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Abstract
Using Gärdenfors’s notion of epistemic entrenchment, we develop the
semantics of a logic which accounts for the following points. It explains
why we may generally infer If ¬A then B if all we know is A∨B while
must not generally infer If ¬A then B if all we know is {A∨B,A}. More
generally, it explains the nonmonotonic nature of the consequence re-
lation governing languages which contain conditionals, and it explains
how we can deduce conditionals from premise sets without condition-
als. Depending on the language at hand, our logic provides different
ways of keeping the Ramsey test and getting round the Gärdenfors
triviality theorem. We indicate that consistent additions of new items
of belief are not to be performed by transitions to logical expansions.

1 Introduction

1.1 An example

Imagine that you are walking along a long and lonely beach. It is a beautiful
night. Still you feel somewhat uncomfortable. You are hungry. But you know
that at the end of the beach there are two restaurants, one of them run
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by Annie, the other one by Ben. There are no other buildings around. Now
you are still far away from the restaurants, but you happen to perceive a
shimmering light there, without being able to make out whether it comes
from Annie’s or Ben’s restaurant. So you form the belief that either Annie’s
or Ben’s restaurant is open. And also, you are willing to accept the conditional

If Annie’s restaurant is not open (then) Ben’s restaurant will be open.
(1)

Approaching the promising end of the beach, you see that Annie’s restaurant
is lit while Ben’s is unlit. You form the new beliefs that Annie’s but not Ben’s
restaurant is open. You have just learned something new, nothing causes any
contradiction. But surprisingly you have lost the conditional (1). You no
longer believe that if Annie’s restaurant is not open then Ben’s restaurant
will be open, nor do you assent to the (more appropriate) subjunctive variant

If Annie’s restaurant were not open (then) Ben’s restaurant would
be open. (2)

Put in more formal terms, the premise of your belief state in the first situation
may be taken to be A∨B. Later on you add new pieces of information, viz.,
A and ¬B. Representing the natural language conditional ‘if . . . then . . . ’ by
the formal connective 2→, we find that you can infer ¬A2→B at the outset
of your beach walk, but that you cannot infer ¬A2→B after spotting the
light source in Annie’s restaurant:

¬A2→B ∈ Cn({A∨B}) , but
¬A2→B /∈ Cn({A∨B,A,¬B})

(or ¬A2→B /∈ Cn({A∨B,A&¬B})).
Conditionals thus exhibit a non-monotonic behaviour. That is, in the con-
text of a language which contains conditionals, we cannot expect to have
a plausible consequence relation Cn such that Γ⊆Γ′ automatically implies
Cn(Γ)⊆Cn(Γ′). This is my first point. My second one is that Cn should in-
clude some kind of conditional logic. In the initial situation, it appears quite
correct to infer the natural language conditional (1) (not just the material
conditional ¬A→B!) from the premises in which no conditional connective
occurs.
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Notice that it seems very natural to switch from considering an indicative
to considering the corresponding subjunctive conditional in this example.1

We will in fact presuppose in this paper that, roughly, both types of condi-
tionals are susceptible to a unified account employing the so-called Ramsey
test :2

(R) A2→B is accepted in a belief state if and only if updating this belief
state so as to accomodate A leads to a belief state where B is accepted.

1.2 The role of consequence relations in Gärdenfors’s
incompatibility theorem

The points just made in the intuitive example have a counterpart in a mean-
while notorious abstract result. Gärdenfors (1986; see Gärdenfors 1988, Sec-
tions 7.4-7.7) has shown that the Ramsey test is incompatible with a small
number of apparently innocuous and reasonable requirements for updating
belief states. The most important one is the preservation principle:

(P) If a sentence A is consistent with a belief state then updating this belief
state so as to add A leads to a belief state which includes all sentences
accepted in the original belief state.3

Leaving aside technical niceties, all proofs for the Gärdenfors incompatibility
theorem that can be found in the literature run like this. Start with a belief

1The example is a variation of an example to be found in Hansson (1989). The crucial
difference from Hansson’s hamburger example is that in my case spotting the light in
Annie’s restaurant completely overrides the earlier piece of information that Annie’s or
Ben’s restaurant is lit. In this way my example is also meant to refute the suggestion
of Morreau (1990) that the evaluation of conditionals always depends on the order of
incoming information. Morreau’s analysis predicts, wrongly I believe, that conditionals
cannot be lost after consistent updates of belief states. See Rott (1990).

2Since Adams published his famous Kennedy example, most writers have refrained from
venturing a unified analysis of indicative and subjunctive conditionals. I think, however,
that the principle of compositionality should be applied here. If there are differences in
meaning between indicative and subjunctive conditionals, they should be attributed to
the different grammatical moods and/or tenses rather than to the connective ‘if’ itself.

3(R) and (P) could be weakened by requiring that A and B be “objective sentences”,
i.e., non-conditionals. This would not make a difference for the following. However, while I
reject (P), I shall accept a modified form of the preservation principle saying that objective
sentences are preserved under consistent updates.
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state K that is totally ignorant with respect to two sentences A and B. Let
K′ and K′′ be the belief states that are obtained after adding A and B to K,
respectively. Now the preservation principle says that adding ¬(A&B) to K′

and K′′ will not throw out A and B from K′ and K′′, respectively. Applying
the Ramsey test, this gives that ¬(A&B)2→A is in K′ and ¬(A&B)2→B is
in K′′. Now consider K′′′ which is the resulting belief state after adding A
and B (or after adding A&B) to K. It is usually stipulated or just taken for
granted that K′′′ is a superset of both K′ and K′′. Hence both ¬(A&B)2→A
and ¬(A&B)2→B are in K′′′, hence, by another application of the Ramsey
test, A and B are in the update of K′′′ which is necessary in order to acco-
modate ¬(A&B). But of course, ¬(A&B) should be in this update as well.
So this update is inconsistent, in contradiction to a quite modest principle
of consistency maintenance.

The reader will already have guessed the point where I do not agree. It is
the stipulation that K′′′ be a superset of K′ and K′′. Actually, most writers
identify consistent additions of beliefs with logical expansions :

K′ = Cn(K∪{A})
K′′ = Cn(K∪{B})

K′′′ = Cn(K∪{A,B})
(or K′′′ = Cn(K∪{A&B})).

It follows that K′′′ is a superset of both K′ and K′′, if one can presuppose
that Cn is monotonic, or respectively, if it satisfies the similar, slightly weaker
principle of classical monotonicity : if Cn0(Γ)⊆Cn0(Γ

′) then Cn(Γ)⊆Cn(Γ′).
But we saw in the introductory example that neither monotonicity nor clas-
sical monotonicity is warranted in languages containing conditionals.

Another way to make precise the intuitive idea behind the proofs of the
Gärdenfors incompatibility theorem is to keep the expansion idea for K′ and
K′′ but to identify K′′′ with Cn(K′∪{B}) and Cn(K′′∪{A}). This would guar-
antee that K′′′ is a superset of K′ and K′′; but it of course assumes that
Cn(K′∪{B}) and Cn(K′′∪{A}) are the same set. We shall see below, how-
ever, that this identification is not valid either in our modelling of Cn, as
long as we are concerned with the language L1 specified below. In the more
comprehensive language L2, Cn(K′∪{B}) and Cn(K′′∪{A}) will be identical,
but only at the expense of inconsistency.4

4In anticipation of things to be explained below: In L1, Cn(Cn({A})∪{B}) corresponds
to the sentences satisfied by the E-relation based on ⊥≺B≺A≺>, Cn(Cn({B})∪{A})
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It is, however, utterly implausible to assume that adding B after A (or
adding A after B) to a belief state that is totally ignorant about A and B
leads to an inconsistent belief state. In Rott (1989a) I argued that the right
lesson to be drawn from the Gärdenfors incompatibility result is that con-
sistent revisions by new items of belief, which I call additions, are not to be
identified with expansions. Now let us write Ko

A for the result of adding A
to K. In the final analysis, we see how the puzzle caused by the Gärdenfors
incompatibility theorem gets resolved. We will develop an account of how
consistent additions of sentences are possible by adding new pieces of infor-
mation to some set of premises from which a belief state is generated. What
we then get is that (Ko

A)o
B equals (Ko

B)o
A but that no longer (Ko

A)⊆(Ko
A)o

B

or (Ko
B)⊆(Ko

B)o
A. We summarize our preliminary overview of the different

possiblities of cutting the chain of proof of the Gärdenfors incompatibility
theorem in the table on the next page.5

1.3 Program

This paper is intended to be the first part of a trilogy. We shall base the
notion of a belief revision model on the concept of a relation of epistemic
entrenchment (“E-relation”). We discuss the properties, the motivation and
the finite representability of E-relations. Then we say what it means that
a relation of epistemic entrenchment satisfies a sentence. Sentences of four
different languages will be considered.6 First, we have the purely “truth-
functional” language L0 of propositional logic with the symbols ¬, &, ∨, →,
⊥ and >. In the present paper we will then examine the language L1 with
an additional binary conditional operator 2→ which connects sentences from
L0. In the second part, we extend L1 to L2 by admitting the possibility that
L1-sentences are connected by the classical operators of L0; in particular L1

allows for negations and disjunctions of conditionals. Finally, in the third
part of the trilogy, we shall make some comments on L3 which extends L2

by permitting nested conditionals. This last part will largely be devoted

corresponds to ⊥≺A≺B≺>. In L2, however, B cannot be consistently added to Cn({A})
at all.

5Admittedly, it is unlikely that the full meaning of this table is transparent for the
reader at the present stage. I apologize for this.

6We identify a language with the set of its sentences.
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Proving Gärdenfors’s theorem

Let K be “totally ignorant” about A and B.

Proof idea:

¬(A&B)2→A ∈ Ko
A ⊆ K??

?? ⊇ Ko
B 3 ¬(A&B)2→B

If so, (K??
??)
∗¬(A&B) would be inconsistent.

Ideas to get this to work:

theory addition base addition

Γ 7→ Γ∪{A}
K 7→Ko

A=Cn(K∪{A}) Cn ↓ ↓ Cn
K 7→ Ko

A

K??
?? = . . . L1 L2 L1 L2

no no no no
Ko
{A,B} ⊇ Ko

A, Ko
B since Cn is nonmonotonic

no no no no
Ko

A&B ⊇ Ko
A, Ko

B since Cn is not classically monotonic
no yes yes yes

(Ko
A)o

B = (Ko
B)o

A inconsistent

(Ko
A)o

B ⊇ Ko
A yes yes no no

Proof of theorem fails succeeds fails fails

to the application of the present logic Cn in belief revision. It is due to
the fact that we can model belief revisions and keep the Ramsey test for
conditionals without falling prey to the Gärdenfors incompatibility theorem
that the present logic is called a logic for belief revision. We shall mainly be
concerned with belief additions, and it will turn out that the method of belief
revision advocated violates the preservation principle. We treat additions and
revisions not only by “objective” sentences from L0, but also by conditionals
and compounds of conditionals.

In the present paper we confine ourselves to L1. In order to develop a
logic which suits our purposes we do not explicate the relation

Γ|=A , or equivalently, A∈Cn(Γ)
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in the usual way as meaning that every E-relation which satisfies Γ also sat-
isfies A. This would give us too few consequences of Γ. We restrict the class
of E-relations that are suitable for Γ and adopt the following criterion of the
preferential-models-approach: every E-relation that “minimally”, or “prefer-
entially”, satisfies Γ also satisfies A. In so doing we make Cn nonmonotonic.

The main task then will be to find the right notion of minimality. Three
candidates will be considered. The first one will turn out to be insufficient,
the second one is quite satisfactory. But we will choose a third one which gives
us a unique minimal (in fact a smallest) E-relation for every consistent finite
and what is more, for every “well-founded” premise set Γ. In the last section
of this paper we examine the inference patterns validated by the resulting
conditional logic Cn. In particular we show that the so-called “counterfactual
fallacies” (see Lewis 1973, Section 1.8) are defeasibly valid, or valid by default.

2 Belief revision systems and epistemic en-

trenchment

Gärdenfors (1988, p. 148) defined a belief revision system as a pair 〈K,∗〉
where K is a set of belief sets, i.e., a set of sets of sentences that are closed
under the consequence relation Cn0 of classical propositional logic, and where
∗ is a belief revision function taking any belief set K from K and any L0-
sentence A to the new belief set ∗(K,A)∈K, or simply K∗A, which is to be
interpreted as the minimal revision of K needed to accept A. Moreover, it is
required that a belief revision system is rational in the sense that it satisfies
a set of rationality postulates originally specified by Gärdenfors in 1982 (see
Gärdenfors 1988, Section 3.3). Equivalently, we can say that a belief revision
system is a set {〈 K,∗K〉: K∈K}, where ∗K, the revision function associated
with K, is obtained by putting ∗K(A)=∗(K,A) for each K∈K.

Now let K∈K be fixed. Gärdenfors showed that it is, in a very strict
sense of the term, the same thing to have a belief revision function ∗

K for
K as it is to have a belief contraction function – K for K satisfying another
set of rationality postulates. The relevant connections are furnished by the
so-called Levi identity

∗
K=R(– K) is defined by K∗A=Cn0(K

−
¬A∪{A})

and the so-called Harper identity
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– K=C(∗K) is defined by K−A=K∩K∗¬A

(see Gärdenfors 1988, Section 3.6). More recently, Gärdenfors and Makinson
(1988) showed that it is the same thing to have a contraction function – K

satisfying the relevant set of rationality postulates as it is to have a relation
of epistemic entrenchment, or shortly an E-relation, with respect to K. Now,
what are E-relations? An E-relation with respect to K, denoted by ≤K, is
a relation holding between L0-sentences. For A,B∈L0, A≤KB is supposed to
mean that B is at least as firmly entrenched in K as A or, better, Withdrawing
A from K is not harder than withdrawing B. This can be made quite precise
by an idea again due to Gärdenfors. Suppose you are pressed to give up either
A or B (where 6`A&B), which appears to be the same as to give up A&B. Now
you decide to give up A just in case B is at least as firmly entrenched in K
as A. Since by supposition you have to retract either A or B, this explication
clearly entails that A≤KB or B≤KA.

E-relations ≤K are to satisfy the following conditions (we drop the sub-
script ‘K’ when there is no danger of confusion):

(E1) If A≤B and B≤C then A≤C (Transitivity)
(E2) If ∅6=Γ`A then B≤A for some B∈Γ (Entailment)
(E3) If B≤A for every B then `A (Maximality)
(E4) If K6=L0 then A≤B for every B iff A/∈K (Minimality)

Here and throughout this paper, Γ`A is short for A∈Cn0(Γ), A`B is short
for {A}`B and `A is short for ∅`A. Condition (E4) expresses the fact that
the relation ≤K of epistemic entrenchment is interesting only within the
set K. Outside K, all sentences have equal — viz., minimal — epistemic
entrenchment. Condition (E2) replaces Gärdenfors’s conditions

(E2a) If A`B then A≤B (Dominance)
(E2b) A≤A&B or B≤A&B (Conjunctiveness).

(compare Gärdenfors 1988, Section 4.6, and Gärdenfors and Makinson 1988).
It is easily verified that in the presence of (E1) and when applied to belief
sets, (E2) is equivalent to the conjunction of (E2a) and (E2b). Apart from
reducing the number of postulates, (E2) has two more advantages. First, it
has a very clear motivation. For suppose that Γ`A and B 6≤A for all B∈Γ.
The latter means, roughly, that it is easier to give up A than give up any
B in Γ, which is to say that we may keep all of Γ when removing A. But
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as A is derivable from Γ by classical propositional logic, we cannot really,
or rationally, remove A while keeping Γ. In this sense (E2) may be called a
rationality criterion. But secondly, note that (E2) makes sense even when K
is not closed under Cn0. Consider for example the set K={A,B,C,A&B&C}.
While (E2b) does not apply here, (E2) says that A&B&C is at least as firmly
entrenched in K as A or B or C. This is, I believe, in accordance with our
intuitions about the rational removal of sentences.

From ≤, we define the strict relation < and the equivalence relation
.
= in

the usual way: A<B iff A≤B and B 6≤A, and A
.
=B iff A≤B and B≤A. Notice

that the connectivity condition A≤B or B≤A follows from (E1) and (E2).
Thus A<B is equivalent to B6≤A. Other well-known properties of E-relations
are the substitutivity of Cn0-equivalents and the useful

A≤B iff A≤A&B iff A
.
=A&B .

We say that an E-relation ≤ is finite iff
.
= partitions L0 into finitely many

equivalence classes, and we say that ≤ is a well-ordering E-relation iff every
non-empty set of L0-sentences has a smallest element under ≤. Of course, the
well-ordering E-relations include the finite ones. Well-ordering E-relations
will play a key role in later sections of this paper. The epistemological draw-
back of E-relations which are not well-ordering is evident in the case of mul-
tiple contractions and revisions. When one is forced to give up at least one of
the sentences in some set Γ which possesses no smallest element, it is very dif-
ficult to see what should be done. No decision to give up one or more certain
sentences can be the best decision. People having coarser but well-ordering
E-relations are better off.

We have to say how contraction functions – K are constructed with the
help of epistemic entrenchment relations ≤K. In Gärdenfors and Makinson
(1988) it is shown that the definitions

– K=C(≤K) is given by K−A =

{
K∩{B: A<KA∨B} if 6` A,
K otherwise.

and

≤K=E(– K) is given by A≤KB iff A/∈K−A&B or `A&B.

just do the right thing and fit together perfectly. As we will be concerned with
revisions only, we take down the direct link between revisions and relations
of epistemic entrenchment.
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Observation 1 Let R(≤K)=dfR(C(≤K)) and E( ∗K)=dfE(C( ∗K)). Then

(i) If ∗K=R(≤K) then K∗A =

{
{B:¬A<K¬A∨B} if 6` ¬A,
L0 otherwise.

(ii) If ≤K=E( ∗K) then A≤KB iff A/∈K∗¬A∨¬B or `A&B.
(iii) R(≤K) satisfies the Gärdenfors postulates for revisions if ≤K is an

E-relation with respect to K, and E( ∗K) is an E-relation with respect
to K if ∗K satisfies the Gärdenfors postulates for revisions. Finally,
R(E( ∗K))=∗K and E(R(≤K))=≤K.

Proofs of the Observations are collected in an appendix at the end of the
paper.

It is of crucial importance for the success of this paper that the reader
accepts the notion of epistemic entrenchment as a useful and well-considered
tool of analysis. First, he or she is recommended to consult the seminal discus-
sions in Gärdenfors (1988, Chapter 4) and Gärdenfors and Makinson (1988).
Secondly, it is shown in Rott (1989b) and (1989c) that contractions con-
structed from relations of epistemic entrenchment are equivalent in a very
strict sense to both partial meet contractions (see Alchourrón, Gärdenfors
and Makinson 1985) and safe contractions (see Alchourrón and Makinson
1985, 1986). And thirdly, Lindström and Rabinowicz (1990) develop an in-
teresting liberalized notion of epistemic entrenchment with incomparabilies.
We take it for granted that contractions and revisions using epistemic en-
trenchment have a proper standing by now.

So far we have seen that a Gärdenfors belief revision system can be rep-
resented by a set {〈K,≤K〉: K∈K}, where K is a set of belief sets and ≤K is
an E-relation with respect to K, for each K∈K. To reach our final definition
of a belief revision system, we make two more adjustments. In the first step,
we note that we can recover every consistent belief set K from ≤K through

K = K0(≤K) =df {A: ⊥<KA} (6=∅).
That this is true is clear from (E4). So a belief revision system can be repre-
sented as {≤K: K∈K}. K can be treated as an arbitrary index set as long as
we remember that for K 6=K′ we have K0(≤K)6=K0(≤′K). It is hard, however,
to think of a motivation for this restriction. An E-relation mirrors a person’s
“objective” beliefs (i.e., beliefs expressible in L0) as well as his dispositions
to change his objective beliefs in response to incoming objective information
(recall the definition of R(≤K)). Two persons then with different relations of

144



epistemic entrenchment are in different epistemic states, even if they agree
on the objective beliefs they currently hold. So I suggest as my second step
to give up this restriction. Taking E-relations as primitive and belief sets as
derived by the equation just mentioned, we can do without belief sets at all.
Furthermore, we can drop (E4) from the set of requirements for E-relations.
E-relations are no longer E-relations with respect to some belief set K, but
belief sets are belief sets obtained from some E-relation ≤. We do not need
the index set K any more. My official definition of a belief revision system
reads thus:

Definition 1 A belief revision system is any set E of E-relations, i.e., binary
relations over L0 satisfying (E1) through (E3). We say that a belief revision
system E is Gärdenforsian if and only if for every ≤ and ≤′ in E, if K0(≤)=
K0(≤′) then ≤=≤′.7

3 Bases for relations of epistemic entrench-

ment

In the course of this paper we shall often want to discuss concrete examples
of E-relations. As E-relations are infinite subsets of L0×L0, this is not a
completely trivial matter. What we need is a finite representation of some
interesting E-relations which enables us to retrieve the full E-relations in a
canonical and easily understandable way. We shall introduce the appropriate
means in this section.

Definition 2 A base for an E-relation, or simply, an E-base, is a pair 〈B,�〉
where B is a set of L0-sentences and � is a non-strict weak ordering of, i.e.,
a reflexive, transitive and connected relation over, B.

7We might also call such belief revision systems functional. For they specify a unique
revision K∗A for every A∈L0 and every belief set K such that EK=df{≤∈E : K0(≤)=K} is
not empty. In general belief revision systems, there are several candidate revisions, one for
each ≤∈EK. This perspective invites interesting comparisons with the work of Lindström
and Rabinowicz (1990). For non-empty EK, for instance, we find that

⋂
EK is no E-

relation in our sense, but an epistemic entrenchment ordering in the sense of Lindström and
Rabinowicz’s Definition 3.1. Also see their representation Theorem 3.14. Notice, however,
that the “skeptical” intersection of all candidate revisions

⋂
{{B:¬A<¬A∨B}:≤∈EK} is

representable as {B:¬A∨B 6≤∗¬A} where ≤∗=
⋃
EK. ≤∗ is yet another kind of relation (cf.

Observation 7 below).
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Note that B need not be consistent and that � need not be antisymmetrical.
Given an E-base 〈B,�〉, a B-cut is any subset S of B such that if A∈S and
A�B then B∈S. Since � is connected, B-cuts are nested.

Definition 3 Let 〈B,�〉 be an E-base. Then the E-relation ≤=E(�) gener-
ated by 〈B,�〉 is given by

A≤B iff for all B-cuts S, if A∈Cn0(S) then B∈Cn0(S),

for all L0-sentences A and B.

We have to verify that this definition really does what we want.

Observation 2 Let 〈B,�〉 be an E-base. Then E(�) is an E-relation.

An E-base 〈B,�〉 can rightly be called a base for the generated E-relation
E(�) only if the relationships as specified by � are preserved in E(�). That
is, with ≤=E(�), if for every A and B in B, A≤B if and only if A�B, or more
succinctly, if ≤∩B×B = �. We would like to know under what circumstances
an E-base is a base for its generated E-relation. The following observation
demonstrates the usefulness of the Entailment condition.

Observation 3 An E-base 〈B,�〉 is a base for E(�) if and only if � satisfies
(E2) over B.

Notice that if � satisfies (E2) over B there are in general many E-relations
besides E(�) which preserve the relationships as specified by �. These re-
lationships between the sentences in B might be viewed as providing partial
information about some underlying full relation of epistemic entrenchment.
An E-base 〈B,�〉, however, is intended to be a means for discussing the
unique E-relation E(�) generated by it.

In the following, we shall use, without any further indication, only E-bases
satisfying (E2).

An E-base 〈B,�〉 is called finite if B is finite. In this case, the relation
'=�∩�−1 obviously partitions B into finitely many equivalence classes. Let
the number of equivalence classes be n. We denote the equivalence classes by
Bi. The indices are chosen so as to ensure that i≤j iff A�B for every A∈Bi

and B∈Bj. We employ the following convenient string notation for �:

⊥ ' A01 ' . . . ' A0n0︸ ︷︷ ︸
B0

≺ A11 ' . . . ' A1n1︸ ︷︷ ︸
B1

≺ . . .
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. . . ≺ Am1 ' . . . ' Amnm︸ ︷︷ ︸
Bm

≺ >︸︷︷︸
Bm+1

where ≺=�–', m≥0, n0≥0 and ni≥1 for i=1, . . . ,m. It is understood
that (B–Cn0(∅))∪{⊥,>} = B0∪B1∪. . .∪Bm∪Bm+1. If B∩Cn0(∅) is empty
(this will be the case in the intended applications), then B0={⊥} and
m=n if B is consistent, but m=n–1 if B is inconsistent. If B∩Cn0(∅)
is non-empty, then B0={⊥} and m=n–1 if B is consistent, but m=n–
2 if B is inconsistent. It is easy to check that the equivalence classes
with respect to

.
==E(�)∩(E(�))−1 are given by Cn0(Bi∪Bi+1∪. . .∪Bm)–

Cn0(Bi+1∪Bi+2∪. . .∪Bm) for i=0, . . . ,m, and Cn0(∅).

4 Epistemic entrenchment semantics for con-

ditionals

4.1 Monotonic semantics

Having a precise notion of a belief revision system at his disposal, Gärdenfors
was able to develop a formal epistemic semantics for conditionals with the
help of the following version of the Ramsey test (R):

(R′) Let 〈K,∗〉 be a belief revision system in the sense of Gärdenfors. Then,
for every K∈K and every A,B∈L0, A2→B ∈ K iff B ∈ ∗(K,A).

By Observation 1, this is equivalent to

A2→B ∈ K iff ¬A<K ¬A∨B or `¬A.

With Definition 1 we modified the concept of a belief revision system by
considering E-relations as primitive and allowing one and the same belief set
to be associated with several E-relations. Therefore, we will not speak of the
inclusion of a conditional in a belief set but of the satisfaction of a conditional
by an E-relation.8

Definition 4 An E-relation ≤ satisfies a conditional A2→B iff ¬A<¬A∨B
or `¬A.

8The following definition is formally more similar to Lewis’s (1973) evaluation of con-
ditionals than appears at first sight. See Grove (1988) and Gärdenfors (1988, Section 4.8).
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The principal condition ¬A<¬A∨B, i.e., ¬A<A→B, can be motivated as
follows. When an E-relation ≤ says that the material conditional A→B is
more firmly entrenched than ¬A, this can be taken to mean that the mate-
rial conditional is accepted not just because the negation of the antecedent
is accepted. And more, if a person in epistemic state ≤ should come to learn
that A is in fact true, this would not destroy his or her belief in A→B. Put as
a slogan, a natural language conditional is the corresponding material con-
ditional believed more firmly than the negation of its antecedent. Note that
conditionals express strict <-relationships, not non-strict ≤-relationships. In
view of Observation 1, A<B is expressible by means of the L1-sentence If
¬A∨¬B then B. But only in L2 will we dispose of a linguistic expression for
A≤B.

An E-relation ≤ is said to satisfy an L0-sentence A iff A is in K0(≤),
i.e., iff ⊥<A.9 By (E1)–(E3), K0(≤) is consistent and closed under Cn0, for
every E-relation ≤. E-relations are non-classical models, since, e.g., it is not
the case that ≤ satisfies ¬A iff ≤ does not satisfy A. Nor can E-relations
be regarded as the models of a three-valued “truth-functional” logic with
the values ‘accepted’, ‘rejected’ and ‘undecided’, because it is impossible to
determine the value of A∨B from the values of A and B if the latter are both
‘undecided’. It is either ‘undecided’ or ‘accepted’.10

If an E-relation ≤ satisfies an L1-sentence A we write ≤|=A, and we set

K(≤) =df {A∈L1:≤|=A}.
Sometimes we say that K(≤) is the belief set or the theory associated with the
E-relation ≤. Obviously, K(≤)∩L0=K0(≤). An E-relation satisfies a set Γ of
L1-sentences if it satisfies every element of Γ, i.e., if Γ⊆K(≤). Sometimes,
when Γ is a given premise set, we say that ≤ is an E-relation for Γ iff ≤
satisfies Γ. More semantic concepts are readily defined along the standard
lines:

Definition 5 An L1-sentence A is called satisfiable or consistent if it is sat-

9As regards satisfaction, an “objective” L0-sentence A is equivalent to the conditional
>2→A. But they differ in syntactic behaviour. In L1, we have for instance A2→A but not
(>2→A)2→(>2→A). Moreover, in Part 2, we shall argue that ¬A differs from ¬(>2→A)
in meaning.

10Like belief sets, E-relations seem to obey the logic of supervaluations instead. Cf.
Martin (1984).
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isfied by some E-relation,11 and A is called (monotonically) valid, in symbols
|=1A, if it is satisfied by every E-relation. Γ is said to be consistent if there
is an E-relation for Γ. An L1-sentence A is (monotonically) entailed by a
set Γ of L1-sentences, in symbols Γ|=1A or equivalently A∈Cn1(Γ), if every
E-relation satisfying Γ also satisfies A.

Example 1 Now, at last, we are able to deal with the introductory
beach walk and the generalizations we drew from it. Remember that we have
set out to find a way to get (no — not a hamburger, but) the paradigmatic
inference12

{A∨B} |= ¬A2→B (3)

and yet block the inference

{A∨B,A,¬B} |= ¬A2→B (4)

Let us see if our logic Cn1 is appropriate. The inference (4) is indeed blocked.
Consider the E-relation ≤ generated by the E-base

⊥ ≺ A∨B ' A ' ¬B ≺ >

Obviously, ≤ satisfies all the premises of (4), and it does so in an intuitively
plausible way. In order to satisfy the conclusion of (4), ≤ would have to be
such that A<A∨B holds. There would have to be a B-cut S such that A∨B
but not A is in Cn0(S). But there is none.

Next consider (3). The most natural E-relation for the single premise
A∨B, viz., that generated by the E-base

⊥ ≺1 A∨B ≺1 > ,

behaves well. It indeed yields A<1A∨B, since A∨B but not A is a Cn0-
consequence of SA∨B=df{C∈B: A∨B�1C}={A∨B}. But of course there are
more E-relations satisfying A∨B, for example the one generated by the E-
base

⊥ ≺2 A ≺2 > .

11Recall that E-relations themselves, or rather their L0-images K0(≤), are always
consistent.

12In these and all similar considerations to follow, it is understood that A and B are
contingent L0-sentences which are independent with respect to Cn0.
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And it gets clear immediately that the E-relation E(�2) does not satisfy
¬A2→B. So we cannot validate (3), if |=1 is substituted for |=. (End of
example)

The objection to this last line of reasoning is that there is nothing which
could justify the E-base 〈{A},�2〉 if all we know is A∨B. In every conceivable
sense, the E-base 〈{A∨B},�1〉 is much more natural for the singleton premise
set {A∨B} than 〈{A},�2〉. Among the E-relations satisfying some premise set
Γ, it appears, there are E-relations that are appropriate for Γ and E-relations
that are inappropriate for Γ. There exists, one may suppose, a preference
ordering among the E-relations satisfying Γ. And only the best E-relations
matter. If all of the best ones satisfy the conclusion of the inference, then
the inference may be called “valid”. Section 4.2 will reveal that we have
just argued for employing the techniques of a quite well-known kind of non-
monotonic logic.

Before turning to this abstract topic, let us remain at the paradigmatic
infernce patterns (3) and (4) for a moment. The problem was found to lie
in the validation of (3). What is it that makes E(�2) so much worse for the
single premise A∨B than E(�1)? It is safe to assume that in this particular
case where A∨B is supposed to be all one knows, the relationship ⊥<A is
not warranted. But what is the general mistake? Three suspicions come to
one’s mind.

• E(�2) satisfies too many sentences. In order not to invoke “beliefs”
that are not justified by the premise set, we should try to minimize the
set of sentences satisfied by an appropriate E-relation for the premise
set. Just as in usual monotonic logics the deductive closure of a set Γ
is the minimal theory including Γ, we should opt for minimal theories
(associated with some E-relation) including Γ in the present case.

• E(�2) satisfies too many L0-sentences. The motivation for this idea is
the same as for the last one. If it should turn out insufficient to minimize
the number of L1-sentences (L1 is the language under consideration),
it seems plausible to attribute a preferred status to the “objective”
L0-sentences.

• E(�2) assigns to some L0-sentence, for example to A, a gratuitously
high “rank” of epistemic entrenchment which is not justified by the
single premise A∨B. It seems prudent not to attribute a greater degree
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of irremovability to any objective sentence than is explicitly warranted
by the premise set. A believer should be prepared to give up his or her
beliefs by minimizing epistemic entrenchments.

I think that all three of these suggestions have a sound basis. In Sections
5–7, we shall examine the consequences of taking them into accout within
the framework of nonmonotonic reasoning we are now going to introduce.

4.2 Nonmonotonic semantics

We said that when inquiring whether A follows from a given premise set
Γ we only want to consider the preferred E-relations satisfying Γ. In the
three informal objections against the inadequate E-base which invalidates
(3) we found that we wanted to minimize certain parameters of E-relations
satisfying Γ. These formulations will ring a bell in the ears of those acquainted
with the work that has been done in the field of nonmonotonic reasoning.
In fact, we can draw on the minimal models approach or preferential models
approach which was developed in its general form by Shoham (1987, 1988).
Makinson (1989) generalized it to cases in which the models considered are
allowed to be, like E-relations, non-classical. We now adapt some of their
central definitions to our purposes of providing an epistemic semantics for
conditionals.

Definition 6 Let < be a strict partial ordering of (i.e., an asymmetric and
transitive relation over) the class of all E-relations. Then an E-relation ≤ is
called minimal (or preferred) iff there is no E-relation ≤′ such that ≤′<≤.13

Let Γ be a set of L1-sentences. An E-relation ≤ is called minimal for Γ if
≤|=Γ and there is no E-relation ≤′ such that ≤′|=Γ and ≤′<≤. In this case
we say that ≤ minimally (or preferentially) satisfies Γ (with respect to <)
and write ≤|=<Γ. We say that A is minimally valid, in symbols |=<A, if
every minimal E-relation satisfies A. We say that Γ minimally entails A, in
symbols Γ|=<A, if every minimal E-relation for Γ satisfies A. We also write
Cn<(Γ) for {A∈L1:Γ|=<A}.
Be aware that if <⊆<′ then there are at least as many <-minimal E-relations
as <′-minimal ones, and hence Cn<(Γ)⊆Cn<′(Γ). The intuitive idea behind

13This is not a very interesting definition. With respect to the three orderings for E-
relations suggested in the next section, there is only one smallest E-relation, viz., that
generated by the E-base ⊥≺>.
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preferential entailment in our case is that only a minimal E-relation for Γ is
an epistemic state which is warranted if all the items one explicitly knows
are given by Γ. And only warranted belief states should be called upon when
determining the consequences of a premise set. The task before us now is
to explicate what features can make an E-relation count as “minimal” or
“preferred”.

From the non-monotonic point of view, it is interesting to enquire the
circumstances under which an inference is robust (or persistent or stable)
under possible enrichments of the premise set. We say that Γ robustly entails
A (with respect to some given <), in symbols Γ|≡<A, iff Γ|=<A and for every
superset Σ of Γ, Σ|=<A. It turns out that normally, and in particular in our
concrete instantiations of < presented below, |≡< is just identical with the
old monotonic consequence relation |=1:

Observation 4 Let < be a strict partial ordering of the class of E-relations,
Γ be a set of L1-sentences and A an L1-sentence. Then

(i) If Γ|=1A then Γ|≡<A.
(ii) If every E-relation ≤ is <-minimal for K(≤), then if Γ|≡<A then

Γ|=1A.

It is natural to assume that every E-relation ≤ is among the preferred E-
relations for the total set K(≤) of sentences satisfied by ≤. We shall find
that this assumption is fulfilled in all three orderings of E-relations to be
discussed in the next section.14

5 Three orderings for relations of epistemic

entrenchment

In this section, we are going to work out the details of the three suggestions
that were made in response to the failure of (3) in the monotonic setting of
Cn1. The first one was that an E-relation which is “grounded in” or “induced
by” a given premise set Γ should not satisfy more sentences than necessary.
That is, an E-relation ≤ for Γ is better than another E-relation ≤′ for Γ if
K(≤) is a proper subset of K(≤′).

14See Definition 7, Observation 6, Observation 13 and its corollary.
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Definition 7 Let ≤ and ≤′ be E-relations. Then ≤ is at least as K-good as
≤′, in symbols ≤vK≤′, if and only if K(≤)⊆K(≤′). ≤ is K-preferred over
≤′, in symbols ≤<K≤′, if and only if ≤vK≤′ and not ≤′vK≤.15

As we are taking E-relations, rather than belief sets, as primary represen-
tations of epistemic states, it is desirable to replace this metamathematical
definition referring to sets of sentences and satisfaction by a purely mathe-
matical condition.

Observation 5 Let ≤ and ≤′ be E-relations. Then the following conditions
are equivalent:

(i) ≤ vK≤′ ;
(ii) ≤′ ⊆ ≤ ;
(iii) < ⊆ <′ ;
(iv)

.
=′ ⊆ .

= .

An obvious corollary is

Corollary Let ≤ and ≤′ be E-relations. Then the following conditions are
equivalent:

(i) ≤ <K≤′ ;
(ii) ≤′ ⊂ ≤ ;
(iii) < ⊂ <′ ;
(iv)

.
=′ ⊂ .

= .

Now we have got quite a good picture of what K-preference consists in. An
E-relation ≤ satisfies less L1-sentences than another E-relation ≤′ if and only
if

.
=′⊂ .

=. This means that whenever two L0-sentences A and B are in the same
equivalence class with respect to

.
=′ then they are in the same equivalence

class with respect ot
.
=, and besides there are L0-sentences A and B which

are equivalent with respect to
.
= but not with respect to

.
=′.

.
= is a coarsening

of
.
=′. If

.
=′ is given by an E-base in string notation, then a K-preferred

.
=

is obtained by replacing one or more occurances of ≺ in the string by '.
We can rephrase the idea of K-preference as follows: Choose as coarse an E-
relation (for a given premise set Γ) as possible! Do not impose unnecessary
differences in the degrees of epistemic entrenchment!

15The reader be warned that the direction of ‘v’ and ‘<’ may be the reverse of what
he or she has expected. The reason for this is that the preferred E-relations are, in some
intuitive as well as formal sense, minimal.
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Plausible as all this may be, it is not sufficient. This is borne out dra-
matically by our paradigm Example 1, where for Γ={A∨B} the E-bases
⊥≺1A∨B≺1> and ⊥≺2A≺2> both generate minimal E-relations for Γ with
respect to <K. For any attempt to extend '1 and '2 will result in the triv-
ial base ⊥≺> and thus fail to satisfy Γ. Note in particular that E(≺1) and
E(≺2) are incomparable with respect to <K, since ¬A2→B is in K(E(�1))–
K(E(�2)) and A is in K(E(�2))–K(E(�1)). We do not get Γ|=<K

¬A2→B.
Preference with respect to <K, therefore, cannot be the key for the validation
of (3).

But clearly, E(�1) should be preferred to E(�2) in Example 1. It seems
obvious that the defect of �2 as an E-base for Γ={A∨B} lies in the fact
that ⊥≺2A, i.e., that A is satisfied by E(�2). There is no reason for this
to be found in Γ. So we turn to the second idea propounded at the end
of Section 4.1, namely that E(�2) satisfies too many L0-sentences. In order
to further compare the E-relations E(�1) and E(�2) even though K(E(�1))
and K(E(�2)) are not related by set inclusion, we adopt the following maxim:
Among the K-minimal E-relations, choose only those that commit us to as
few L0-sentences as possible! Do not adopt unwarranted “objective” beliefs!

Definition 8 Let ≤ and ≤′ be E-relations. Then ≤ is at least as K0-good
as ≤′, in symbols ≤vK0≤′, if and only if ≤vK≤′, or ≤ and ≤′ are vK-
incomparable and K0(≤)⊆K0(≤′). ≤ is K0-preferred over ≤′, in symbols
≤<K0≤′, if and only if ≤vK0≤′ and not ≤′vK0≤.

The definition of vK0 is a bit complicated. Fortunately, the strict version
<K0 which is the one that in fact enters into the nonmonotonic semantical
apparatus, is captured by a nice and easy condition.

Observation 6 Let ≤ and ≤′ be E-relations. Then
≤<K0≤′ iff K(≤)⊂K(≤′) or K0(≤)⊂K0(≤′).
Note that <K0 is transitive because K(≤)⊂K(≤′) implies K0(≤)⊆K0(≤′).
Being an extension of <K, <K0 allows us to compare more E-relations than
the former. As a consequence, Cn<K0

(Γ) is a superset of Cn<K
(Γ) for every

premise set Γ. In most cases, the latter will be a proper subset of the former.
This is true in Example 1, which K0-preference gets right. It is evident that
⊥≺1A∨B≺1> is the base of the only minimal E-relation for Γ={A∨B} with
respect to <K0 , so we have Γ`<K0

¬A2→B. We have managed to find a
plausible way of validating the desired inference (3).

154



It is an interesting and important question whether K0-preference gives,
as in Example 1, always a unique E-relation for a (finite) premise set Γ. The
answer is no:

Example 2 Let Γ={A,B,¬A2→B}. Then the E-bases ⊥≺A'B≺
A∨B≺> and ⊥≺′A≺′B'′A∨B≺′> both generate E-relations ≤=E(�) and
≤′=E(�′) for Γ. Both ≤ and ≤′ are K-minimal for Γ. Any attempt to reduce
the number of equivalence classes of ≤ and ≤′ will result in a violation of
either ⊥<(′)A, ⊥<(′)B or A<(′)A∨B. In particular, ≤ and ≤′ are incompara-
ble with respect to vK. On the one hand, ≤ satisfies but ≤′ does not satisfy
¬B2→A, on the other hand, ≤′ satisfies but ≤ does not satisfy ¬A∨¬B2→B.
Furthermore, K0(≤)=Cn0({A&B})=K0(≤′), and obviously any E-relation for
Γ must satisfy Cn0({A&B}). Hence both ≤ and ≤′ are K0-minimal for Γ. It is
straightforward to check that ≤ and ≤′ are the only K0-preferred E-relations
for Γ. (End of example)

Intuitively, K0-preference seems to be a very natural ordering of E-
relations. Still there is an objection. We know from Example 2 that in gen-
eral there is more than one minimal E-relation with respect to <K0 for a
given premise set Γ. The consequences of Γ, according to Cn<K0

, are those
L1-sentences which are satisfied by all <K0-minimal E-relations for Γ, i.e.,⋂ {K(≤):≤ is <K0-minimal for Γ}. The question arises as to what the epis-
temic state is, if Γ is all one explicitly knows and Γ admits various <K0-
minimal candidates. It turns out that in most cases it cannot be an E-relation.
To see this, we define K(≤)={A∈L1:≤|=A} for an arbitrary binary ≤ over
L0, to be the set {A∈L0: A 6≤⊥}∪{B2→C∈L1:¬B∨C 6≤¬B}.16

Observation 7 Let ≤1, . . . , ≤n be E-relations and ≤ = ≤1∪. . .∪≤n. Then
(i) K(≤) = K(≤1)∩. . .∩K(≤n).
(ii) If ≤∗ is an E-relation such that K(≤∗) = K(≤1)∩. . .∩K(≤n), then

≤∗=≤.
(iii) ≤ fails to be an E-relation iff there are sentences A,B,C in L0 such

that A<iB≤iC and C≤jA<jB for some 1≤i,j≤n, and A<kB for every
1≤k≤n.

From this observation it is clear that if there are multiple <K0-minimal E-
relations for a premise set Γ, we cannot expect to have a unique E-relation ≤∗

16I always presuppose that the satisfaction of an L1-sentence is defined for non-E-
relations ≤ in the same way as for E-relations. Different, more complicated definitions
of satisfaction may make a big difference.
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that satisfies exactly all those sentences satisfied by each of them. Given two
E-relations Γ1 and Γ2, in particular, we will in most cases find L0-sentences
A,B,C such that A<1B≤1C and C≤2A<2B (or vice versa). For ≤∗=E(�)∪
E(�′), we have in Example 2 A∨B≤∗B and B≤∗A, but not A∨B≤∗A, and,
for the sake of illustration, in Example 1 we find that for ≤∗=E(�1)∪E(�2)
A∨B≤∗A and A≤∗⊥, but not A∨B≤∗⊥. Violation of transitivity seems to
be the rule rather than the exception.

We would like to identify Cn(Γ) with the set of sentences accepted by
an idealized “rational” believer whose only explicit information is given by
Γ. We have seen, however, that if we take Cn<K0

as Cn, there is in general
no E-relation satisfying all and only the sentences in Cn<K0

(Γ). Hence the
believer’s beliefs cannot be mirrored by an E-relation. This is an abstract
problem as yet, concerning the formal representation of belief states. Why not
just give up the doctine that an epistemic state is best represented by a single
relation of epistemic entrenchment? In fact, in Part 2 of the present trilogy,
we shall have to give up this doctrine anyway when considering disjunctions
of conditionals. Moreover, in Part 3, we shall argue that when it comes to
belief revision, it is not E-relations but premise sets which should be taken
as the primary objects of revision.

Yet we stick to the thesis that an epistemic state should be represented
by a single E-relation in this paper. First, it seems reasonable to assume that
something like a measure of the firmness of belief is transitive. Secondly, it
is easily verified that in terms of the conditionals satisfied, the transitivity
condition (E1) is equivalent to

If ≤ |= A∨C2→¬C and ≤ 6|= B∨C2→¬C then ≤ |= A∨B2→¬B.
(Transitivity by Conditionals)

Substituting D for A, ¬E for B and D&¬E for C, we see that Transitivity by
Conditionals entails

If ≤ |= D2→E and ≤ 6|= ¬E2→¬D then ≤ |= D∨¬E2→E.
(Failure of Contraposition17)

If one wants to retain these conditions for epistemic states , then one cannot
opt for the transition to unions of E-relations. In Example 2, for instance,

17Notice that ≤|=D2→E iff ≤|=D2→¬D∨E. — We shall return to the failure of contra-
postion for conditionals in Section 7 below and in Part 2 of the trilogy.
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we find that ≤∗=E(�)∪E(�′) satisfies ¬A2→B, but neither ¬B2→A nor
¬A∨¬B2→B. I have to admit, though, that the intuitions behind such in-
ference patterns are not very strong.

The main reason for my tentative insistence on the one E-relation doctrine
derives from the third idea put forward at the end of Section 4.1. We shall
presently show that if we do not assign greater ranks of epistemic entrench-
ment to L0-sentences than is explicitly required by a given (well-behaved)
premise set Γ, then Γ “induces” a unique minimal, and in fact a smallest,
E-relation for Γ. In sum, then, I do not want to say that K0-preference is not
good, but I put it aside only because I think that there is a more promising
alternative.

In a way, this alternative just generalizes on the idea of K0-preference.
Opting for an E-relation which is minimal with respect to <K0 means opting
for a maximal set of sentences with the lowest epistemic rank possible, viz.,
the rank of ⊥. But why follow the prudent strategy of accepting things just
to the degree they are explicitly warranted only at this lowest level? It seems
to me that believers are well-advised if they adopt the distrustful maxim
of universal minimality : Do not have more confidence in your items of belief
than is assured by your premises! Assign to all sentences the lowest epistemic
rank possible!

In order to make this idea more precise we need the notion of the rank of
epistemic entrenchment of a sentence A according to an E-relation ≤. This
notion makes sense for well-ordering E-relations.

Definition 9 Let ≤ be a well-ordering E-relation. Then we define for any
ordinal α

α(≤) = {A∈L0–
←
α(≤): A≤B for all B∈L0–

←
α(≤)},

where
←
0(≤) =df ∅ and

←
α(≤) =df

⋃ {β(≤): β<α} for α>0.
Then for every L0-sentence A, rank≤(A)=α iff A∈α(≤).

As we can go on with this construction up to any arbitrary ordinal, rank≤ is
well-defined for well-ordering E-relations even if L0 is supposed to have non-
denumerably many atoms. And by construction, if there is no A∈L0 such that
rank≤(A)=α for an ordinal α, then there is no B∈L0 such that rank≤(B)=β
for any β>α. All ranks are “occupied”. It is also easy to see that A≤B if and
only if rank≤(A)≤rank≤(B). If a finite E-relation is generated by an E-base
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⊥ ' A01 ' . . . ' A0n0︸ ︷︷ ︸
B0

≺ A11 ' . . . ' A1n1︸ ︷︷ ︸
B1

≺ . . .

. . . ≺ Am1 ' . . . ' Amnm︸ ︷︷ ︸
Bm

≺ >︸︷︷︸
Bm+1

satisfying (E2) over B then rank≤(Aij)=i, as expected. More generally,
rank≤(A)=i for any A in Cn0(Bi∪Bi+1∪. . .∪Bm)–Cn0(Bi+1∪Bi+2∪. . .∪Bm).
We can now formulate a precise definition for the new maxim.

Definition 10 Let ≤ and ≤′ be E-relations. Then ≤ is at least as E-good as
≤′, in symbols ≤vE≤′, if and only if ≤ is well-ordering and ≤′ is not, or both
≤ and ≤′ are well-ordering and rank≤(A)≤rank≤′(A) for every L0-sentence
A. ≤ is E-preferred over ≤′, in symbols ≤<E≤′, if and only if ≤vE≤′ and
not ≤′vE≤.

It is easy to check that vE is antisymmetrical. Now our first task is to explore
the relationship between E-preference and K-preference and K0-preference.

Observation 8 Within the class of well-ordering E-relations, vK ⊆ vE.

Corollary Within the class of well-ordering E-relations, <K ⊆ <E.
<E is an extension of <K just as <K0 was. The relation between <E and

<K0 , on the other hand, is more delicate. There are examples of E-relations
≤ and ≤′, for which ≤<K0≤′ but not ≤<E≤′, such as those based on

⊥ ≺ A ≺ B ≺ > and
⊥ ≺′ B'′C ≺′ A ≺′ > ,

and also examples where the converse holds, such as those based on

⊥ ≺ A'B ≺ C ≺ > and
⊥ ≺′ A ≺′ B'′C ≺′ > .

The best we can do is state is the following

Observation 9 Within the class of well-ordering E-relations, vE ⊆ vK0.
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6 Constructing E-minimal relations of epis-

temic entrenchment for well-founded pre-

mise sets

We decide to base the following considerations on <E. In this section we
are going to show that with respect to <E, every consistent finite set of
L1-premises possesses a unique minimal, and in fact a smallest, E-relation
satisfying it. This allows us to keep the one-E-relation doctrine for all prac-
tical applications of L1. We shall also consider the case of an infinite Γ.

An arbitrary set Γ of L1-sentences can be given the following format. It
divides into a set Γ0 of L0-premises Ai and a set Γ1 of conditionals from L1–
L0 of the form Bj2→Cj. When trying to find an E-relation satisfying Γ, one
can regard the premises as providing partial information about the set of E-
relations — or preferably, about the E-relation — constituting the epistemic
state of an individual whose only explicit information consists in Γ. For the
sake of simplicity, we cancel all conditionals Bi2→Ci for which ¬Bi∈Cn0(∅).
By Definition 4, these conditionals are satisfied by every E-relation, so they
do not matter. Recalling how satisfaction of L1-sentences by E-relations has
been defined, we can now describe the situation with the following figure:

Γ 7−→ ≤
A1 7−→ ⊥ < A1

A2 7−→ ⊥ < A2

A3 7−→ ⊥ < A3
...

...
...

B12→C1 7−→ ¬B1 < B1→C1

B22→C2 7−→ ¬B2 < B2→C2

B32→C3 7−→ ¬B3 < B3→C3
...

...
...

Evidently, an L0-sentence Ai has the same satisfaction condition as the corre-
sponding L1-sentence >2→Ai. Another simplifying move consists in identify-
ing objective sentences with their conditional counterparts. We can therefore
assume that every premise set Γ in L1 is a set {Ai2→Bi: i∈I} of conditionals
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where I is a possibly infinite index set and ¬Ai /∈Cn0(∅) for every i∈I. It will
be helpful to have in mind a seperate picture for the simplified format:

Γ 7−→ ≤
A12→B1 7−→ ¬A1 < A1→B1

A22→B2 7−→ ¬A2 < A2→B2

A32→B3 7−→ ¬A3 < A3→B3
...

...
...

Now the construction of an E-minimal E-relation for Γ, i.e., of an E-relation
which assigns to all sentences the lowest epistemic rank possible, is pretty ob-
vious. In the first step we note that the partial information about admissible
E-relations provided by Γ “forces” all material conditionals Ai→Bi to be more
entrenched than something, hence to be more entrenched than ⊥. Remember-
ing that the Entailment condition (E2) must be respected by all E-relations,
we know that all Cn0-consequences of the Ai→Bi ’s must also be more en-
trenched than ⊥. Abbreviating the “L0-counterpart” {Ai→Bi: Ai2→Bi ∈Γ}
of Γ by L0(Γ), we now know that all sentences in ∆1 =df Cn0(L0(Γ)) obtain at
least the first rank of epistemic entrenchment. In the second step, we collect
all those ¬Aj’s which are in ∆1. The corresponding inequalities ¬Aj<Aj→Bj

are triggered and force all the Aj→Bj ’s to be more entrenched than the rest
— except for the Cn0-consequences of the Aj→Bj ’s, which are also lifted
up to the second rank of epistemic entrenchment by (E2). This process of
raising epistemic entrenchments as required by the “≤-translations” of Γ and
subsequent closing under Cn0 is repeated time and again. In the limit, we
take intersections. Roughly, we are ready if no inequality is triggered any
longer. There may arise serious complications but they cannot be examined
without a formal definition.

Definition 11 Let Γ={Ai2→Bi: i∈I } be a set of L1-sentences. Then
≤Γ =E(Γ) is defined as follows. Put
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∆0 = L0

∆α+1 = Cn0({Ai→Bi:¬Ai∈∆α})
∆α =

⋂ {∆β: β<α} for limit ordinals α
and

α(Γ) =



∅ , if ∆α = Cn0(∅) and
∆β = Cn0(∅) for some β < α,

∆α , if ∆α = Cn0(∅) and
∆β 6= Cn0(∅) for all β < α,

∆α −∆α+1 , otherwise.
Then for every L0-sentence C, rankΓ(C)=α iff C∈α(Γ), and for every pair
of L0-sentences C and D, C≤ΓD iff rankΓ(C)≤rankΓ(D).

A number of tasks lies before us. First, we have to check whether the defi-
nition makes sense at all, i.e., whether every L0-sentence gets a unique rank
number α. We shall see that the definition works fine and terminates after a
finite number of steps if Γ is consistent and finite. It is no real disadvantage
that it fails for inconsistent premise sets, but it will be interesting to observe
in which of the infinite cases it fails. Secondly, we verify that in all success-
ful cases, the definition actually generates an E-relation for Γ. Thirdly and
lastly, we show that E(Γ) is the <E-smallest E-relation for Γ.

The primary case in the definition of α(Γ) is of course captured by the
last line. The worst thing that can happen in the construction process is that
for some ordinal α, ∆α+1 is identical with ∆α 6=Cn0(∅). For that would mean
that not only ∆α+1 = Cn0({Ai→Bi:¬Ai∈∆α}) = Cn0({Ai→Bi:¬Ai∈∆α+1})
= ∆α+2, but, by the same argument, that ∆γ=∆α for every γ>α. As a
consequence, γ(Γ) would be empty for γ>α, and the processing of the ≤-
translations of the premises in Γ would be interrupted. Consider two examples
for illustration.

Example 3 Let Γ = {A2→B&C, B2→A&¬C}. The translation in terms
of epistemic entrenchment is

¬A<A→(B&C) and ¬B<B→(A&¬C).

Now ∆0 is L0, and ∆1 is Cn0({A→(B&C),B→(A&¬C)}), but this again is
L0. So ¬A and ¬B are in ∆1, so ∆2 is again Cn0({A→(B&C),B→(A&¬C)}
= L0, and so on for every ∆α. We never get an acceptable result.

Example 4 Another problematic case is Γ = {Ai∨Ai+12→¬Ai: i=1,2,
3, . . . }. The ≤-translations are
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¬Ai&¬Ai+1<(Ai∨Ai+1)→¬Ai, i=1,2,3, . . . ,

or equivalently,

¬Ai+1<¬Ai, i=1,2,3, . . . .18

As always, ∆0 is L0. ∆1 is Cn0({(Ai∨Ai+1)→¬Ai: i=1,2,3, . . . }) = Cn0({¬Ai:
i=1,2,3, . . . }). But then, for every i=1,2,3, . . . , ¬Ai&¬Ai+1 is in ∆1, so ∆2 is
again Cn0({¬Ai: i=1,2,3, . . . }), and the same for every ∆α. We never manage
to exploit the information provided by Γ. (End of examples)

It turns out that the two premise sets have a different status. In Example
3, Γ is inconsistent, and we shall see presently that every finite premise set
which leads into this problem is inconsistent. So we need not bother about
the problem for finite premise sets too much. In Example 4, on the other
hand, Γ is consistent, since it is satisfied e.g. by the E-relation generated by
the base

⊥ ≺ . . .≺ ¬A3 ≺ ¬A2 ≺ ¬A1 ≺ > .

The point illustrated by Example 4 is that there are premise sets which
do not admit well-ordering E-relations. Since Γ translates to ¬Ai+1<¬Ai,
i=1,2,3, . . . , it is clear that no E-relation ≤ for Γ can pick out an ≤-minimal
sentence from the set {¬Ai: i=1,2,3, . . . }. But as our definition is made for
well-ordering E-relations only, it is to be expected that it does not work fine
in cases like Example 4. We suggest the following well-behavedness criterion
for infinite premise sets:

Definition 12 A premise set Γ={Ai2→Bi: i∈I } is called well-founded iff it
satisfies the condition

{¬Aj: j∈J} 6⊆ Cn0({Aj→Bj: j∈J}), for every non-empty J⊆I.

Observe that only well-founded premise sets Γ admit well-ordering E-
relations for Γ. For assume Γ is not well-founded and J 6=∅ is such
that {¬Aj: j∈J}⊆Cn0({Aj→Bj: j∈J}). Suppose for reductio that ≤ is well-
ordering and satisfies Γ. Consider {Aj→Bj: j∈J}, and take a smallest element
Ak→Bk of this set. By assumption, ¬Ak∈Cn0({Aj→Bj: j∈J}). So, by (E2),
Aj→Bj≤¬Ak for some j∈J. But Ak→Bk≤Aj→Bj, so by (E1) Ak→Bk≤¬Ak,

18Examples like this have been the subject of considerable discussion in the literature.
Measure again Lewis’s (1973, p. 20) line and instantiate Ai as ‘Lewis’s line is 1+(1/i) inches
long.’
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so ≤ fails to satisfy Ak2→Bk∈Γ, so ≤ is no E-relation for Γ, and we have a
contradiction.

Now let us carefully collect some basic facts concerning the construction
of E(Γ).

Observation 10 Let Γ={Ai2→Bi: i∈I } be a set of L1-sentences. Then
(i) for all α, Cn0(∅) ⊆ ∆α+1 ⊆ ∆α;

(ii) for all ordinals α such that α(Γ)=∆α–∆α+1,
←
α(Γ) =df

⋃{β(Γ): β<α}
= L0–∆α;

(iii) if Γ is finite and consistent then Γ is well-founded.
Furthermore, if Γ is well-founded, then

(iv) for all α, if ∆α⊆∆α+1 then ∆α=Cn0(∅);
(v) for all α, {Ai→Bi:¬Ai∈∆α+1} ⊆ {Ai→Bi:¬Ai∈∆α}, and if {Ai→Bi:

¬Ai∈∆α+1} = {Ai→Bi:¬Ai∈∆α}, then {Ai→Bi:¬Ai∈∆α} = ∅;
(vi) there is an α such that >∈α(Γ)=Cn0(∅); in particular, if Γ is finite

and has n elements then >∈α(Γ) for some α≤n+1;
(vii) for every L0-sentence A, there is exactly one α such that A∈α(Γ);
(viii) for every α, ∆α is an L0-cut with respect to ≤Γ, and for every non-

empty L0-cut S with respect to ≤Γ, S=∆α for some α;
(ix) for all L0-sentences A and B, A≤ΓB iff A∈∆α implies B∈∆α for every

α.

Part (iii) of Observation 10 shows that we will have no problems if Γ
is finite, and part (vi) shows that in this case the number of steps to be
performed in the construction does not essentially exceed the number of
conditionals in Γ. Part (vii) shows that rankΓ is a function assigning to every
L0-sentence an ordinal. So A≤ΓB iff rankΓ(A)≤rankΓ(B). We shall make use
of this in the following. Parts (i) and (iv) make clear that this function is
onto some initial segment {β: β<α} of the ordinals. All ranks are occupied.
Parts (viii) and (ix) exhibit a similarity of the construction of an E-relation
E(Γ) from a given set of premises Γ with the construction of E(�) from a
given E-base 〈B,�〉. In fact, the whole construction of Definition 11 may be
viewed as the establishment of an E-base with B=L0(Γ) and � = ≤Γ∩B×B.
The ¬Ai’s just help us to determine the relations between the Ai→Bi’s under
minimalization. After these preparations, the following result will hardly be
surprising.

Observation 11 Let Γ={Ai2→Bi: i∈I } be a well-founded set of L1-sen-
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tences. Then
(i) E(Γ) is a well-ordering E-relation.
(ii) E(Γ) satisfies Γ, i.e., Γ⊆K(E(Γ)).

We see that what we have constructed is in fact an E-relation for Γ. To
substantiate that we reach our final aim, we need a further technical lemma.

Observation 12 Let Γ={Ai2→Bi: i∈I } be a well-founded set of L1-sen-
tences. Then for every L0-sentence A, rankE(Γ)(A) = rankΓ(A).

Now we can prove what we have been after in this section.

Observation 13 Let Γ={Ai2→Bi: i∈I } be a well-founded set of L1-sen-
tences. Then for every E-relation ≤ satisfying Γ, E(Γ)<E≤ or ≤=E(Γ).

Corollary For well-ordering E-relations ≤, E(K(≤))=≤.

7 The logic of E-minimality

We propose to use Cn<E
as the right consequence relation for conditionals.

Definition 13 Let Γ be a set of L1-sentences and A an L1-sentence. Then
Γ|=A, or equivalently A∈Cn(Γ), iff Γ|=<E

A. Furthermore, Γ|≡A iff Γ|≡<E
A.

Recall that we just instantiate here the scheme of preferential entailment in
the sense of Makinson (1989; 1990), with the underlying preferential model
structure being (E ,|=,<E) where E is the set of all E-relations over L0 and
|= and <E are as determined in Definitions 4 and 10. We allow infinite sets
of premises, which will often give rise to infinite ranks of epistemic entrench-
ment. It is an effect of having done the whole thing for ordinals rather than
for natural numbers that we can apply Cn to infinite sets of sentences. As
usual, we may say that a set K of L1-sentences is a theory or a belief set in
L1 if K=Cn(K).

In the well-behaved — i.e., well-founded — cases, <E will perform in-
teresting comparisons. But there are non-well-founded premise sets Γ which
do not permit well-ordering E-relations, for instance that of Example 4, viz.,
Γ={Ai∨Ai+12→¬Ai: i=1,2,3, . . . }. In this case, Γ|=A coincides with Γ|=1A.
On the other hand, recall that by the definition of <E, if there is one well-
ordering E-relation ≤ for Γ then we need not consider any E-relations for Γ
that are not well-ordering, because ≤ is <E-preferred to all of these. More-
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over, if Γ is well-founded we know that there are well-ordering E-relations
for Γ and that there is a <E-smallest among them, viz., E(Γ). So for a well-
founded Γ, Γ|=A iff E(Γ)|=A, or in other words, Cn(Γ)=K(E(Γ)). It is no
problem to determine the consequences of many suspicuous-looking infinite
premise sets like e.g. Γ={Ai∨Ai+12→¬Ai+1: i=1,2,3, . . . }.

Our consequence relation accounts for the paradigm example presented
in the introduction and Example 1 in a satisfactory and almost trivial way.
If all we know is given by Γ={A∨B}, then the unique <E-minimal E-relation
for Γ is given by the E-base ⊥≺A∨B≺>, which satisfies ¬A2→B. But if we
then learn that A (and ¬B) then all we know is Γ={A∨B,A(,¬B)}, so the
unique <E-minimal E-relation is given by ⊥≺A∨B'A('¬B)≺> which fails
to satisfy ¬A2→B. That is, Cn<E

in fact validates (3) and invalidates (4)
mentioned in the discussion of Example 1. It is obvious but notable that Cn is
nonmonotonic and allows the inference of conditionals from non-conditional
knowledge bases.

In Example 2, the second E-base is discarded, so we get for instance that
Γ={A,B,¬A2→B} entails the contraposed conditional ¬B2→A.

Besides the performance of Cn in examples, its abstract properties are of
interest.19

Observation 14 Cn satisfies
(i) Cn0(Γ)∩L1 ⊆ Cn(Γ)∩L1 (Restricted Supraclassicality)
(ii) for all L0-sentences A and B, Γ∪{A}|=B iff Γ|=A→B (Restricted

Deduction Theorem)
(iii) Γ ⊆ Cn(Γ) (Inclusion)
(iv) Cn(Cn(Γ)) = Cn(Γ) (Idempotence)
(v) if Γ⊆Σ⊆Cn(Γ) then Cn(Σ)⊆Cn(Γ) (Cut)
(vi) if Γ⊆Σ⊆Cn(Γ) then Cn(Γ)⊆Cn(Σ) (Cautious Monotony)
(vii) if Γ2⊆Cn(Γ1), Γ3⊆Cn(Γ2), . . . , Γn⊆Cn(Γn−1),

Γ1⊆Cn(Γn) then Γi=Γj for every i,j≤n (Loop)

Parts (iii)–(vi) mean that Cn is a cumulative inference relation in Makinson’s
sense. We point out that the restriction of Supraclassicality is severe. For
example, if we have Γ|=A2→B and Γ|=C2→D, we would certainly like to take
over the classical step to Γ|=(A2→B)&(C2→D), but this already transcends
the bounds of the language L1. A similar restriction applies to the Deduction

19The names of the conditions to be discussed are taken from Makinson(1989; 1990).
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Theorem. In Part 2 of the present trilogy we shall extend L1 in order to attain
full Supraclassicality and give a treatment of negations and disjunctions of
conditionals as well.

Observation 14 shows where Cn behaves well. But there are also less
mannerly features.

Observation 15 Cn does not satisfy
(i) if Γ∪{A}|=C and Γ∪{B}|=C then Γ∪{A∨B}|=C (Disjunction in the

Antecedent)
(ii) if Γ∪{A}|=B and Γ∪{¬A}|=B then Γ|=B (Proof by Cases)
(iii) if Γ|=B then Γ∪{A}|=B or Γ∪{¬A}|=B (Negation Rationality)
(iv) if {A,B}6|=⊥ then Cn({A})∪{B}6|=⊥ (Consistency Preservation)

I feel that I should give an example that makes the case for at least one of
these results. Let me explain how Disjunction in the Antecedent can fail.

Example 5 We consider another restaurant example and assume now
that there is a third restaurant which is run by Debbie. Let Γ={¬A2→B∨D,
¬B2→A∨D}. Now suppose you (only) know that either Annie’s or Ben’s
restaurant is open. In this situation, Γ adds nothing new, since the informa-
tion provided by

If Annie’s restaurant is not open (then) Ben’s or Debbie’s restaurant
will be open.

and

If Ben’s restaurant is not open (then) Annie’s or Debbie’s restaurant
will be open.

is already contained in the information provided by A∨B. But suppose you
(only) know that Annie’s restaurant is open. In this case the first element in
Γ, now read as

If Annie’s restaurant were not open (then) Ben’s or Debbie’s restau-
rant would be open.

does contain additional information. In particular, it seems justified to infer
from Γ∪{A} the following conditional:

If neither Annie’s nor Ben’s restaurant were open (then) Debbie’s
restaurant would be open. (5)
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By an analogous argument, we can infer (5) from the premise set Γ∪{B}.
From Γ∪{A∨B}, on the other hand, we saw that we cannot get anything
over and above the conclusions which can be drawn from {A∨B} alone, so
in particular we cannot get (5).20 (End of example)

The failure of Disjunction in the Antecedents and Proof by Cases is nei-
ther very common nor very uncommon in nonmonotonic logics. The failure
of Negation Rationality which is common in nonmonotonic logics implies
the failure of more non-Horn conditions for Cn (see Makinson 1990, Section
IV.1). The failure of Consistency Preservation is perhaps the most striking
deviation from usual patterns. In fact, the proof shows that for arbitrary
independent L0-sentences A and B, Cn({A}) and Cn({B}) are not satisfiable
simultaneously. This already indicates that the addition of new items of be-
lief should not be performed by taking the logical expansion of the current
theory, but by generating a new theory from the augmented premise set.
Belief change based on Cn will be the topic of Part 3 of the trilogy.

For reasons of language restriction, we cannot directly compare our logic
with Lewis’s “official” logic VC. With the plausible consistency condition for
L2

if ≤ |= ¬(A2→B) then ≤ 6|= A2→B ,

however, we get the following translations of the prominent VC-axioms into
robust inferences. We refer to the axiomatization of VC given by Gärdenfors
(1988, Section 7.2).

Observation 16 Let A,B,C range over L0-sentences. Then the follow-
ing sentence schemes of the form (A0&. . .&An)→B (n≥0), which are ax-
ioms for VC, are translatable into valid robust inferences of the form
{A0, . . . ,An}|≡B:

(i) A, for A∈Cn0(∅) ;
(ii) ((A2→B)&(A2→C)) → (A2→B&C) ;
(iii) A2→> ;
(iv) A2→A ;
(v) (A2→B) → (A→B) ;
(vi) (A&B) → (A2→B) ;

20For details, see the proof of Observation 15(i). — Notice that the switch from indicative
to subjunctive mood seems to produce some change in the meaning of the conditionals
in question. Both types of conditionals (if they constitute any clear-cut types at all) are
covered by our analysis.
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(vii) (A2→¬A) → (B2→¬A) ;
(viii) ((A2→B)&(B2→A)&(A2→C)) → (B2→C) ;
(ix) ((A2→C)&(B2→C)) → (A∨B2→C) ;
(x) ((A2→C)&¬(A2→¬B)) → (A&B2→C) .

Furthermore, the VC-rule “from B→C, to infer (A2→B)→(A2→C)” is
translatable into the valid robust inference
(xi) if C∈Cn0(B) then A2→B |≡A2→C .

When pressed to name the most distinctive feature of natural language con-
ditionals as opposed to “conditionals” encountered in logic and mathematics,
I think the best thing one can do is point out that natural language condi-
tionals fail to satisfy some cherished inference patterns. There is a canon of
three arguments which have become known as the counterfactual fallacies
(see Lewis 1973, Section 1.8):

Strengthening the Antecedent Transitivity Contraposition
(SA) (Tr) (Cp)

A2→B A2→B A2→B
A&C2→B B2→C ¬B2→¬A

A2→C

Most writers agree that these schemes are not universally valid for condi-
tionals. Yet there seem to be many contexts in which one may safely make
use of them. The present logic accounts for this fact by construing condi-
tionals in such a way that (SA), (Tr) and (Cp) are valid by default. That is,
the relevant premises taken in isolation entail the respective conclusions, but
the inference is not robust, since it can be spoilt by augmenting the premise
set. We can give a precise description of the contexts in which the so-called
counterfactual fallacies fail.

Observation 17
(i) {A2→B}|=A&C2→B, but not {A2→B}|≡A&C2→B;

{A2→B, B2→C}|=A2→C, but not {A2→B,B2→C}|≡A2→C;
{A2→B}|=¬B2→¬A, but not {A2→B}|≡¬B2→¬A.

(ii) In particular, {A2→B, A2→¬C}6|=A&C2→B;
{A2→B, B2→C, B2→¬A}6|=A2→C;
{A2→B, B}6|=¬B2→¬A.

(iii) For every E-relation ≤, if ≤ satisfies the premise but not the conclusion
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of (SA) then ≤ satisfies A2→¬C; if ≤ satisfies the premises but not the
conclusion of (Tr) then ≤ satisfies B2→¬A; if ≤ satisfies the premise
but not the conclusion of (Cp) then ≤ satisfies B.

Some comments are in order. In order to have a proper understanding of
what is “counterfactual” in these inference schemes, we should introduce the
appropriate terms in our setting.

Definition 14 Let ≤ be an E-relation and A and B L0-sentences. Then the
conditional A2→B is called open (with respect to ≤) if A≤⊥ and ¬A≤⊥; it
is called (weakly) counterfactual (with respect to ≤) if ⊥<¬A and strongly
counterfactual (with respect to ≤) if ⊥<¬A and ⊥<¬B; it is called factual
(with respect to ≤) if ⊥<A; it is called even if type (with respect to ≤) if
⊥<B.

The positive parts of Observation 17(i), are, as they stand, about open con-
ditionals. But it is easy to verify that they are extendable to counterfactual
and strongly counterfactual conditionals, in the sense that the pertinent con-
ditions of Definition 14 are added to the premise set. Note, however, the
exceptional status of (Cp). If both the premise and the conclusion of (Cp)
are to be counterfactual, then they are also even if type. If the premise is to be
strongly counterfactual, then the conclusion is a factual even if conditional.

Parts (ii) and (iii) of Observation 17 are more interesting. Considering
the proof, we discover that (SA), (Tr) and (Cp) only fail if counterfactual
conditionals are involved. As to (SA), the conclusion must be counterfactual;
as to (Tr), the first premise and the conclusion must be counterfactual, and,
by the same token, B2→¬A is even if type; as to (Cp), again the conclusion
must be counterfactual while the premise is even if type. So there is no failure
of the “counterfactual fallacies” if all conditionals involved are open. This is
what justifies the predicate ‘counterfactual’. The predicate ‘fallacy’ is, as Part
(i) of Observation 17 shows, not quite appropriate.
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Appendix: Proofs of Observations

Proof of Observation 1 (i) The limiting case `¬A is immediate.
So let 6`¬A; then, by the definition of ∗K=R(C(≤K)), an L0-sentence C
is in K∗A iff it is in Cn0((K∩{B:¬A<K¬A∨B})∪{A}), i.e., iff A→C∈
K∩{B:¬A<K¬A∨B}, i.e., by (E4), iff ⊥<KA→C and ¬A<K¬A∨(A→C),
i.e., by the properties of E-relations, iff ¬A<K¬A∨C, i.e., iff C is in
{B:¬A<K¬A∨B}.

(ii) By the definition of ≤K, A≤KB iff A/∈(K∩K∗¬(A&B)) or `A&B. It re-
mains to be shown that in the case where 6`A&B, A/∈K implies A/∈K∗¬A∨¬B.
Now if A/∈K, then, by the Gärdenfors postulates for revisions of belief sets
in L0, K∗¬A∨¬B=Cn0(K∪{¬A∨¬B}). But since belief sets are closed un-
der Cn0, A/∈K is equivalent to A/∈Cn0(K), which in turn is equivalent to
A/∈Cn0(K∪{¬A∨¬B}) = K∗¬A∨¬B, so we are done.

(iii) Immediate from the results in Gärdenfors (1988, Section 3.6) and
Gärdenfors and Makinson (1988). 2

Proof of Observation 2 Let ≤=E(�). Transitivity (E1) is trivial. —
For Entailment (E2), assume that ∅6=Γ`A. We have to show that B≤A for
some B∈Γ. Since classical propositional logic is compact, there is a finite
Γ0⊆Γ such that Γ0`A. Now suppose for reductio that B 6≤A for every B∈Γ.
Hence B 6≤A for every B∈Γ0, i.e., by the definition of E(�), there is a B-cut
SB for every B∈Γ0 such that SB`B but SB 6`A. Consider

⋃{Cn0(SB): B∈Γ0}.
Clearly, Γ0 is included in

⋃{Cn0(SB): B∈Γ0}. Since B-cuts are nested, the
Cn0(SB)’s are nested, so, since Γ0 is finite,

⋃{Cn0(SB): B∈Γ0} is identical
with Cn0(SB) for some B∈Γ0. For this B then, we have Γ0⊆Cn0(SB) and
SB 6`A. But this contradicts Γ0`A. — For Maximality (E3), assume that B≤A
for every B. By definition, this means that for every B and every B-cut S,
if B∈Cn0(S) then A∈Cn0(S). Choose B=> and S=∅. This gives us `A, as
desired. 2

Proof of Observation 3 It is clear that (E2) for � is a necessary
condition for E(�)∩B×B=�. For otherwise E(�) could not be an E-relation,
in contradiction to Observation 2. To show conversely that (E2) for � is
sufficient, assume that � satisfies (E2) over B. We have to show that for all
A and B in B, A�B iff A∈Cn0(S) entails B∈Cn0(S) for all B-cuts S. The
direction from left to right follows immediately from the definition of a B-cut
and the monotonicity of Cn0. For the direction from right to left, assume
that A6�B. It remains to show that there is a B-cut S such that A∈Cn0(S)
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but B/∈Cn0(S). Now consider SA=df{C∈B: A�C}. SA is a B-cut, since � is
transitive. A∈SA, since � is reflexive, so SA 6=∅ and A∈Cn0(SA). A6�B by
assumption, so, since � is transitive, C 6�B for every C in SA. Hence, by (E2)
for � over B, B/∈Cn0(SA), and we are done. 2

Proof of Observation 4 (i) Let Γ|=1A, i.e., every E-relation satisfying Γ
satisfies A. This implies that every <E-minimal E-relation for some superset
Σ of Γ satisfies A, i.e., Γ|≡<A.
(ii) Let Γ|≡<A. Assume that Γ6|=1A, i.e., there is an E-relation ≤ which
satisfies Γ without satisfying A. That is, Γ⊆K(≤) and A/∈K(≤). But by
hypothesis, every Σ such that Γ⊆Σ minimally implies A. So in particular
every minimal E-relation for K(≤) must satisfy A. But since ≤ does not
satisfy A, it cannot be minimal for K(≤). Therefore, the antecedent of (ii) is
false. 2

Proof of Observation 5 (i)⇔(ii): We have to show that K(≤)⊆K(≤′)
iff ≤′⊆≤. As remarked above, L0-sentences A are satisfaction-equivalent to
conditionals >2→A, so K(≤) and K(≤′) can be thought of as consisting of
conditionals only. We have to show that for all L0-sentences A and B,

if ¬A<¬A∨B then ¬A<′¬A∨B,
i.e., by the connectivity of E-relations,

if not ¬A∨B≤¬A then not ¬A∨B≤′¬A, i.e.,
(∗) if ¬A∨B≤′¬A then ¬A∨B≤¬A,

iff for all L0-sentences C and D,
(∗∗) if C≤′D then C≤D.
The direction from (∗∗) to (∗) is immediate. To see that the converse also
holds, substitute ¬(C&D) for A and C for B in (∗). This gives us

if ¬¬(C&D)∨C≤′¬¬(C&D) then ¬(C&D)∨C≤¬¬(C&D),
i.e., by (E2),

if C≤′C&D then C≤C&D.
But since for every E-relation ≤, C≤C&D is equivalent to C≤D, the latter
condition is equivalent to (∗∗).
(iii)⇔(ii): This is immediate from the connectivity of E-relations which gives
us <=(L0×L0)–≤ and <′=(L0×L0)–≤′.
(iv)⇔(ii): That ≤⊆≤′ implies

.
=⊆ .

=′ is clear from the definitions
.
==≤∩≤−1

and
.
=′=≤′∩(≤′)−1. To verify the converse, assume that ≤6⊆≤′, i.e., that there

are L0-sentences A and B such that A≤B but not A≤′B. By the properties
of E- relations, this implies that A

.
=A&B but not A

.
=′A&B, so

.
=6⊆ .

=′, and
we are done. 2
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Proof of Observation 6 By a number of Boolean transformations of
the definition of <K0 . 2

Proof of Observation 7 (i) As to conditionals, we show that for every
B and C in L0,

¬B∨C 6≤¬B iff ¬B∨C 6≤i¬B for all i, i.e.,
¬B∨C≤¬B iff ¬B∨C≤i¬B for some i.

But this immediate from the definition of ≤. The case of L0-sentences is
similar.

(ii) Let ≤∗ be as indicated. Then, just as before, for every B and C in L0,
¬B∨C≤∗¬B iff ¬B∨C≤i¬B for some i.

Substituting ¬(D&E) for B and D for C gives us
¬¬(D&E)∨D≤∗¬¬(D&E) iff ¬¬(D&E)∨D≤i¬¬(D&E) for some i, i.e.,

as all relations involved are E-relations,
D≤∗D&E iff D≤iD&E for some i.

But again, since all relations involved are E-relations, this is equivalent to
D≤∗E iff D≤iE for some i,

i.e., since D and E were chosen arbitrarily, ≤∗ = ≤1∪. . .∪≤n = ≤, as desired.
(iii) Clearly, any union of E-relations satisfies Entailment (E2) and Max-

imality (E3). So ≤=≤1∪. . .∪≤n is an E-relation iff it satisfies Transitivity
(E1), i.e., iff for all A,B,C∈L0,

if B≤iC for some i and C≤jA for some j, then B≤kA for some k.
By a simple Boolean transformation, we see that this is violated iff A<iB≤iC
for some i and C≤jA<jB for some j, and A<kB for every k, as desired. 2

Proof of Observation 8 Let ≤vK≤′. From Observation 5 we know
that this is equivalent to ≤′⊆≤.
We first show by transfinite induction on α that for any ordinal α,
←
α(≤′)⊆←α(≤).

•
←
0(≤′)⊆

←
0(≤):

←
0(≤′) = ∅ =

←
0(≤).

•
←−

α+1(≤′)⊆
←−

α+1(≤): The induction hypothesis is
←
β(≤′)⊆

←
β(≤) for every

β<α+1. So in particular
←
α(≤′)⊆←α(≤)⊆

←−
α+1(≤). As

←−
α+1(≤′) =

←
α(≤′)∪

α(≤′), it remains to show that α(≤′)⊆
←−

α+1(≤):

α(≤′) =

= {B∈L0–
←
α(≤′): B≤′C for every C∈L0–

←
α(≤′)} =

= ({B∈L0–
←
α(≤′): B≤′C for every C∈L0–

←
α(≤′)} ∩ ←α(≤)) ∪

({B∈L0–
←
α(≤′): B≤′C for every C∈L0–

←
α(≤′)} ∩ L0–

←
α(≤)) ⊆

172



⊆ ←
α(≤) ∪ {B∈(L0–

←
α(≤′))∩(L0–

←
α(≤)) : B≤′C for every C∈L0–

←
α(≤′)} ⊆

(by the induction hypothesis)

⊆ ←
α(≤) ∪ {B∈L0–

←
α(≤) : B≤′C for every C∈L0–

←
α(≤)} ⊆ (by ≤′⊆≤)

⊆ ←
α(≤) ∪ {B∈L0–

←
α(≤) : B≤C for every C∈L0–

←
α(≤)} =

=
←
α(≤) ∪ α(≤) =

=
←−

α+1(≤).

• ←α(≤′)⊆←α(≤) for limit ordinals α: The induction hypothesis is
←
β(≤′)⊆

←
β(≤)

for every β<α. But since
←
α(≤′) =

⋃ {β(≤′):β<α} =
⋃ { ←−β+1(≤′):β<α}, and

similarly for ≤, we get the claim immediately from the induction hypothesis.
Having shown that for any ordinal α,

←
α(≤′)⊆←α(≤), we can rerun the argu-

ment establishing α(≤′)⊆
←−

α+1(≤), this time for any ordinal α. But this just
means that for every L0-sentence A, if rank≤′=α then rank≤≤α, and we are

done. 2

Proof of the Corollary Immediate from the Observation and the fact
≤vE≤′ and ≤′vE≤ implies ≤=≤′. 2

Proof of Observation 9 Let ≤vE≤′. If also ≤′vE≤, then, by the
antisymmetry of vE, ≤=≤′, so ≤vK0≤′ is trivial. Now consider the principal
case where ≤′ 6vE≤. By Observation 8, this gives us ≤′ 6vK≤. Hence either
≤vK≤′ or ≤ and ≤′ are incomparable with respect to vK. In the former case,
≤vK0≤′ is immediate. In the latter case, we have to show the K0(≤)⊆K0(≤′).
But this just means that L0–0(≤)⊆L0–0(≤′) which is entailed by ≤vE≤′. 2

Proof of Observation 10 (i) As Cn0 is monotonic, Cn0(∅) is included
in ∆α for every α. ∆α+1 = Cn0({Aj→Bj:¬Bj∈∆α}) ⊆ Cn0({¬Bj:¬Bj∈∆α})
⊆ Cn0(∆α) = ∆α, since ∆α is closed under Cn0.

(ii) By definition,
←
α(≤)=

⋃{β(Γ):β<α} =
⋃{∆β–∆β+1:β<α}. We show

by transfinite induction that the latter set equals L0–∆α.
α=0:

⋃{∆β–∆β+1:β<0} = ∅ = L0–∆0.
α+1:

⋃{∆β–∆β+1:β<α+1} = (
⋃{∆β–∆β+1:β<α}) ∪ (∆α–∆α+1) = (by in-

duction hypothesis) (L0–∆α)–(∆α–∆α+1) = L0–∆α+1.
Limit ordinals α:

⋃{∆β–∆β+1:β<α} = (by set theory)
⋃{⋃{∆γ–∆γ+1:

γ<β}:β<α} = (by induction hypothesis)
⋃{L0–∆β:β<α} = L0–

⋂{∆β:
β<α} = (by definition) L0–∆α.

(iii) Let Γ={Ai2→Bi: i∈I} be finite and consistent, and let ≤ be an E-
relation for Γ. Now assume for reductio that there is a non-empty J⊆I such
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that {¬Aj: j∈J} is contained in Cn0({Aj→Bj: j∈J}). Observe that J is finite.
So {Aj→Bj: j∈J}`&{¬Aj: j∈J}, where &{¬Aj: j∈J} is the conjunction of
the elements of {¬Aj: j∈J}. Thus, by (E2), Ak→Bk≤&{¬Aj: j∈J}≤¬Ak for
some k in J. That is ¬Ak 6<Ak→Bk, but this means that ≤ does not satisfy
Ak2→Bk∈Γ, contradicting our assumption that ≤ is an E-relation for Γ.

For the following, assume that Γ is well-founded.
(iv) Let α be such that ∆α⊆∆α+1. Hence, by (i), ∆α=∆α+1. By defini-

tion then, ∆α+1 = Cn0({Aj→Bj:¬Aj∈∆α}) = Cn0({Aj→Bj:¬Aj∈∆α+1}).
Set J={j∈I:¬Aj∈∆α+1}. Then {¬Aj: j∈J} = {¬Aj:¬Aj∈∆α+1} ⊆ ∆α+1

= Cn0({Aj→Bj:¬Aj∈∆α+1}) = Cn0({Aj→Bj: j∈J}). Hence, by the well-
foundedness of Γ, J={j∈I:¬Aj∈∆α+1}=∅. That is, since ∆α=∆α+1,
{j∈I:¬Aj∈∆α}=∅, i.e., by definition, ∆α+1=Cn0(∅), hence, by ∆α=∆α+1

again, ∆α=Cn0(∅).
(v) The first part of (v) follows immediately from (i). For the second

part, suppose that {Ai→Bi:¬Ai∈∆α+1} = {Ai→Bi:¬Ai∈∆α}. So, by defi-
nition, ∆α+2 = ∆α+1, hence, by (iv), ∆α+1=Cn(∅). Since we presuppose that
all conditionals with antecedents A such that `¬A have been deleted from
Γ in advance, it follows that {Ai→Bi:¬Ai∈∆α+1} = ∅, so by supposition
{Ai→Bi:¬Ai∈∆α} = ∅.

(vi) From (v), we know that {Ai→Bi:¬Ai∈∆α} – {Ai→Bi:¬Ai∈∆α+1}
6=∅, unless {Ai→Bi:¬Ai∈∆α}=∅. That is, each step in the construction pro-
cess reduces the number of conditionals to be taken into account by at
least one. Let β be the smallest cardinal that is greater than the cardinal
number of Γ. Since there is no bijective mapping between β and Γ, then
{Ai→Bi:¬Ai∈∆β}=∅, so ∆β+1=Cn(∅). Hence the set of ordinals γ≤β+1
such that ∆γ=Cn(∅) is non-empty. Let α be the smallest ordinal of that set.
Then, by definition, >∈α(Γ)=Cn0(∅). In particular, let Γ be finite and |Γ|=n;
then |{Ai→Bi:¬Ai∈∆0}|=n, and hence, since each step in the construction
reduces the number of conditionals to be taken into account by at least one,
|{Ai→Bi:¬Ai∈∆n}| = 0. Thus ∆n+1 = Cn0({Ai→Bi:¬Ai∈∆n}) = Cn0(∅),
i.e., >∈α(Γ) for some α≤n+1.

(vii) If A∈Cn0(∅), then A∈α(Γ) if and only if α is the smallest ordinal such
that ∆α=Cn0(∅), which exists, as shown above. If A/∈Cn0(∅), then A/∈∆α for
those α such that ∆α=Cn0(∅). So the set of all ordinals β such that A/∈∆β

is non-empty. Let γ be the smallest ordinal of that set. γ cannot be 0, for
∆0=L0; γ cannot be a limit ordinal for if A/∈∆γ for a limit ordinal γ then,
by the construction of ∆γ, there must be a γ′<γ such that A/∈∆γ′ ; so γ is
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a successor number. So A∈∆γ−1–∆γ, i.e., A∈γ-1(Γ). To show uniqueness,
suppose for reductio that A∈α(Γ) and A∈β(Γ) with α<β. From A∈α(Γ), it
follows that A/∈∆α+1, hence, since ∆β⊆∆α+1, A/∈∆β, contradicting A∈β(Γ).

(viii) Let A∈∆α and A≤ΓB. From A∈∆α, we get that A∈β(Γ) for some
β≥α, and from A≤ΓB we then get that B∈γ(Γ)=∆γ–∆γ+1 for some γ≥β≥α,
hence, by (i), B∈∆α. So ∆α is an L0-cut with respect to ≤Γ. To show that
the ∆α’s are the only non-empty cuts with respect to ≤Γ, suppose that S 6=∅
is a cut with respect to ≤Γ. Consider the set of ordinals β such that there
is an A∈S with A∈β(Γ), and take the smallest ordinal α from this class. We
show that ∆α=S. Select some A∈S with A∈α(Γ). Since S is a cut, B∈L0 is
in S iff A≤ΓB, i.e., iff B∈β(Γ) for some β≥α, i.e., iff B∈⋃{β(Γ): β≥α}=∆α,
by (vii) and (ii).

(ix) From left to right: Let A≤ΓB and A∈∆α. From the latter, we get
that A∈β(Γ) for some β≥α, then the former gives us that B∈γ(Γ) for some
γ≥β≥α, hence B∈∆γ⊆∆α, as desired. From right to left: Let A6≤ΓB, i.e.,
by (vii), there are β and γ such that A∈β(Γ), B∈γ(Γ) and γ<β. But then,
A∈∆β and B/∈∆γ+1⊇∆β, so A, but not B is in ∆β, and we are done. 2

Proof of Observation 11 (i) That E(Γ) satisfies Transitivity (E1)
follows immediately from the transitivity of ≤ on the ordinals.

For Entailment (E2), suppose that ∅6=Σ`A Consider the set of ordinals β
such that there is a B∈Σ with rankΓ(B)=β, take the smallest ordinal α from
this class and select some B∈Σ with rankΓ(B)=α. Now since for all C∈Σ,
rankΓ(C)≥α, they are in ∆γ for some γ≥α, hence, by part (i) of Observation
10, each C∈Σ is in ∆α, so Σ⊆∆α. But ∆α is closed under Cn0 by definition.
Hence A∈∆α, hence A∈γ(Γ) for some γ≥α, hence B≤ΓA.

For Maximality (E3), suppose that B≤ΓA for all B. That is, rankΓ(B)≤
rankΓ(A) for all B, so in particular rankΓ(>)≤rankΓ(A). Let α=rankΓ(>).
Then, by part (vi) of Observation 10, ∆α=Cn0(∅), and we have ∆β=Cn0(∅)
for β>α, so, since rankΓ(A)≥α, A∈Cn0(∅).

To show that E(Γ) is well-ordering, let Σ be a non-empty set of L0-
sentences. Consider the set {α: rankΓ(A)=α for some A∈Σ}, select the
smallest ordinal β from that set and a B∈Σ such that rankΓ(B)=β. Since
β≤rankΓ(A) for all A∈Σ, B≤ΓA for all A∈Σ, so B is a smallest element in
Σ, and we are done.

(ii) Suppose for reductio that there is an Ai2→Bi ∈Γ which ≤Γ

does not satisfy. Then Ai→Bi≤Γ ¬Ai, i.e., rankΓ(Ai→Bi)≤rankΓ(¬Ai). Let
rankΓ(¬Ai)=α, i.e., ¬Ai∈∆α–∆α+1. As ¬Ai∈∆α, we get, by definition,
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Ai→Bi∈∆α+1 = Cn0({Aj→Bj:¬Aj∈∆α}). So rankΓ(Ai→Bi) ≥ α+1 >
rankΓ(¬Ai), and we have a contradiction. 2

Proof of Observation 12 Let rankE(Γ)(A)=α, i.e., by definition A∈L0–
←
α(≤Γ) and A≤ΓB for every B∈L0–

←
α(≤Γ). By part (ii) of Observation 10,

this means that A∈∆α and A≤ΓB for every B∈∆α. Thus, by part (ix) of
Observation 10, A∈∆α and for every β and B∈∆α, if A∈∆β then B∈∆β. But
we know from parts (i) and (iv) of Observation 10 that α(Γ) is non-empty,
i.e., that there is a B∈∆α–∆α+1. So A/∈∆α+1, so A∈α(Γ), so rankΓ(A)=α. 2

Proof of Observation 13 Let Γ be as indicated and ≤ an E-relation
satisfying Γ. If ≤ is not well-ordering, then E(Γ)<E≤ by definition, since
E(Γ) is well-ordering by Observation 11. So let ≤ be well-ordering. As vE is
antisymmetrical, it suffices to show that E(Γ)vE≤. We show that for every
L0-sentence A, rankE(Γ)(A)≤rank≤(A) by transfinite induction on rank≤(A).

Let, as induction hypothesis, rankE(Γ)(A)≤rank≤(A) be established for
all A with rank≤(A)<α. Now let rank≤(C)=α. We have to verify that
rankE(Γ)(C)≤α, i.e., by Observation 12, rankΓ(C)≤α, i.e., C∈⋃{β(Γ):β≤α}
= L0–∆α+1, by part (ii) of Observation 10.

Suppose for reductio that C∈∆α+1, i.e., by construction, C∈Cn0{Ai→Bi:
¬Ai∈∆α}. Since ≤ is an E-relation, so by (E2), Ai→Bi≤C for some i
such that ¬Ai∈∆α. As ≤ satisfies Γ, we have ¬Ai<Ai→Bi, so by (E1),
¬Ai<C. Hence, rank≤(¬Ai)<rank≤(C)=α. But ¬Ai∈∆α, so rankE(Γ)(¬Ai)
= rankΓ(¬Ai) ≥ α > rank≤(¬Ai), which contradicts the induction hypothe-
sis. 2

Proof of the Corollary First we recall that any set of sentences satisfied
by a well-ordering E-relation ≤ is well-founded, so in particular K(≤) is well-
founded and the construction of E(K(≤)) yields a well-ordering E-relation,
by Observation 11(i). In view of Observation 13 and the antisymmetry of
vE, it suffices to show that ≤vEE(K(≤)).

We show that rank≤(A)≤rankE(K(≤))(A) for every A by induction
on rank≤(A). Let, as induction hypothesis, rank≤(A)≤rankE(K(≤))(A) be
established for every A with rank≤(A)<α. Now let rank≤(A)=α. For
α=0, the claim is trivial. For α>0, choose representatives Bβ with
rank≤(Bβ)=β for all β<α (such Bβ’s exist!). Now clearly Bβ<A for
all β<α, hence ≤ satisfies ¬A∨¬Bβ2→A for all β<α. By Observa-
tion 11(ii), E(K(≤)) satisfies K(≤), so E(K(≤)) satisfies in particular
¬A∨¬Bβ2→A for every β<α, so Bβ≤K(≤)A for every β<α, so by induc-
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tion hypothesis β=rank≤Bβ≤rankE(K(≤))Bβ<rankE(K(≤))A for every β<α, so
rank≤(A)=α≤rankE(K(≤))A.

Proof of Observation 14 (i) Let A∈Cn0(Γ)∩L1. As Cn0 does not
operate on the internal structure of conditionals, they may be regarded as
atoms when applying Cn0 to Γ. Note that since Γ is an L1-set, these new
atoms do not appear in any complex sentence. Therefore, if A is a conditional,
i.e., if A is in L1–L0, it can only be a Cn0-consequence of Γ if A∈Γ, and the
claim reduces to Inclusion which will be proved as (iii). On the other hand,
if A is in L0, then, by the same argument, it must be a Cn0-consequence of
Γ∩L0. But as K0(≤) is a Cn0-theory for every E-relation ≤, every E-relation
satisfying Γ⊇Γ∩L0 satisfies Cn0(Γ∩L0), so every E-relation for Γ satisfies A.

(ii) Let B∈L0∩Cn(Γ∪{A}). As B∈L0, this means that B∈K0(E(Γ∪{A}))
= Cn0(L0(Γ∪{A})), by construction. But this is equivalent to A→B∈
Cn0(L0(Γ)) = K0(E(Γ)), i.e., A→B∈Cn(Γ).

(iii)–(v) Immediate from the general results of Makinson (1989; 1990) for
arbitrary preferential model structures.

(vi) As Makinson points out, it suffices to show that (E ,|=,<E) is “stop-
pered” in the sense that for all E-relations ≤∈E and all L1-premise sets Γ,
if ≤|=Γ then there is a ≤′ such that either ≤′<E≤ or ≤′=≤, and ≤′ satis-
fies Γ <E-minimally. Let ≤|=Γ. In the first case, assume that there are only
non-well-ordering E-relations for Γ. Then we are immediately done, since,
by the definition of <E, non-well-ordering E-relations are incomparable with
respect to <E, so ≤′=≤ will do. So assume, as the second case, that there
is a well-ordering E-relation for Γ. So Γ is well-founded. Hence E(Γ) is the
smallest E-relation with respect to <E, so ≤′=E(Γ) will do.

(vii) Drawing again on Makinson’s work, we only have to verify that <E

is transitive. But this follows trivially from the definition of <E. 2

Proof of Observation 15 By giving counterexamples.
(i) Let Γ={¬A2→B∨D, ¬B2→A∨D}; the ≤-translations are A<A∨B∨D

and B<A∨B∨D. E(Γ∪{A}) has the E-base ⊥≺A≺A∨B∨D≺>, E(Γ∪{B})
has the E-base ⊥≺B≺A∨B∨D≺>; in both cases, it follows that
A∨B<A∨B∨D, so both Γ∪{A} and Γ∪{B} entail ¬(A∨B)2→D (≡C).
But E(Γ∪{A∨B}) has the E-base ⊥≺A∨B≺> which does not give
A∨B<A∨B∨D, so Γ∪{A∨B} does not entail ¬(A∨B)2→D.

(ii) Let Γ={¬C, A∨C2→D, ¬A∨C2→D}; the ≤-translations are
⊥<¬C, ¬A&¬C<(¬A&¬C)∨D and A&¬C<(A&¬C)∨D. E(Γ∪{A}) has
the E-base ⊥≺A'¬C'D≺(A&¬C)∨D≺>, E(Γ∪{¬A}) has the E-base
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⊥≺¬A'¬C'D≺(¬A&¬C)∨D≺>; in both cases, it follows that ¬C<¬C∨D,
so both Γ∪{A} and Γ∪{¬A} entail C2→D (≡B). But E(Γ) has the E-base
⊥≺¬C'D≺> which does not give ¬C<¬C∨D, so Γ does not entail C2→D.

(iii) Let Γ={C, D, ¬D2→C, ¬A∨¬C2→C, A∨¬C2→C}; the ≤-
translations are ⊥<C, ⊥<D, D<C∨D, A<C and ¬A<C. E(Γ) has the E-base
⊥≺C'D≺C∨D≺>, so Γ entails ¬C2→D (≡B). But E(Γ∪{A}) has the E-
base⊥≺A'D≺C'C∨D≺>, and E(Γ∪{¬A}) has the E-base⊥≺¬A'D≺C'
C∨D≺>, so neither gives C<C∨D, so neither Γ∪{A} nor Γ∪{¬A} entails
¬C2→D.

(iv) Let Γ={A,¬A∨¬C2→C}. Γ is consistent and has the E-base
⊥≺A≺C≺>. Cn({A}) is the set of all sentences satisfied by E({A}) which has
the E-base ⊥≺A≺>. Now ¬A∨¬C2→A ∈ Cn({A}). So both ¬A∨¬C2→A
and ¬A∨¬C2→C (≡B) are in Cn({A})∪{¬A∨¬C2→C}. But there is no
E-relation satisfying these two sentences, for the first one translates to A<C
while the second one translates to C<A which contradicts the definition of
< from ≤. 2

Proof of Observation 16 We restrict our attention to the principal
cases with antecedents the negations of which are not in Cn0(∅); the limiting
cases are all trivial. In view of Observation 4, we can replace |≡ by |=1.

(i) |=1A for A∈L0∩Cn0(∅): ⊥<> .
=A for such an A and every E-relation

≤, by (E3).
(ii) {A2→B, A2→C}|=1A2→(B&C): Let ≤ satisfy the premises, i.e.,

¬A<¬A∨B and ¬A<¬A∨C. By (E2) then, ¬A∨B≤A∨(B&C) or ¬A∨C≤
A∨(B&C), so, by (E1) and (E2), ¬A<¬A∨(B&C), i.e., ≤|=1A2→(B&C).

(iii) |=1A2→>: like (i), ¬A<¬A∨> is immediate, provided that ¬A/∈
Cn0(∅).

(iv) |=1A2→A: like (i), ¬A<¬A∨A is immediate, provided that
¬A/∈Cn0(∅).

(v) {A2→B)}|=1A→B: Let ≤ satisfy the premise, i.e., ¬A<¬A∨B. Thus
⊥≤¬A<¬A∨B, so ⊥<A→B, i.e., ≤|=A→B.

(vi) {A&B}|=1A2→B: Let ≤ satisfy the premise, i.e., ⊥<A&B. Then, by
(E2), ¬A≤⊥<A&B≤¬A∨B, so ≤|=A2→B.

(vii) {A2→¬A}|=1B2→¬A: Immediate, since there is no ≤ satisfying
A2→¬A which would mean ¬A<¬A∨¬A, a contradiction with (E2).

(viii) {A2→B, B2→A, A2→C}|=1B2→C: Let ≤ satisfy the premises,
i.e., ¬A<¬A∨B, ¬B<¬B∨A, and ¬A<¬A∨C. The first term implies, with
the help of (E2), that ¬B≤¬A. Also by (E2), either ¬B∨A≤¬B∨C or
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¬A∨C≤¬B∨C. In the former case, we get ¬B<¬B∨A≤¬B∨C, in the lat-
ter case we get ¬B≤¬A<¬A∨C≤¬B∨C, so in any case ≤|=B2→C.

(ix) {A2→C, B2→C}|=1A∨B2→C: Let ≤ satisfy the premises, i.e., ¬A<
¬A∨C and ¬B<¬B∨C. By (E2), either ¬A∨C≤(¬A&¬B)∨C or ¬B∨C≤
(¬A&¬B)∨C. In the former case, ¬A&¬B≤¬A<¬A∨C≤(¬A&¬B)∨C, in
the latter case similarly ¬A&¬B≤¬B<¬B∨C≤(¬A&¬B)∨C, so in any case
≤|=(A∨B)2→C.

(x) {A2→C, ¬(A2→¬B)}|=1A&B2→C: Let ≤ satisfy the premises, so
¬A<¬A∨C and, by the consistency condition for L2, ¬A∨¬B≤¬A. Hence,
by (E1) and (E2), ¬A∨¬B≤¬A<¬A∨C≤(¬A∨¬B)∨C, so ≤|=(A&B)2→C.

(xi) If C∈Cn0(B) then A2→B|=1A2→C: Let C∈Cn0(B) and let ≤ satisfy
the premise, i.e., ¬A<¬A∨B. Since C∈Cn0(B), also ¬A∨C∈Cn0(¬A∨B), so,
by (E2), ¬A∨B≤¬A∨C, hence ¬A<¬A∨C, i.e., ≤|=A2→C. 2

Proof of Observation 17 (i) We show the positive claims concerning
|=; the negative claims concerning |≡ follow from (ii). The E-relations E(Γ)
generated by the respective premise sets of (SA), (Tr) and (Cp) have the
following E-bases:

⊥≺¬A∨B≺> ,
⊥≺¬A∨B'¬B∨C≺> ,
⊥≺¬A∨B≺> , respectively.

Clearly, for these E-relations it holds that ¬A∨¬C<¬A∨¬C∨B, ¬A<¬A∨C,
and B<¬A∨B, respectively. So they satisfy the desired conclusions.

(ii) The E-relations E(Γ) generated by the augmented premise sets have
the following E-bases:

⊥≺¬A∨B'¬A∨¬C≺> ,
⊥≺¬A'¬B∨C≺¬A∨B≺>,
⊥≺B≺> , respectively.

It is easy to see that for these E-relations it holds that ¬A∨¬C∨B≤¬A∨¬C,
¬A∨C≤¬A, and ¬A∨B≤B, respectively. So they do not satisfy the desired
conclusions.
(iii) Let in the following ≤ satisfy the premise(s) but not the conclusion of
our inference patterns.
In the case of (SA), we have ¬A<¬A∨B≤¬A∨¬C∨B≤¬A∨¬C, so ≤ satis-
fies A2→¬C.
In the case of (Tr), we have, first, ¬A<¬A∨B, secondly, ¬B<¬B∨C, and
thirdly, ¬A∨C≤¬A. From (E2), we know that either ¬A∨B≤¬A∨C or
¬B∨C≤¬A∨C. But the former cannot be, since it would imply, with the help
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of the first and third condition, ¬A<¬A. So ¬B∨C≤¬A∨C. But by the sec-
ond and the third condition and by (E2) this gives us the chain ¬B<¬B∨C≤
¬A∨C≤¬A≤¬B∨¬A, so ≤ satisfies B2→¬A.
In the case of (Cp), we have ⊥≤¬A<¬A∨B≤B, so ≤ satisfies B. 2
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