Some New Ideas About Noncommutative Spaces And Space-Time From the Topos Approach

Quantum Field Theory And Gravity
Regensburg
29. September 2010

Andreas Döring

Oxford University Computing Laboratory

andreas.doering@comlab.ox.ac.uk
“In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.”

Douglas Adams
Introduction
The **topos approach** aims to provide
The **topos approach** aims to provide

- a framework for the formulation of physical theories in general,
The topos approach aims to provide

- a framework for the formulation of physical theories in general,
- a mathematical reformulation of quantum theory in particular.
The **topos approach** aims to provide

- a framework for the formulation of physical theories in general,
- a mathematical reformulation of quantum theory in particular.

The topos approach was initiated by Chris Isham (1997) and Chris Isham/Jeremy Butterfield (1998–2002). It was developed further in recent years.
Introduction

The **topos approach** aims to provide

- a framework for the formulation of physical theories in general,
- a mathematical reformulation of quantum theory in particular.

The topos approach was initiated by Chris Isham (1997) and Chris Isham/Jeremy Butterfield (1998–2002). It was developed further in recent years

- with an eye towards foundational issues in quantum gravity and quantum cosmology,
Introduction

The **topos approach** aims to provide

- a framework for the formulation of physical theories in general,
- a mathematical reformulation of quantum theory in particular.

The topos approach was initiated by Chris Isham (1997) and Chris Isham/Jeremy Butterfield (1998–2002). It was developed further in recent years

- with an eye towards foundational issues in quantum gravity and quantum cosmology,
- with the goal of providing ‘neo-realist’ theories.
Where are we now?

The topos approach is very much work in progress, so think of
Where are we now?

The topos approach is very much work in progress, so think of
The central ideas

A **topos** is a category that can be seen as a generalised universe of sets. Each topos comes with an **internal logic** that is of intuitionistic type.

At the same time, we also depart from Boolean logic: by using the internal logic of the topos, we arrive at a new, distributive form of quantum logic that can be interpreted in a realist manner. Due to these changes, quantum theory becomes structurally much more similar to classical physics.
The central ideas

A **topos** is a category that can be seen as a generalised universe of sets. Each topos comes with an **internal logic** that is of intuitionistic type.

The central ideas in the topos approach to quantum theory are

- to use objects in a suitable topos as state spaces, spaces of values etc. This leads away from set-based mathematics, towards new kinds of topological and geometric spaces.
The central ideas

A **topos** is a category that can be seen as a generalised universe of sets. Each topos comes with an **internal logic** that is of intuitionistic type.

The central ideas in the topos approach to quantum theory are

- to use objects in a suitable topos as state spaces, spaces of values etc. This leads away from set-based mathematics, towards new kinds of topological and geometric spaces.
- At the same time, we also depart from Boolean logic: by using the internal logic of the topos, we arrive at a new, distributive form of quantum logic that can be interpreted in a realist manner.
The central ideas

A **topos** is a category that can be seen as a generalised universe of sets. Each topos comes with an **internal logic** that is of intuitionistic type.

The central ideas in the topos approach to quantum theory are

- to use objects in a suitable topos as state spaces, spaces of values etc. This leads away from set-based mathematics, towards new kinds of topological and geometric spaces.

- At the same time, we also depart from Boolean logic: by using the internal logic of the topos, we arrive at a new, distributive form of quantum logic that can be interpreted in a realist manner.

- Due to these changes, quantum theory becomes *structurally* much more similar to classical physics.
Physical quantities

Let A be a physical quantity of a given physical system (e.g. energy). In classical physics, this is represented by a function

$$f_A : \Sigma \rightarrow \mathbb{R}$$

from the state space Σ to the reals.
Physical quantities

Let A be a physical quantity of a given physical system (e.g. energy). In classical physics, this is represented by a function

$$f_A : \Sigma \rightarrow \mathbb{R}$$

from the state space Σ to the reals.

In a quantum situation, let \hat{A} be the self-adjoint operator in the C^*-algebra or von Neumann algebra \mathcal{A} of physical quantities of the system that represents A.
Physical quantities

Let A be a physical quantity of a given physical system (e.g. energy). In classical physics, this is represented by a function

$$f_A : \Sigma \longrightarrow \mathbb{R}$$

from the state space Σ to the reals.

In a quantum situation, let \hat{A} be the self-adjoint operator in the C^*-algebra or von Neumann algebra \mathcal{A} of physical quantities of the system that represents A.

In the topos approach, we can define an arrow

$$\hat{A} : \Sigma \longrightarrow \mathbb{R}$$

from the state object Σ to the quantity-value object \mathbb{R}. Both are objects in a topos associated with the quantum system.
New spaces

In this talk, I want to focus on some properties of the objects Σ and $\mathbb{R}^{\leftrightarrow}$. It will be shown that Σ can be seen as a spectrum of the noncommutative C^*-algebra (or von Neumann algebra) A, and $\mathbb{R}^{\leftrightarrow}$ generalises the real numbers and may give us a new model of physical space and space-time. This is very recent and ongoing work, so many open questions remain. In both cases, the topos approach gives us some new ideas about non-standard notions of spaces that may become useful in physics.
In this talk, I want to focus on some properties of the objects Σ and \mathbb{R}.

It will be shown that

1. Σ can be seen as a spectrum of the noncommutative C^*-algebra (or von Neumann algebra) \mathcal{A},
In this talk, I want to focus on some properties of the objects Σ and $\mathbb{R}\leftrightarrow$. It will be shown that

- Σ can be seen as a spectrum of the noncommutative C^*-algebra (or von Neumann algebra) \mathcal{A},
- $\mathbb{R}\leftrightarrow$ generalises the real numbers and may give us a new model of physical space and space-time.
In this talk, I want to focus on some properties of the objects Σ and \mathbb{R}. It will be shown that

- Σ can be seen as a spectrum of the noncommutative C^*-algebra (or von Neumann algebra) \mathcal{A},
- \mathbb{R} generalises the real numbers and may give us a new model of physical space and space-time.

This is very recent and ongoing work, so many open questions remain. In both cases, the topos approach gives us some new ideas about non-standard notions of spaces that may become useful in physics.
Some steps towards noncommutative Gel’fand duality
Gel’fand duality

Given a commutative C^*-algebra \mathcal{A}, we can find a locally compact Hausdorff space $\Sigma^\mathcal{A}$, the Gel’fand spectrum of \mathcal{A}, such that $\mathcal{A} \cong C(\Sigma^\mathcal{A})$ as C^*-algebras. A \ast-homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ between commutative C^*-algebras induces a continuous function

$$
\Phi : \Sigma^\mathcal{B} \longrightarrow \Sigma^\mathcal{A}
$$

$$
\lambda \longmapsto \lambda \circ \phi.
$$
Gel’fand duality

Given a commutative C^*-algebra A, we can find a locally compact Hausdorff space Σ^A, the **Gel’fand spectrum of** A, such that $A \simeq C(\Sigma^A)$ as C^*-algebras. A $*$-homomorphism $\phi : A \to B$ between commutative C^*-algebras induces a continuous function

$$
\Phi : \Sigma^B \longrightarrow \Sigma^A
$$

$$
\lambda \longmapsto \lambda \circ \phi.
$$

Conversely, given a locally compact Hausdorff space X, $C_0(X)$ is a commutative C^*-algebra. If $f : X \to Y$ is a continuous function between locally compact Hausdorff spaces, then we obtain a $*$-homomorphism

$$
F : C_0(Y) \longrightarrow C_0(X)
$$

$$
g \longmapsto g \circ f.
$$

If we restrict attention to unital algebras (as we will in the following), we get compact Hausdorff spaces.
Gel’fand duality (2)

Categorically, there is an equivalence between the category of unital commutative C^*-algebras and the category of compact Hausdorff spaces,

$$\text{UcC}^* \xleftarrow{\Sigma} \text{KHausSp}^{\text{op}},$$

where $C(-)$ denotes the Gelfand transform.
Gel’fand duality (2)

Categorically, there is an equivalence between the category of unital commutative C^*-algebras and the category of compact Hausdorff spaces,

$$\xymatrix{ \mathrm{UcC}^* \ar@<1ex>[r]^-{\Sigma} \ar@<-1ex>[r]_-{\perp} & \mathrm{KHausSp}^{\text{op}}, \ar@<1ex>[l]^-{C(-)} }$$

In quantum theory, but also in a great variety of mathematical situations, *noncommutative* C^*- and von Neumann algebras play an important rôle.
Categorically, there is an equivalence between the category of unital commutative C^*-algebras and the category of compact Hausdorff spaces,

$$\text{UcC}^* \xrightarrow{\Sigma} \text{KHausSp}^{\text{op}},$$

$$\text{C}(-) \xleftarrow{\bot} \text{KHausSp}^{\text{op}},$$

In quantum theory, but also in a great variety of mathematical situations, *noncommutative* C^*- and von Neumann algebras play an important rôle.

A good notion of spectrum for noncommutative algebras is still lacking. Among other things, such spectra could provide quantum theory with a deeper topological and geometric underpinning.
Two intuitive ideas about NC spaces

Of course, there have been many suggestions for a definition of NC spectra. Quite generally, there may be different intuitions about how to incorporate noncommutativity. We mention just two:

- **Noncommutativity on the level of topology**: A NC spectrum (or space) is given by a NC topology. For C^*-algebras: Akemann, Giles-Kummer, Mulvey, Borceux, Rosicky, ... (quantales). In physical terms, this corresponds to an operational view: it matters in which order 'we ask the system questions'.

- **Noncommutativity expressed by lack of points**: A NC spectrum (or space) is a space lacking points (e.g. a locale/frame without points). The physical intuition is that points act as models/states and would allow to assign values to all physical quantities simultaneously (by evaluation) – which is impossible in quantum theory.

In her recent MSc thesis, Carmen Constantin has compared these two perspectives.
Two intuitive ideas about NC spaces

Of course, there have been many suggestions for a definition of NC spectra. Quite generally, there may be different intuitions about how to incorporate noncommutativity. We mention just two:

- **Noncommutativity on the level of topology**: a NC spectrum (or space) is given by a NC topology. For C^*-algebras: Akemann, Giles-Kummer, Mulvey, Borceux, Rosický, ... (quantales). In physical terms, this corresponds to an operational view: it matters in which order ‘we ask the system questions’.

- **Noncommutativity expressed by lack of points**: a NC spectrum (or space) is a space lacking points (e.g. a locale/frame without points). The physical intuition is that points act as models/states and would allow to assign values to all physical quantities simultaneously (by evaluation) – which is impossible in quantum theory.

In her recent MSc thesis, Carmen Constantin has compared these two perspectives.
Two intuitive ideas about NC spaces

Of course, there have been many suggestions for a definition of NC spectra. Quite generally, there may be different intuitions about how to incorporate noncommutativity. We mention just two:

- Noncommutativity on the level of topology: a NC spectrum (or space) is given by a NC topology. For C^*-algebras: Akemann, Giles-Kummer, Mulvey, Borceux, Rosický, ... (quantales). In physical terms, this corresponds to an operational view: it matters in which order ‘we ask the system questions’.

- Noncommutativity expressed by lack of points: a NC spectrum (or space) is a space lacking points (e.g. a locale/frame without points). The physical intuition is that points act as models/states and would allow to assign values to all physical quantities simultaneously (by evaluation) – which is impossible in quantum theory.
Two intuitive ideas about NC spaces

Of course, there have been many suggestions for a definition of NC spectra. Quite generally, there may be different intuitions about how to incorporate noncommutativity. We mention just two:

- **Noncommutativity on the level of topology**: a NC spectrum (or space) is given by a NC topology. For C^*-algebras: Akemann, Giles-Kummer, Mulvey, Borceux, Rosický, ... (quantales). In physical terms, this corresponds to an operational view: it matters in which order ‘we ask the system questions’.

- **Noncommutativity expressed by lack of points**: a NC spectrum (or space) is a space lacking points (e.g. a locale/frame without points). The physical intuition is that points act as models/states and would allow to assign values to all physical quantities simultaneously (by evaluation) – which is impossible in quantum theory.

In her recent MSc thesis, Carmen Constantin has compared these two perspectives.
The spectral presheaf

Let \mathcal{A} be the noncommutative, unital C^*-algebra (or von Neumann algebra) of physical quantities of some quantum physical system S. We consider the set $\mathcal{V}(\mathcal{A})$ of non-trivial counital commutative C^*- (or von Neumann) subalgebras of \mathcal{A}, partially ordered under inclusion. Elements $C \in \mathcal{V}(\mathcal{A})$ are also called **contexts**, and $\mathcal{V}(\mathcal{A})$ is the **context category**.
The spectral presheaf

Let \mathcal{A} be the noncommutative, unital C^*-algebra (or von Neumann algebra) of physical quantities of some quantum physical system S. We consider the set $\mathcal{V}(\mathcal{A})$ of non-trivial counital commutative C^*- (or von Neumann) subalgebras of \mathcal{A}, partially ordered under inclusion. Elements $C \in \mathcal{V}(\mathcal{A})$ are also called contexts, and $\mathcal{V}(\mathcal{A})$ is the context category.

Each commutative algebra C is isomorphic to $C(\Sigma_C)$, where Σ_C, the Gel’fand spectrum of C, is the set of all algebra homomorphisms $\lambda: C \rightarrow \mathbb{C}$. Equipped with the weak* topology, Σ_C is a compact Hausdorff space.
The spectral presheaf

Let \mathcal{A} be the noncommutative, unital C^*-algebra (or von Neumann algebra) of physical quantities of some quantum physical system S. We consider the set $\mathcal{V}(\mathcal{A})$ of non-trivial counital commutative C^*- (or von Neumann) subalgebras of \mathcal{A}, partially ordered under inclusion. Elements $C \in \mathcal{V}(\mathcal{A})$ are also called contexts, and $\mathcal{V}(\mathcal{A})$ is the context category.

Each commutative algebra C is isomorphic to $C(\Sigma_C)$, where Σ_C, the Gel’fand spectrum of C, is the set of all algebra homomorphisms $\lambda : C \to \mathbb{C}$. Equipped with the weak* topology, Σ_C is a compact Hausdorff space.

The physical interpretation is that for each context C, we have a local state space Σ_C (comparable to the situation in classical physics). All physical quantities $\hat{A} \in C_{sa}$ can be written as continuous, real-valued functions on Σ_C.
The idea, due to Isham and Butterfield, is to fit together all these local state spaces into one global object, the spectral presheaf Σ. It is defined as follows:

- on objects: for each $C \in \mathcal{V}(A)$, let $\Sigma_C := \Sigma C$;
- on morphisms: for each inclusion $i_{C'}C : C' \to C$, let

$$\Sigma(i_{C'}C) : \Sigma_C \longrightarrow \Sigma_{C'}$$

$$\lambda \longmapsto \lambda|_{C'}.$$
The spectral presheaf (2)

The idea, due to Isham and Butterfield, is to fit together all these local state spaces into one global object, the **spectral presheaf** Σ. It is defined as follows:

- on objects: for each $C \in \mathcal{V}(\mathcal{A})$, let $\Sigma_C := \Sigma_C$;
- on morphisms: for each inclusion $i_{C', C} : C' \to C$, let

$$\Sigma(i_{C', C}) : \Sigma_C \longrightarrow \Sigma_{C'}$$

$$\lambda \longmapsto \lambda|_{C'}.$$

The restriction mappings $\Sigma(i_{C', C})$ are well-known to be continuous, surjective functions.
The spectral presheaf plays the rôle of the state space of the quantum system. One can show that Σ has no global elements. This is equivalent to a key theorem in the foundations of quantum theory, the Kochen-Specker theorem.
The spectral presheaf plays the rôle of the **state space** of the quantum system. One can show that \(\Sigma \) has no global elements. This is equivalent to a key theorem in the foundations of quantum theory, the Kochen-Specker theorem.

\(\Sigma \) can also be seen as a new kind of noncommutative space associated with a noncommutative algebra.
The spectral presheaf plays the rôle of the **state space** of the quantum system. One can show that Σ has no global elements. This is equivalent to a key theorem in the foundations of quantum theory, the Kochen-Specker theorem.

Σ can also be seen as a new kind of noncommutative space associated with a noncommutative algebra.

The spectral presheaf Σ is one object in the topos $\mathbf{Set}^{\mathbf{V}(\mathcal{A})^{\text{op}}}$ of presheaves over the context category $\mathbf{V}(\mathcal{A})$. (Presheaves are contravariant, \mathbf{Set}-valued functors.) This is the topos associated with our quantum system.
A topology for the spectral presheaf

A subobject $S = (S_C)_{C \in \mathcal{V}(A)}$ of Σ is a subpresheaf, meaning that (a) for all $C \in \mathcal{V}(A)$, $S_C \subseteq \Sigma_C$ and (b) for all inclusions $i_{C'} : C' \to C$, $\Sigma(i_{C'}) (S_C) \subseteq S_{C'}$.
A topology for the spectral presheaf

A subobject \(S = (S_C)_{C \in \mathcal{V}(A)} \) of \(\Sigma \) is a subpresheaf, meaning that (a) for all \(C \in \mathcal{V}(A) \), \(S_C \subseteq \Sigma_C \) and (b) for all inclusions \(i_{C',C} : C' \to C \), \(\Sigma(i_{C',C})(S_C) \subseteq S_{C'} \).

An open subobject \(S \) of \(\Sigma \) is a subobject such that for all \(C \in \mathcal{V}(A) \), the components \(S_C \) are open.
A topology for the spectral presheaf

A subobject $S = (S_C)_{C \in \mathcal{V}(A)}$ of Σ is a subpresheaf, meaning that (a) for all $C \in \mathcal{V}(A)$, $S_C \subseteq \Sigma_C$ and (b) for all inclusions $i_{C'C}: C' \to C$, $\Sigma(i_{C'C})(S_C) \subseteq S_{C'}$.

An open subobject S of Σ is a subobject such that for all $C \in \mathcal{V}(A)$, the components S_C are open.

Under stagewise unions and intersections, the open subobjects form a frame $\text{Sub}_o(\Sigma)$ and hence a topology.
A map between spectra
Let $\phi : A \to B$ be a \ast-homomorphism between C^*-algebras. We want to construct a morphism $\Phi : \Sigma^B \to \Sigma^A$, in analogy to the commutative case.
Let $\phi : A \to B$ be a $*$-homomorphism between C^*-algebras. We want to construct a morphism $\Phi : \Sigma^B \to \Sigma^A$, in analogy to the commutative case.

The first problem is that Σ^B and Σ^A live in different topoi: Σ^B is an object in $\text{Set}^{\mathcal{V}(B)^{\text{op}}}$, while Σ^A is an object in $\text{Set}^{\mathcal{V}(A)^{\text{op}}}$.
*-homomorphisms

Let $\phi : \mathcal{A} \to \mathcal{B}$ be a $*$-homomorphism between \mathcal{C}^*-algebras. We want to construct a morphism $\Phi : \Sigma^B \to \Sigma^A$, in analogy to the commutative case.

The first problem is that Σ^B and Σ^A live in different topoi: Σ^B is an object in $\text{Set}^{\mathcal{V}(\mathcal{B})^{\text{op}}}$, while Σ^A is an object in $\text{Set}^{\mathcal{V}(\mathcal{A})^{\text{op}}}$.

We use the following fact: $\phi : \mathcal{A} \to \mathcal{B}$ induces a morphism

$$\tilde{\phi} : \mathcal{V}(\mathcal{A}) \longrightarrow \mathcal{V}(\mathcal{B})$$

$$C \longmapsto \phi(C)$$

of posets. In this way, we obtain a morphism between the base categories of our topoi.
The geometric morphism

\(\tilde{\phi} \) induces a geometric morphism \(\Phi : \text{Set}^{\mathcal{V}(A)^{\text{op}}} \to \text{Set}^{\mathcal{V}(B)^{\text{op}}} \) whose inverse image morphism is given by

\[
\Phi^* : \text{Set}^{\mathcal{V}(B)^{\text{op}}} \longrightarrow \text{Set}^{\mathcal{V}(A)^{\text{op}}}
\]

\[
P \mapsto P \circ \tilde{\phi}.
\]
The geometric morphism

\(\tilde{\phi}\) induces a geometric morphism \(\Phi : \text{Set}^{\mathcal{V}(A)^{\text{op}}} \to \text{Set}^{\mathcal{V}(B)^{\text{op}}}\) whose inverse image morphism is given by

\[
\Phi^* : \text{Set}^{\mathcal{V}(B)^{\text{op}}} \longrightarrow \text{Set}^{\mathcal{V}(A)^{\text{op}}}
\]

\[P \mapsto P \circ \tilde{\phi}.
\]

We hence can map \(\Sigma^B\) to an object \(\Phi^*(\Sigma^B)\) in the topos \(\text{Set}^{\mathcal{V}(A)^{\text{op}}}\), given by

\[
\forall C \in \mathcal{V}(A) : \Phi^*(\Sigma^B)C = (\Sigma^B \circ \tilde{\phi})C = \Sigma^B_{\tilde{\phi}}(C).
\]
Using Gel’fand duality locally

We still have to relate the presheaf $\Phi^*(\Sigma^B)$ to Σ^A. Here, we can use that for each $C \in \mathcal{V}(A)$, we have a \ast-homomorphism

$$\phi|_C : C \rightarrow \phi(C)$$

between the commutative C^*-algebras C and $\phi(C)$.
Using Gel’fand duality locally

We still have to relate the presheaf $\Phi^*(\Sigma^B)$ to Σ^A. Here, we can use that for each $C \in \mathcal{V}(A)$, we have a \ast-homomorphism

$$\phi|_C : C \to \phi(C)$$

between the commutative C^\ast-algebras C and $\phi(C)$.

Since $\Sigma^A_C = \Sigma_C$ and $(\Phi^*(\Sigma^B))_C = \Sigma^B_{\phi(C)} = \Sigma_{\phi(C)}$, by Gel’fand duality we obtain a continuous function

$$G_C : (\Phi^*(\Sigma^B))_C \to \Sigma^A_C$$

$$\lambda \mapsto \lambda \circ \phi|_C.$$
Using Gel’fand duality locally

We still have to relate the presheaf $\Phi^*(\Sigma^B)$ to Σ^A. Here, we can use that for each $C \in \mathcal{V}(A)$, we have a \ast-homomorphism

$$\phi|_C : C \rightarrow \phi(C)$$

between the commutative C^\ast-algebras C and $\phi(C)$.

Since $\Sigma^A_C = \Sigma_C$ and $(\Phi^*(\Sigma^B))_C = \Sigma^B_{\phi(C)} = \Sigma_{\phi(C)}$, by Gel’fand duality we obtain a continuous function

$$G_C : (\Phi^*(\Sigma^B))_C \rightarrow \Sigma^A_C$$

$$\lambda \mapsto \lambda \circ \phi|_C.$$

It is straightforward to see that the subsets $G_C(\Phi^*(\Sigma^B)_C) \subseteq \Sigma^A_C$ fit together to form a subobject of Σ^A, which we denote as $(G \circ \Phi^*)(\Sigma^B)$.
The main result

We have shown:

Theorem

Each \ast-homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ between C^\ast-algebras induces a map $(\mathcal{G} \circ \Phi^\ast) : \sum^\mathcal{B} \to \sum^\mathcal{A}$ in the opposite direction between the associated spectral presheaves.
The main result

We have shown:

Theorem

Each \ast-homomorphism $\phi : A \to B$ between C^\ast-algebras induces a map $(G \circ \Phi^*) : \Sigma^B \to \Sigma^A$ in the opposite direction between the associated spectral presheaves.

The map $G \circ \Phi^*$ can be seen as the first half of a noncommutative Gel’fand transformation, relating noncommutative C^\ast-algebras and their morphisms to certain noncommutative spaces without points and morphisms between them.

There is an analogous construction for von Neumann algebras.
Unitary group actions
Unitary group actions

Let \hat{U} be a unitary operator that maps a C^*-algebra \mathcal{A} to itself. Such unitaries represent symmetry transformations of the quantum system described by \mathcal{A}. They form a group $\mathcal{U}(\mathcal{A})$.

Andreas Döring (Oxford Comlab)
Unitary group actions

Let \hat{U} be a unitary operator that maps a C^*-algebra \mathcal{A} to itself. Such unitaries represent **symmetry transformations** of the quantum system described by \mathcal{A}. They form a group $\mathcal{U}(\mathcal{A})$.

Of course, in quantum theory this group serves to encode

- time evolution,
- symmetries,
- covariance properties

of the quantum system described by \mathcal{A}.
Unitary group actions

Let \hat{U} be a unitary operator that maps a C^*-algebra \mathcal{A} to itself. Such unitaries represent **symmetry transformations** of the quantum system described by \mathcal{A}. They form a group $\mathcal{U}(\mathcal{A})$.

Of course, in quantum theory this group serves to encode
- time evolution,
- symmetries,
- covariance properties

of the quantum system described by \mathcal{A}.

If, as we suggest, the spectral presheaf $\Sigma^\mathcal{A}$ is like a state space for our quantum system, then $\mathcal{U}(\mathcal{A})$ should act on $\Sigma^\mathcal{A}$ by automorphisms.
Implementing the group action

Let \mathcal{A} be a C^*-algebra, and let $\hat{U} \in \mathcal{U}(\mathcal{A})$. Then

$$l_{\hat{U}} : \mathcal{A} \longrightarrow \mathcal{A}$$

$$\hat{\mathcal{A}} \longmapsto \hat{U}^{-1} \hat{\mathcal{A}} \hat{U}$$

is a $*$-homomorphism.
Implementing the group action

Let \mathcal{A} be a C^*-algebra, and let $\hat{U} \in \mathcal{U}(\mathcal{A})$. Then

$$l_{\hat{U}} : \mathcal{A} \longrightarrow \mathcal{A}$$

$$\hat{\mathcal{A}} \longrightarrow \hat{U}^{-1} \hat{\mathcal{A}} \hat{U}$$

is a $*$-homomorphism.

This induces a poset automorphism $\tilde{l}_{\hat{U}} : \mathcal{V}(\mathcal{A}) \rightarrow \mathcal{V}(\mathcal{A})$, and hence a geometric automorphism $\Phi : \textbf{Set}^{\mathcal{V}(\mathcal{A})^\text{op}} \rightarrow \textbf{Set}^{\mathcal{V}(\mathcal{A})^\text{op}}$ such that

$$\forall C \in \mathcal{V}(\mathcal{A}) : (\Phi^* (\Sigma^\mathcal{A})) C = \Sigma^\mathcal{A} \tilde{l}_{\hat{U}}(C).$$
Implementing the group action

Let \mathcal{A} be a C^*-algebra, and let $\hat{U} \in \mathcal{U}(\mathcal{A})$. Then

\[
\hat{l}_{\hat{U}} : \mathcal{A} \rightarrow \mathcal{A} \\
\hat{A} \mapsto \hat{U}^{-1} \hat{A} \hat{U}
\]

is a \ast-homomorphism.

This induces a poset automorphism $\tilde{l}_{\hat{U}} : \mathcal{V}(\mathcal{A}) \rightarrow \mathcal{V}(\mathcal{A})$, and hence a geometric automorphism $\Phi : \textbf{Set}^{\mathcal{V}(\mathcal{A})^{\text{op}}} \rightarrow \textbf{Set}^{\mathcal{V}(\mathcal{A})^{\text{op}}}$ such that

\[
\forall C \in \mathcal{V}(\mathcal{A}) : (\Phi^* (\Sigma^\mathcal{A})) C = \Sigma_{\tilde{l}_{\hat{U}}(C)}^\mathcal{A}.
\]

For each $C \in \mathcal{V}(\mathcal{A})$, the \ast-homomorphism $l_{\hat{U}}|_C : C \rightarrow l_{\hat{U}}(C)$ gives a continuous function

\[
G_C : (\Phi^* (\Sigma^\mathcal{A})) C \rightarrow \Sigma_{C}^\mathcal{A}.
\]
‘Rotating’ subobjects

Things become clearer if we consider (open) subobjects of Σ^A. First note that Σ_C is isomorphic to $\Sigma_\hat{U}(C)$ for any unitary \hat{U}. Let S be an open subobject. Then

$$\forall C \in \mathcal{V}(A) : G_C(\Phi^*(S)_C) = G_C(S_\hat{U}(C)) \subseteq \Sigma^A,$$

so the component $G_C(\Phi^*(S)_C)$ is the old component $S_\hat{U}(C)$ ‘rotated into position C’.
‘Rotating’ subobjects

Things become clearer if we consider (open) subobjects of Σ^A. First note that Σ_C is isomorphic to $\Sigma_{\hat{U}(C)}$ for any unitary \hat{U}. Let S be an open subobject. Then

$$\forall C \in V(A) : \mathcal{G}_C(\Phi^*(S)_C) = \mathcal{G}_C(S_{\hat{U}(C)}) \subseteq \Sigma^A,$$

so the component $\mathcal{G}_C(\Phi^*(S)_C)$ is the old component $S_{\hat{U}(C)}$ ‘rotated into position C’.

Clearly, we can use the transformation for \hat{U}^{-1} to rotate back. The transformations for different unitaries \hat{U}_1, \hat{U}_2 compose to give the transformation determined by $\hat{U}_1 \hat{U}_2$. We get:

Theorem

*There is a faithful representation of the unitary group $\mathcal{U}(A)$ by automorphisms of $\text{Sub}_o(\Sigma^A)$.***
The commutative case
A small problem

If \mathcal{A} is a commutative C^*-algebra, we would like to get back the usual Gel’fand duality.
If \mathcal{A} is a commutative C^*-algebra, we would like to get back the usual Gel’fand duality.

There is a slight embarrassment: a non-trivial commutative C^*-algebra \mathcal{A} has non-trivial commutative subalgebras, so the poset $\mathcal{V}(\mathcal{A})$ has \mathcal{A} as its top element, but also contains other elements.
A small problem

If \mathcal{A} is a commutative C^*-algebra, we would like to get back the usual Gel’fand duality.

There is a slight embarrassment: a non-trivial commutative C^*-algebra \mathcal{A} has non-trivial commutative subalgebras, so the poset $\mathcal{V}(\mathcal{A})$ has \mathcal{A} as its top element, but also contains other elements.

Hence, $\Sigma \mathcal{A}$ contains the Gel’fand spectrum of \mathcal{A}, but also the spectra of its subalgebras. Moreover, it lives in the topos $\text{Set}^{\mathcal{V}(\mathcal{A})^\text{op}}$, which is different from Set, where \mathcal{A} and the usual Gel’fand spectrum $\Sigma \mathcal{A}$ live.
The commutative case

Changing the poset

The solution we suggest is straightforward: instead of all commutative subalgebras, consider the poset $\mathcal{V}^Z(A)$ of those commutative subalgebras that contain the center Z of A. The topos then becomes $\text{Set}^{\mathcal{V}^Z(A)^{\text{op}}}$.

Remark: For a noncommutative algebra A, we obtain a nontrivial poset $\mathcal{V}^Z(A)$. Importantly, the change of the base categories does not affect the construction of the morphism $G \circ \Phi^* : \Sigma B \to \Sigma A$ from an *-homomorphism $\phi : A \to B$.

Andreas Döring (Oxford Comlab)
The solution we suggest is straightforward: instead of all commutative subalgebras, consider the poset $\mathcal{V}^Z(A)$ of those commutative subalgebras that contain the center Z of A. The topos then becomes $\text{Set}^{\mathcal{V}^Z(A)^{\text{op}}}$. If A is commutative, then $A = Z$, $\mathcal{V}^Z(A) = \{A\}$, and the topos becomes $\text{Set}^{\{A\}^{\text{op}}} = \text{Set}$. The spectral presheaf Σ^A then simply is the Gel’fand spectrum Σ^A.

Remark: For a noncommutative algebra A, we obtain a nontrivial poset $\mathcal{V}^Z(A)$. Importantly, the change of the base categories does not affect the construction of the morphism $G \circ \Phi^* : \Sigma^B \to \Sigma^A$ from a $^*\text{-homomorphism}$ $\phi : A \to B$.

Andreas Döring (Oxford Comlab)
The solution we suggest is straightforward: instead of *all* commutative subalgebras, consider the poset $\mathcal{V}^Z(A)$ of those commutative subalgebras that contain the *center* Z of A. The topos then becomes $\text{Set}^{\mathcal{V}^Z(A)^\text{op}}$.

If A is commutative, then $A = Z$, $\mathcal{V}^Z(A) = \{A\}$, and the topos becomes $\text{Set}\{A\}^\text{op} = \text{Set}$. The spectral presheaf Σ^A then simply is the Gel’fand spectrum Σ^A.

Remark: For a noncommutative algebra A, we obtain a nontrivial poset $\mathcal{V}^Z(A)$. Importantly, the change of the base categories does *not* affect the construction of the morphism $G \circ \Phi^* : \Sigma^B \to \Sigma^A$ from a \ast-homomorphism $\phi : A \to B$.
Some open questions
Where to from here?

Many open questions remain:

1. The map $G \circ \Phi^*$ is composed of the inverse image part of a geometric morphism and a natural transformation. It can be seen as a map between (particular) presheaf topoi with distinguished state objects Σ. We need an axiomatisation of these.
Many open questions remain:

1. The map $G \circ \Phi^*$ is composed of the inverse image part of a geometric morphism and a natural transformation. It can be seen as a map between (particular) presheaf topoi with distinguished state objects Σ. We need an axiomatisation of these.

2. In which sense, if any, can $G \circ \Phi^*$ be seen as continuous? How does the map behave with respect to open (resp. clopen) subobjects?
Many open questions remain:

1. The map $\mathcal{G} \circ \Phi^*$ is composed of the inverse image part of a geometric morphism and a natural transformation. It can be seen as a map between (particular) presheaf topoi with distinguished state objects Σ. We need an axiomatisation of these.

2. In which sense, if any, can $\mathcal{G} \circ \Phi^*$ be seen as continuous? How does the map behave with respect to open (resp. clopen) subobjects?

3. Harder: is there any chance of defining a map in the inverse direction? Can we get an adjunction or even an equivalence?
A recent result

One can show (see preprint by John Harding and AD in the ArXiv yesterday, arXiv:1009.4945):

Theorem

Let \mathcal{M}, \mathcal{N} *be von Neumann algebras without type* l_2 *summands, and let* $f : \mathcal{V}(\mathcal{M}) \to \mathcal{V}(\mathcal{N})$ *be an order-isomorphism. Then there is a unique Jordan isomorphism* $F : \mathcal{M} \to \mathcal{N}$ *with* $f(C)$ *equal to the image* $F[C]$ *for every* $C \in \mathcal{C}(\mathcal{M})$.
A recent result

One can show (see preprint by John Harding and AD in the ArXiv yesterday, arXiv:1009.4945):

Theorem

Let \mathcal{M}, \mathcal{N} be von Neumann algebras without type l_2 summands, and let $f : \mathcal{V}(\mathcal{M}) \to \mathcal{V}(\mathcal{N})$ be an order-isomorphism. Then there is a unique Jordan isomorphism $F : \mathcal{M} \to \mathcal{N}$ with $f(C)$ equal to the image $F[C]$ for every $C \in \mathcal{C}(\mathcal{M})$.

This shows that already the base category $\mathcal{V}(\mathcal{M})$ of our topos, the abelian subalgebras as a poset, encodes a lot of algebraic information about the algebra (in the case of von Neumann algebras).
And now for something completely different.
Domains and Space-Time
Computer scientists had to come up with ways
- to put real numbers onto a computer,
- describe processes of computation and approximation,
- provide logical systems for reasoning about programming languages.
Computer scientists had to come up with ways
- to put real numbers onto a computer,
- describe processes of computation and approximation,
- provide logical systems for reasoning about programming languages.

One important subfield of computer science addressing these issues is **domain theory**, initiated by Dana Scott in the early 70s.
Domain theory

Computer scientists had to come up with ways

- to put real numbers onto a computer,
- describe processes of computation and approximation,
- provide logical systems for reasoning about programming languages.

One important subfield of computer science addressing these issues is **domain theory**, initiated by Dana Scott in the early 70s.

Domains are partially ordered sets with extra structure that allow to systematically describe approximation processes. Topologically, they lead to non-Hausdorff spaces.
The interval domain

A simple, but important example is the **interval domain** $\mathbb{I}_\mathbb{R}$: it consists of real intervals $[a, b]$ (where $a \leq b$), partially ordered under reverse inclusion,

$$
\mathbb{I}_\mathbb{R} := \{[a, b], \subseteq \supseteq \}.
$$
The interval domain

A simple, but important example is the **interval domain** \mathbb{IR}: it consists of real intervals $[a, b]$ (where $a \leq b$), partially ordered under reverse inclusion,

$$\mathbb{IR} := \{ [a, b], \subseteq \supseteq \}.$$

One can think of an interval $[a, b]$ as an ‘unsharp’ real value, often obtained as an approximation/intermediate step in a computation.
domains and space-time

The interval domain

A simple, but important example is the interval domain \mathbb{IR}: it consists of real intervals $[a, b]$ (where $a \leq b$), partially ordered under reverse inclusion,

$$\mathbb{IR} := \{[a, b], \subseteq \}.$$

One can think of an interval $[a, b]$ as an ‘unsharp’ real value, often obtained as an approximation/intermediate step in a computation.

Note that \mathbb{IR} contains the real numbers \mathbb{R} as the set of largest elements.
The interval domain

A simple, but important example is the **interval domain** $\mathbb{I}_{\mathbb{R}}$: it consists of real intervals $[a, b]$ (where $a \leq b$), partially ordered under reverse inclusion,

$$\mathbb{I}_{\mathbb{R}} := \{[a, b], \subseteq\}.$$

One can think of an interval $[a, b]$ as an ‘unsharp’ real value, often obtained as an approximation/intermediate step in a computation.

Note that $\mathbb{I}_{\mathbb{R}}$ contains the real numbers \mathbb{R} as the set of largest elements.

Domains come with a topology, called the **Scott topology**. For the interval domain, a base of the topology is given by sets of the form

$$\uparrow [a, b] = \{[c, d] | a < c \leq d < b\}$$

for all $[a, b] \in \mathbb{I}_{\mathbb{R}}$. The topology induced on \mathbb{R} is the standard one.
The quantity-value object

We now introduce the quantity-value object $\mathbb{R} \leftrightarrow$. It arises in the topos approach as a generalisation of \mathbb{R}, where physical quantities in classical physics take their values.
The quantity-value object

We now introduce the quantity-value object $\mathbb{R}\leftrightarrow$. It arises in the topos approach as a generalisation of \mathbb{R}, where physical quantities in classical physics take their values.

Details are a bit involved, but basically, $\mathbb{R}\leftrightarrow$ is a presheaf that consists of one copy of $\mathbb{I}\mathbb{R}$ for each context $C \in \mathcal{V}$. This is an a posteriori observation by Heunen/Landsman/Spitters (who only consider constant intervals). Originally, we came up with $\mathbb{R}\leftrightarrow$ in order to capture 'unsharp values' and coarse-graining. In particular, we do get bigger intervals at smaller contexts $C' \subset C$ as 'values' of physical quantities from expressions like $\hat{\mathcal{A}}(w\psi) \subset \mathbb{R}\leftrightarrow$, where $w\psi$ is the representation of a vector state in our topos.
The quantity-value object

We now introduce the quantity-value object $\mathbb{R}\mapsto$. It arises in the topos approach as a generalisation of \mathbb{R}, where physical quantities in classical physics take their values.

Details are a bit involved, but basically, $\mathbb{R}\mapsto$ is a presheaf that consists of one copy of $\mathbb{I}\mathbb{R}$ for each context $C \in \mathcal{V}(\mathcal{A})$.

This is an *a posteriori* observation by Heunen/Landsman/Spitters (who only consider constant intervals). Originally, we came up with $\mathbb{R}\mapsto$ in order to capture ‘unsharp values’ and coarse-graining.
Domains and space-time

The quantity-value object

We now introduce the quantity-value object $\mathbb{R}^\leftrightarrow$. It arises in the topos approach as a generalisation of \mathbb{R}, where physical quantities in classical physics take their values.

Details are a bit involved, but basically, $\mathbb{R}^\leftrightarrow$ is a presheaf that consists of one copy of $\mathbb{I}\mathbb{R}$ for each context $C \in \mathcal{V}(\mathcal{A})$.

This is an \textit{a posteriori} observation by Heunen/Landsman/Spitters (who only consider constant intervals). Originally, we came up with $\mathbb{R}^\leftrightarrow$ in order to capture ‘unsharp values’ and coarse-graining.

In particular, we do get bigger intervals at smaller contexts $C' \subset C$ as ‘values’ of physical quantities from expressions like

$$\hat{\mathcal{A}}(\underline{w}\psi) \subset \mathbb{R}^\leftrightarrow,$$

where $\underline{w}\psi$ is the representation of a vector state in our topos.
The idea

We can turn this picture around: if we look from smaller/more coarse-grained contexts to larger/less coarse-grained ones, we get smaller and smaller intervals.
The idea

We can turn this picture around: if we look from smaller/more coarse-grained contexts to larger/less coarse-grained ones, we get smaller and smaller intervals.

- Very reminiscent of the approximation ideas that led to \mathbb{IR},

In particular, values of the physical quantity position may (potentially) be described that way – this is ‘how an electron sees the world’. Space and space-time may be domains, and their quantum versions may be domains in a topos.
The idea

We can turn this picture around: if we look from smaller/more coarse-grained contexts to larger/less coarse-grained ones, we get smaller and smaller intervals.

- Very reminiscent of the approximation ideas that led to \mathbb{IR},
- but relativised w.r.t. all ‘classical perspectives’.
The idea

We can turn this picture around: if we look from smaller/more coarse-grained contexts to larger/less coarse-grained ones, we get smaller and smaller intervals.

- Very reminiscent of the approximation ideas that led to \mathbb{IR},
- but relativised w.r.t. all ‘classical perspectives’.
- (Only) in eigenstate situations, we get ‘sharp’ values $[r, r]$.
The idea

We can turn this picture around: if we look from smaller/more coarse-grained contexts to larger/less coarse-grained ones, we get smaller and smaller intervals.

- Very reminiscent of the approximation ideas that led to \(\mathbb{R} \),
- but relativised w.r.t. all ‘classical perspectives’.
- (Only) in eigenstate situations, we get ‘sharp’ values \([r, r]\).

The suggestion is to take this seriously: values of physical quantities are best described by approximating intervals, relativised w.r.t. to all possible classical perspectives/observers.

In particular, values of the physical quantity position may (potentially) be described that way – this is ‘how an electron sees the world’. Space and space-time may be domains, and their quantum versions may be domains in a topos.
Recent work by Keye Martin and Prakash Panangaden shows that globally hyperbolic (i.e., classical) space-times can be described by certain, slightly generalised interval domains.
Domains and classical space-times

Recent work by Keye Martin and Prakash Panangaden shows that globally hyperbolic (i.e., classical) space-times can be described by certain, slightly generalised interval domains.

While a domain is always a continuous poset, Martin/Panangaden also need co-continuity. The points of their poset are space-time points, partially ordered under the causal order. Their intervals are the familiar diamonds.
Some early results

Rui Soares Barbosa has shown in his MSc thesis that

- the global elements $\Gamma_{\mathbb{R}^{\leftrightarrow}}$ of the quantity-value object $\mathbb{R}^{\leftrightarrow}$ form a domain,
Some early results

Rui Soares Barbosa has shown in his MSc thesis that

- the global elements $\Gamma_{\mathbb{R}^\to}$ of the quantity-value object \mathbb{R}^\to form a domain,
- the context category $\mathcal{V}(\mathcal{A})$ is a domain,
Some early results

Rui Soares Barbosa has shown in his MSc thesis that

- the global elements ΓR of the quantity-value object R form a domain,
- the context category $V(A)$ is a domain,
- daseinisation is Scott-continuous for finite-dimensional von Neumann algebras,
- ...

Importantly, he also started work on R as a topos-internal poset (and possibly domain).

It is straightforward to define R topos-internally, but defining a metric will need more work ;-)

Andreas Döring (Oxford Comlab)
Some early results

Rui Soares Barbosa has shown in his MSc thesis that

- the global elements $\Gamma_{\mathbb{R}^\leftrightarrow}$ of the quantity-value object $\mathbb{R}^\leftrightarrow$ form a domain,
- the context category $\mathcal{V}(\mathcal{A})$ is a domain,
- daseinisation is Scott-continuous for finite-dimensional von Neumann algebras,
- ...

Importantly, he also started work on $\mathbb{R}^\leftrightarrow$ as a topos-internal poset (and possibly domain).

It is straightforward to define $\mathbb{R}^{\leftrightarrow^n}$ topos-internally, but defining a metric will need more work ;-)
‘Bigger’ than the continuum?

Building a model of space and space-time as domains in a topos

- means a departure from the usual continuum picture,
‘Bigger’ than the continuum?

Building a model of space and space-time as domains in a topos

- means a departure from the usual continuum picture,
- does not mean some form of discretisation, but an embedding of the continuum into a much richer structure.
‘Bigger’ than the continuum?

Building a model of space and space-time as domains in a topos

- means a departure from the usual continuum picture,
- does not mean some form of discretisation, but an embedding of the continuum into a much richer structure.

The current ideas are largely based upon the topos version of non-relativistic quantum theory. We expect that the extension to relativistic space-times will bring major changes and developments.

