�2� � , so

< � �
and

< � � ..� D � by the upperline of � � � . So let xF � and ��� � . We have< � � ..��� 4 � , by (
..� 2). For the lower line of � � � , it remainsto show that



49

either
F <

or �*{� � ..� < . If xF < , then,we needto show that �"{� � ..� < . But
this follows from

< � � ..�h� by Lemma2 (iii) (Expulsiveness).
For the converse,we show that

< � � ..� D � implies
< � � ..�h� . So let� � � begiven.Fromtheupperline, we get

< � � ..�h� with thehelpof ( ..� 3).
So supposethat the lower line is true. But this line containsasa conjunct< � � ..��� , which is justwhatwesetout to prove.

(b) Finally weshow that t indeedsatisfies(E1)– (E5).
(E1)Let � t < and

< tKy , thatis, �·{� � ..� < or
F <

, andalso
< {� � ..� y

or
F y by (Def t from ..� ). We needto show that � t2y , i.e. �L{� � ..� y orF y . Assumethat xF y . Then

< {� � ..� y , andhence,by ( ..� 1), xF < . So we
alsohave �K{� � ..� < . Weconcludefrom

< {� � ..� y with thehelpof ( ..� 9) that� ..� y 4 � ..� < . Since�K{� � ..� < , wefinally get �·{� � ..� y , asdesired.
(E2) Let � F < . In orderto seethat � t < , we needto show that �¾{�� ..� < or

F <
. Assume xF < . Then by ( ..� 4)

< {� � ..� < . Henceby ( ..� 1),�·{� � ..� < , asdesired.
(E3) In orderto seethateither � t � & < or

< t � & < , weneedto show
thateither �º{� � ..� � � & < � or

F � & < , or
< {� � ..� � � & < � or

F � & < .
Assumethat xF � & < . Thenby (

..� 4), � & < {� � ..� � � & < � , soby (
..� 1) in fact

either �K{� � ..� � � & < � or
< {� � ..� � � & < � .

(E4)Assumethat � x�  . Weneedto show that �·{� � just in case� t <
is truefor every

< �  . Thelatterconditionmeans,by (Def t from ..� ), that�·{� � ..� < or
F <

, for every
< �  

Weknow from (
..� 2) that �E{� � is sufficient for this condition.To show that�L{� � is alsonecessary, observe that theconditionentailsthat �L{� � ..� � .

Since�Ñx�  , weknow that � {� � . Soby (
..� 3), � ..� � � � . So �K{� � , as

desired.
(E5) Assumethat

< t � for all
< �  . This means,by (Def t from ..� ),

thateither
< {� � ..�h� for all

< �  or
F � . Theformercannotbe,however,

sinceif
<

is in Cn � H � , it will bein � ..�h� nomatterwhat � ..�z� lookslike,by
( ..� 1). Hence

F � . Â
LEMMA 20. For anyentrenchmentrelation t with respectto � , thesystem
of spheres g � t � satisfiesconditions( g 1) – ( g 4) with respectto U �?V .

Proof. Let t beanentrenchmentrelation.We show that g � t � is indeed
asystemof spherescentredon U �;V .

( g 1) By theconnectednessof t (whichfollowsfrom (E1)–(E3)— see[9,
Lemma3(i) p. 189]) we have thateither � t < or

< t � for � $ < �  . It
follows that either

> yº- � uwy @ 4�>�ä - < u ä @ or
>�ä - < u ä @ 4Å> yº-� u¥y @ . Denoting U > y8- � u¥y @ V by «�¢ and U >�ä - < u ä @ V by «�å asin (Defg from t ), it follows by Lemma0(v) andthe fact thecutsaretheoriesthat«�¢ 4 «�å or «�å 4 «�¢ for «�¢æ$�«�å � g � t � .
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( g 2) If � x�  , then �çx� � since � is a belief set.It follows by (E4)
that

> � -��èu �A@�� � . Therefore«kI � U > � -��éu �A@ V � U �;V and,by
(Def g from t ), U �;V � g � t � . Now supposefor reductiothat thereis some«�å � g � t � suchthat «�å Ú U �;V . Thatis U > y�- < uKy @ V Ú U > � -ê�Lu �A@ V . By
Lemma0(iv) and(i) (for cutsaretheories— see[29,p.159])

> � -��Lu �A@�Ú> yK- < u*y @ . Thatis thereis some
ä � > yK- < u"y @ but

ä x� > � -¨�¶u �n@ .
Therefore

< u ä but ��xu ä . By theconnectednessof t wehave
ä t"� and,

by transitivity of t (E1),
< u*� . Thiscontradicts(E2)(for � F < ). Henceno

such«�¢ existsand U �;V is the
4

-minimumsphereof g � t � . Otherwise� �  
and H � g by definition.

( g 3) Take thecut «kë . Now
> < -§,�u < @�� H by (E5). So «kë � U > < -,Lu < @ V � UìH\V � � 0 .

( g 4) Let y �  and xF #Éy . It remainsto show that lrd � y �/� U > < -¨#Ry*u< @ V for all y .
It follows from thecompactnessof Cn andfrom (E1) – (E3) that theset> < -A#Ry"u < @ doesnot entail #Ry (see[29, proof of Lemma5, p. 161]), soU > < -R#RyÀu < @ V intersectsU ynV . It remainsto show that every « in g which

is a propersubsetof U > < -�#Rywu < @ V doesnot intersect U ynV . Supposethat« in g is a propersubsetof U > < -%#Rywu < @ V . Thenthereis a
ä

suchthat« � U > < - ä u < @ V and
> < - ä u < @ is a propersupersetof

> < -æ#Ry·u < @ .
Let í bein

> < - ä u < @z� > < -æ#Éy·u < @ . Sinceí {� > < -Ü#RyKu < @ and t
is connected,íÆt©#Ry . But then,since

ä u¥í , we canconcludewith thehelp
of (E1) that

ä u*#Ry aswell. Thus #Ry � > < - ä u < @ , so U > < - ä u < @ V does
not intersectU ynV . Weconcludethatindeedl d � y �9� U > < -ê#Ry�u < @ V . Â
OBSERVATION 21. For anyentrenchmentrelation t , theAGM contrac-
tionsandthesevere withdrawalsgeneratedfrom t and g � t � are identical,
i.e.,

¸ � g � t �:�'� ¸ � t � and W � g � t �:�9� W � t � .
Proof. Let t beanentrenchmentrelation.Weknow from Lemma20thatg � t � is indeedasystemof spherescentredon U �;V .
It remainsto show that for g � g � t � generatedby (Def g from t ) it

holdsthat
(i)
> < � �Ê- � u � ( < @�� ejf � U �;V = cBd � # �k�:�

(ii)
> < � �Ê- � u < @�� ejf � lrd � # �k�:�

We begin by showing (ii) : Using the proof of the Lemma20, the part
concerningg�î , we know that for every � , the smallestsphereintersectingU£# � V , thatis l d � # �k� , is identicalwith theset U > < - � u < @ V . Moreover, since> < - � u < @ is a theory(see[29, p. 159]), by Lemma0(i), ejf � lrd � # �k�Ô�> < - � u < @ . Furthermore,we concludecBd � # �k�C� lsd � # �k�Am U£# � V � U > < -� u < @ =;> # �A@ V .
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Knowing this,wehave to show for (i) that

ejf � U �;V = U > < - � u < @ =�> # �A@ V �9� > < � �Ê- � u � ( < @
To show thattheleft-hand-sideis includedin theright-hand-side,let y ��
for all

� � U �;V = U > < - � u < @ =Ô> # �A@ V . Weneedto show that y � � and� u � (iy . But we know from theassumptionthat y � � for all
� � U �?V .

Since � is a theory, y � � . Moreover, y � � for all
� � U > < - � u< @ =6> # �n@ V . Hence� (?y � � for all

� � U > < - � u < @ V . Hence,by the
completenessof Cn,

> < - � u < @ F � (�y . Since
> < - � u < @ is a theory

(see[29, p. 159]),wegetthat � (Jy � > < - � u < @ , thatis, � u � (�y .
To show converselythat the right-hand-sideis includedin the left-hand-

side,let y � � and � u � (�y . Clearly y � � for all
� � U �;V , sincey � � .

It remainsto show that y � � for all
� � U > < - � u < @ =G> # �A@ V . Let such

an
�

begiven.Since � u � (;y , we know that from
� � U > < - � u < @ V

we caninfer that � (;y � � . But also # �"� � (since � x� > < - � u < @
— see[29, proof of Lemma5, p. 161]).So,since

�
is a theory, y � � . We

haveshown that y � � for all
�

in U �;V = U > < - � u < @ =i> # �A@ V . But by the
definitionof ejf , this justmeansthat y is in ejf � U �;V = U > < - � u < @ =J> # �A@ V � ,
asdesired. Â
LEMMA 22. For anysystemof spheres g with respectto U �;V , theentrench-
mentrelation ¹ � g � satisfiesconditions(E1)– (E5)with respectto � .

Proof. Let g beasystemof spherescentredon U �;V . Weshow that t is an
epistemicentrenchmentrelationon � .

(E1)Let � t < and
< t8y . By (Def

D t from g ) we have that lrd � # < � x4U � V and l d � #Éy � x4 U < V . It follows that l d � # < �%m U£# � V�x� H and l d � #Ry �%mU£# < VKx� H . Consequently, from the latter, lrd � # < � 4 lrd � #Éy � . Thereforel d � #Éy �km U£# � V9x� H . Hencel d � #Ry � x4 U � V and,by (Def
D t from g ) � tKy as

desired.
(E2) Let � F < . It follows that U � V 4 U < V . Supposefor reductio thatlrd � # < � 4 U � V . It follows that lsd � # < � 4 U � V which contradictsthe defini-

tion of lsd � # < � . Hencelrd � # < � x4 U � V asrequired.
(E3) Suppose� xt � & < . We needto show that

< t � & < . From our
suppositionan (Def

D t from g ) it follows that lrd � # � � & < �:� 4 U � V . NowU£# � � & < � V � U£# � (¼# < V � U£# � V = U£# < V . Thereforelrd � # � � & < �:�ïm U£# < V%x� H .
Consequentlylsd � # � � & < �:� x4 U < V andhenceby (Def

D t from g ) we have< t � & < asdesired.
(E4)Let ��x�  Weneedto show � t < for every

< �  if f � x� � .
Left to right. we shall prove the contrapositive. Let �¥� � . We needto

show � xt < for some
< �  . By (Def

D t from g ) this amountsto showinglrd � # < � 4 U � V for some
< �  . Consider

<�Ç # < . lrd � #'# �k��� lrd � �k�9� U �;V
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by( g 2) andsince�;� � . Since�?� � it followsthat U �;V 4 U � V andthereforelrd � �k� 4 U � V asdesired.
Right to left. We shallprove thecontrapositive. Let � t < for some

< � 
. By (Def

D t from g ), thereis some
< �  suchthat lsd � # < � 4 U � V .

Consequentlyby ( g 2), U �;V 4 lrd � # < � 4 U � V . Hence�;� � asrequired.
(E5) Let xF � . Again,we show this by consideringthecontrapositive. We

needto show that
< xt � for some

< � g . That is, by (Def
D t from g ),

we needto show lrd � # �k� 4 U < V for some
< �  . take

<éÇ , . Clearlylrd � # ��� 4 U£,�V asdesired. Â
OBSERVATION 23. Let t bean entrenchmentrelationand g a systemof
spheres.Then

(i) ¹ � g � t �:�'� t .
(ii) g � ¹ � g �:� is thetopological closure of thetrimmingof g , i.e., � gkª � ¯® .
Proof. (i) Let t beanentrenchmentrelation.
Furthermore,let t D be ¹ � g � t �:� . That g � t � is a systemof sphereswas

provedin Observation21(i) andthat t D �*¹ � g � t �:� is anepistemicentrench-
mentrelationsubsequentlyfollows by theproofof Observation24below.

Now � t D < if f lrd � # < � x4 U � V if f by (Def
D t from g ). This is the case

iff U > y2- < u�y @ V¼x4 U � V by (Def g from t ) (seebeginning of theproof of
Observation21(i)) whichholdsiff

> y}- < uEy @ xF � . Thisholdsiff
< xu � if f

(since
> y8- < u�y @ is a theory(see[29, proof of Lemma5, p. 161])) which

holdsiff � t < by the connectednessof t which follows from (E1)–(E3)
(see[9, Lemma3(i) p. 189])asdesired.
(ii) Let g beasystemof spheres.Furthermore,let g D be g � ¹ � g �:� . That ¹ � g �
is indeedan epistemicentrenchmentrelationhasbeenshown in Lemma22
andthat g � ¹ � g �:� is a systemof spheresfollows by the proof of Observa-
tion 21(i).

Now « is in g D if f thereis some � suchthat « � U > < - � u < @ V , by
(Def g from t ). This holds,by (Def

D t from g ), iff thereis some � such
that « � U > < -êlrd � # �k� 4 U < V @ V . Now this holdsiff thereis some� suchthat« � U > < - < � ejf � lsd � # �k�:��@ V , Simplifying, this is thecaseiff thereis some� suchthat « � U ejf � lsd � # �k�:� V asdesired.

Now thetrimming of g consistsexactly of all thesetsof theform l d � y � ,
andtheoperationof taking the topologicalclosureis just theonethat takes
every set X of worlds to U e:f � X � V . Thuswe have proved that g D is the topo-
logicalclosureof thetrimmingof g . Â
OBSERVATION 24. For any systemof spheres g , theAGM contractions
and the severe withdrawals generated from g and ¹ � g � are identical, i.e.,¸ � ¹ � g �:�'� ¸ � g � and W � ¹ � g �:��� W � g � .
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Proof. Let g be a systemof spherescentredon U �?V , and t ��¹ � g � as
definedby (Def

D t from g ). Noticethatsince t is connected(see[9, Lem-
ma3(i) p. 189]),wehave that � u < if andonly if lrd � # ��� 4 U < V .

Lemma22 showed that t is indeedan epistemicentrenchmentrelation
with respectto � .

For the limiting casewhere
F � all contractionsand withdrawals with

respectto � aresetto � , soweassumein thefollowing that xF � .
Since t �L¹ � g � is anentrenchmentrelation,we know from Observation

21 that
¸ � ¹ � g �:�Ô� ¸ � g � ¹ � g �:�:� . But sinceby Observation 23, g � ¹ � g �:�Ô�� gkª � ¯® , weconcludewith Lemma12that

¸ � ¹ � g �:��� ¸ �:� gkª � ¯® ��� ¸ � g � .
Preciselythesameargumentshows that W � ¹ � g �:�9� W � g � . Â

B. Twelve Methods of Withdrawing a Belief �
In this appendixwe contrastvariousmethodsfor withdrawal of a belief �
fromabeliefset � currentlyfoundin theliterature.Weconsidertheprincipal
casewhere xF � asthemajority of thesemethodssatisfythefailureproperty
(i.e.,

F � implies � .�h��� � ).
Thefollowing tablelistsanumberof proposalstogetherwith anindication

of which # � -worldsandwhich � -worldsarecontainedin U � .��� V . «�¢ refersto
thesmallestsphereintersecting� (i.e., lrd � �k� ). U �;V is, of course,thesmallest
(innermost)sphere.

U � .�h� V . . .within U£# � V . . .within U � V
1. AGM (trans.rel.) partialmeet[1] U£# � V m «k¢ U �?V
2. Severewithdrawal [Section3] U£# � V m «k¢ U � V m «k¢
3. AGM maxichoice[1] single # � -world U �?V
4. Saturatableset[18, 14]) single # � -world someX s.th. U �;V 4 X 4 U � V
5. Partialmeetof saturatablesets[14] U£# � V m «k¢ someX s.th. U �;V 4 X 4 U � V
6. Iron-fistedwithdrawal [Section7] U£# � V m «k¢ U � V
7. Levi – dampedtype1 [20] U£# � V m «k¢ U � V m « 
 
 !
8. Cantwellfallback-based[4] U£# � V m «k¢ U � V m «�ã for someâ � >ïð $PNPNPN\$ �É@
9. Systematicwithdrawal [26] U£# � V m «k¢ U � V m «k¢qñ 	

10. Lindstr̈om andRabinowicz [22] U£# � V m «k¢ someX s.th. U �;V 4 X 4 U � V m «�¢
11. Semi-contraction[6] U£# � V m «k¢ someX s.th. U �;V 4 X 4 U � V m «k¢ 
:T
12. Nayak[p.c.] U£# � V m «k¢ U � V m � «�¢ � «�¢�ñ 	 � �:o
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The diagramson the following pagesillustrate typical situationsfor these
variousproposals.NotethatFigures1 and2 appearedin Section3.
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[K]ô

[¬ φ]

Figure 3. Maxichoice — pure minimal
change(wrt õ ).

òjó
[K]ô

[¬ φ]

Figure4. Saturatableset(no recovery).

òjó
[K]ô

[¬ φ]

Figure5. Partialmeetof saturatablesets.

òjó
[K]ô

[¬ φ]

Figure 6. “Iron-fisted” withdrawal — mini-
mal revisionequivalentwithdrawal

òjó
[K]ô

[¬ φ]

Figure7. Levi Contractionvia dampedinfor-
mationalvalueof type1.

ò ó
[K]ô

[¬ φ]

Figure8. Cantwell“f allback-based”.



56 òjó
[K]ô

[¬ φ]

Figure9. Meyeretal. systematicwithdrawal.

òjó
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[¬ φ]

Figure10. LindströmandRabinowicz (Inter-
polation).

òjó
[K]ô

[¬ φ]

[ψ]

Figure 11. Ferḿe and Rodriguez semi-
contraction.

òjó
[K]ô

[¬ φ]

Figure12. Nayak(personalcommunication).



57

C. Interrelationship Between Methods

öø÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
÷ ÷

Nayak(p.c.)

öøù ù ù ù ù ù ù ù ù

PM saturatable

ö
Saturatable

ö
Iron-fisted

öLindstr̈om-Rabinowicz

öCantwell

ö ö
÷÷÷÷÷÷÷÷÷÷÷÷÷

AGM PMC
ö

úúúúú
Levi d.i.v.1

ö
ù ù ù ù ù

Meyeretal.

ö
û û û û û û û û û û û û û

Severe

ö
Maxichoice

ümoregeneral

ý
lessgeneral

Notesþ
In theAGM literaturethesetwo termshave a precisemeaning,differentiatingimportant

formsof belief removal, whichweshallintroducelater. For thetimebeing,however, wedefer
to the term contractionwhen referring to any operationremoving beliefs from an agent’s
epistemicstate.ÿ

Levi [18] refersto this ascoercedcontraction (asdistinct from uncoercedcontraction
whichrefersto belief removal for purposesdescribedin whatfollows).�

Evenmoresoif oneconsiderstherathertrivial natureof AGM expansion.�
Thisgeneralisationallowsusto retainthespirit of theoriginalwhile notbeingtieddown

to loadedtermssuchas‘information’.
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A contractionof _ by a���� in the AGM framework is maxichoice if it leadsto a
maximalsubsetof _ thatdoesnot imply a . It is partial meetif it is theintersectionof select
maxichoicecontractions.�

A revision functiondefinedfrom a maxichoiceAGM contractionfunctionvia theLevi
Identity [8, p. 69] ( _	� a�
 Cn � _ .` �� a������»a���� ) alwaysreturnsa belief statewhich is
maximallyconsistentandthereforehasanopinionasto thetruth or falsity of every sentence
in theobjectlanguage.�

More formally, _�� � _�� a if andonly if (i) _���õ;_ ; (ii) a��� �"! � _�� � ; and,(iii) for
any _ � � suchthat _�#%$J_ � � õJ_ , a����"! � _ � � � .&

An AGM full meetcontractionmaybeconstructedfrom _ as _ .`Aa'
 � � _�� a%� .(
Strictlyspeaking,Grove’s[12] constructiondealssolelywith syntactic,ratherthanseman-

tic, objects;maximallyconsistentsetsof sentencestake theplaceof worlds.It canbethought
of asfurnishingasemanticsin sofarasit providesa “picture” for thebeliefchangeprocess.þ�)

In traditional AGM terminology, _ .`Aa*� _�� a where _�� a is the set of maximal
subsetsof _ failing to imply a . Theconnectionhasbeenestablishedby Grove [12].þ þ

Recently, FerḿeandRodriguez[7] havealso,independently, proposedanaxiomatisation
for severewithdrawal usingthepostulate(

..` 9) — seeSection6.þ ÿ
Technically, this canbe viewed asthe dual of the Grove ordering.SeeGärdenfors[8,

Section4.8].þ��
It is easyto show thatanecessaryandsufficientconditionfor (Def

.` from + ) to generate
maxichoicecontractionsis thattheentrenchmentrelationsatisfieseither a�,.- or -/, � - 0a�� , for all sentencesa and - in � . SeeRott [31, Chapter8].þ �

Or amongthosefor nonmonotonicconsequencerelations.A nonmonotonicconsequence
relation 12 canbedefinedfrom a revision operator� anda belief set(or rather, expectation
set) _ by putting a 12 - if f -3� _*� a [10]. Theparameter_ is hereleft implicit.þ4�

However, via theso-calledHarperIdentity — _ .`Aa�
 _65�_7�8 a — Recovery can
belinkedwith successfor revision operationsandreflexivity for nonmonotonicconsequence
relations.þ��

Cut: If a 12 - and a:9'- 12<; , then a 12<; .
CumulativeMonotony: If a 12 - and a 12<; , then a=9'- 12�; .
Or: If a 12�; and - 12<; , then a:>?- 12<; .
RationalMonotony: If a 1 �2@ - and a 12<; , then a=9A- 12�; .
For adetaileddiscussion,we referthereaderto Makinson’s [24] survey.þ �

Rott [31] considersa slightly differentsetof postulatesin an attemptto remove refer-
enceto the underlyinglogic. We shall remaincloserin spirit to the AGM asthis additional
generalitydoesnotaffectouraimsin thispaper.þ�&

Wearegratefulto SvenOveHanssonfor highlightingthisproperty.þ�(
In fact,Makinson’s [23] resultregardingthemaximalityof AGM contractionfunctions

bearsthisoutalso.ÿB)
That is, C is in D if f it is a fixed point in the operationtaking every modelset E to¦ � ^ _ .`F-¨b�G E �õ?^ -¨bH�ÿ þ
For somepurposesit is convenientto rephrasethis definitionin termsof contractionsof

conjunctsasfollows.

(Def �ID from
.` ) C:J 
}v ¦ � ^ _ .`Ra:9?-Üb�GK-L�M�N� whenever �O a^ _ b otherwiseÿ ÿ

In modeltheoreticterms,thespheresof theLewis-Groveconstructionsare P=Q -elementary
but not P -elementary(see[3, p. 141]). If, however, their secondconstructionis appliedto
severewithdrawals,theresultingspheresturnout to be P -elementary.ÿB�

Similarly all constructionsof systemsof spheresfrom someentrenchmentrelation +
(whichwill use“cuts” or “up-sets”with respectto + , seeSection12below) yield P -elementary
spheres.ÿ �

Priestetal. [28] havepointedto anerrorin Grove’s [12, Theorem1] proofverifying that
therevisionpostulateanaloguesof (

.` 7) and(
.` 8) aresatisfiedby a revision functionderived
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from asystemof spheres.They demonstrateoneway to fix Grove’s proof.Alternatively, they
suggestthateveryspherein R � berequiredto beelementary. In any case,Grove’sstatement
of theresultis notat fault.ÿS�

A generalisationof this theoremfor relationsof epistemicentrenchmentwith incompa-
rabilities (andonesthat neednot satisfyMinimality andMaximality) is given in Rott [30,
Theorem2].ÿB�

Underthesameassumptionsit alsoreducesto whatmight becalledthestandarddefini-
tion in theliterature(cf. Gärdenfors[8, pp.95–96]):

(Def � �T+ from D ) a + - if f UWVX�� a%� õ.UWVX�� -N�ZYÿ �
We changethenotationof Kaluzhny andLehmannin orderto avoid confusionwith the

notationusedin thispaper.�S)/[ ÿ refersto thesecondsmallestsphere,that is, that sphereC suchthat ^ _ b $\C and
C"õ.E for all E �
 ^ _ b .�S) [ JI] þ refersto thesphereimmediatelysmallerthan

[ J , that is, thatsphereC suchthat
C	$ [ J and E5õ.C for all E^$ [ J .�S)

Thisis for reasonablesemi-contractionfunctions(see[6, Section5]). Otherwisewehave,
within ^ a1b , someC s.th. ^ _ b õ.C¥õ.R � .
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publishedby OxfordUniversityPress,1998.


