Go to content
Sprache ändern Selected language is English
UR Home


Heinrich Rohrer Medal for Dr. Jay Weymouth

Medal Jay Gross

Heinrich Rohrer Medal


Hanauerhuette Vor Huette Gro _

Publication No. 88

Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures

Ferdinand Huber and Franz J. Giessibl

Rev. Sci. Instrum., 88, 073702 (2017)

Publication No. 87

Non-contact lateral force microscopy

Alfred J. Weymouth

J. Phys.: Condens. Matter, 29, 323001 (2017)

Giessibl group alumni dinner

Jay Weymouth's Habilitation talk

Investigating electrostatics and short-range interactions with atomic force microscopy

Feynman-Prize for Prof. Dr. Franz J. Gießibl

Press release UR


Korbinian Pürckhauer receives 2. poster-prize on the 2. German-French Summer School on NC-AFM in Osnabrück

Daniel Meuer won the 3. poster-prize on the NC-AFM 2016 in Nottingham

30 years of Nobel Prize for Binnig & Rohrer, Focus Collection


Interview with IOP about 30 years of AFM


We congratulate Gerd Binnig, Christoph Gerber and Calvin Quate on winning the 2016 Kavli Prize for Nanoscience


Publication No. 84

Influence of atomic tip structure on the intensity of inelastic tunneling spectroscopy data analyzed by combined scanning tunneling spectroscopy, force microscopy, and density functional theory

Norio Okabayashi, Alexander Gustafsson, Angelo Peronio, Magnus Paulsson, Toyoko Arai, and Franz J. Giessibl

Fig01 151106 Klein

Phys. Rev. B, 93, 165415 (2016)

Prof. Dr. Franz J. Gießibl receives Rudolf-Jaeckel-award from the Deutschen Vakuumgesellschaft

Preisverleihung 17.jpeg

Publication No. 83

Intramolecular Force Contrast and Dynamic Current-Distance Measurements at Room Temperature

F. Huber, S. Matencio, A. J. Weymouth, C. Ocal, E. Barrena, and F. J. Giessibl


Phys. Rev. Lett, 115, 066101 (2015)

Matthias Emmrich's Ph.D. defense

Subatomare Auflösung auf Adatomen und kraftfeldabhängige laterale Manipulation mit einem eigenentwickelten Tieftemperatur-Rasterkraftmikroskop

Dsc 1389 Klein

Gerhard Ertl Award

Foto Jay Klein

Dr. Jay Weymouth won the Gerhard Ertl Young Investigator Award in 2015. This award is given by the Surface Science division of the German Physicist's Society (DPG) to outstanding young scientists. It is named after Prof. Gerhard Ertl (of the Fritz-Haber Institute in Berlin), who won the Nobel Prize in Chemistry in 2007.

Publication No. 79

Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters

Matthias Emmrich, Ferdinand Huber, Florian Pielmeier, Joachim Welker, Thomas Hofmann, Maximilian Schneiderbauer, Daniel Meuer, Svitlana Polesya, Sergiy Mankovsky, Diemo Ködderitzsch, Hubert Ebert, Franz J. Giessibl

Fe Cluster Klein

Science, DOI: 10.1126/science.aaa5329 (2015)

Publication No. 77

Influence of matrix and filler fraction on biofilm formation
on the surface of experimental resin-based composites

Andrei Ionescu, Eugenio Brambilla, Daniel S. Wastl, Franz J. Giessibl, Gloria Cazzaniga, Sibylle Schneider-Feyrer, Sebastian Hahnel

Zahnproben2014hydrophobes Klein

J Mater Sci: Mater Med, DOI 10.1007/s10856-014-5372-4 (2015)

Maximilian Schneiderbauer's Ph.D. defense

Aufbau eines Tieftemperatur-Ultrahochvakuum-Rasterkraftmikroskops und Messung elektrischer Multipolkräfte im Piconewton-Bereich

Verteidigung Max 1

Florian Pielmeier's Ph.D. defense

Atomic Force Microscopy in the Picometer Regime - Resolving Spins and Non-Trivial Surface Terminations

Verteidigung Flo

Interview with Reviews of Scientific Instruments

Franz J. Giessibl


Publication No. 76

Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy

Daniel S. Wastl, Alfred J. Weymouth and Franz J. Giessibl

Wastl Paper

ACS Nano, DOI: 10.1021/nn501696q (2014)

Prof. Dr. Franz J. Gießibl receives prestigious award from the APS

Keithley Award Franz

Joseph F. Keithley Award for Advances in Measurement Science 2014

Publication No. 75

CO Tip Functionalization Inverts Atomic Force Microscopy Contrast via Short-Range Electrostatic Forces

Maximilian Schneiderbauer, Matthias Emmrich, Alfred J. Weymouth, and Franz J. Giessibl

Max Pa

What does a balloon sticking to a wall have in common with an atomic-scale insulator?

When we consider the interaction between atoms, we often think about the forming and breaking of chemical bonds that is best described with quantum mechanics. But electrostatic forces, like the ones responsible for sticking a balloon on a wall after you rub on your head, also play a role at the atomic scale. Salt, made up of sodium and chloride, is a great example of the importance of these forces. The sodium and chloride atoms have different charges that keep the salt crystal together. Nanotechnology is making use of these ionic materials at the atomic scale as an insulating layer – like the plastic coating of a wire. We used an atomic force microscope to investigate one of these materials – Copper with Nitrogen in it – at the atomic scale to see what role electrostatics plays. By picking up or putting down a molecule on the tip, we can change the charge at the end of the tip. We then simulated these two cases – with and without a molecule – using just the electrostatic interaction. The great agreement between our model and our data tell us how important these interactions are even at the scale of two atoms.

Phys. Rev. Lett. 112, 166102 (2014)

Thomas Hofmann's Ph.D. defense

Hochauflösende Rasterkraftmikroskopie auf Graphen und Kohlenmonoxid

Verteidigung Tom

Publication No. 72

Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures

Florian Pielmeier, Daniel Meuer, Daniel Schmid, Christoph Strunk and Franz J. Giessibl

Pielmeier Graphical Abstract

Beilstein J. Nanotechnol., 5, 407–412 (2014)

Publication No. 71

Chemical and Crystallographic Characterization of the Tip Apex in Scanning Probe Microscopy

Thomas Hofmann, Florian Pielmeier and Franz J. Giessibl

Illustration Kupferspitze Co2

Phys. Rev. Lett. 112, 066101 (2014)

Interview about the field of nanotechnology

Franz J. Giessibl, Christoph Gerber, James K. Gimzewski

iopscience (2014)

nanotechweb (2014)

Publication No. 70

Quantifying molecular stiffness and interaction with lateral force microscopy

Alfred J. Weymouth, Thomas Hofmann, Franz J. Giessibl


One of the most impressive atomic force microscopy (AFM) images was taken by Leo Gross and coworkers at IBM of a molecule showing every carbon-carbon bond within it [Gross et al, Science 325, 1110]. A key step was to functionalize the tip with a CO molecule, making the apex of the AFM tip small and chemically inert [Bartels et al, Appl. Phys. Lett., 71, 213]. However, this comes with a complication: The CO isn’t stiff but rather pivots when a horizontal force is applied. Moreover, standard experimental and theoretical approaches have not been able to characterize this torsional spring. We modified our AFM to be sensitive to lateral forces (LFM). As we measure forces along the surface, we are highly sensitive to short-range interactions. We combined both LFM and AFM data of a CO terminated tip probing a CO surface molecule, to determine the parameters of a simple model: two torsional springs interacting via a Morse potential.

Science, 343, 1120-1122 (2014)

Interview about friction

31podcast 153 38433411c9 Cat3 7b8013f90e

Franz J. Giessibl

weltderphysik, Folge 153, (2014)


Group of Prof. Gießibl


Secretary Petra Wild

Tel: +49 (0)941943-2106

Fax: +49 (0)941943-2754

Room: PHY 1.1.23

Email: petra1.wild@ur.de